
Faculty Members:

Prof. Jayadev Misra 
misra@cs.utexas.edu

Prof. William R. Cook 
wcook@cs.utexas.edu

Graduate Researchers:

John Thywissen 
jthywiss@cs.utexas.edu

Arthur Peters 
amp@cs.utexas.edu

Orc is...
... a novel language for distributed and concurrent programming which provides uniform
access to computational services, including distributed communication and data
manipulation, through sites. Using three simple concurrency primitives, the programmer
orchestrates the invocation of sites to achieve a goal, while managing timeouts, priorities,
and failures.

What can I use Orc for?
• As a general purpose programming language for concise encoding of concurrent and

distributed applications.
• As a Web scripting language to create a Web-service mashup in a few minutes. Orc's

emphasis on concurrency makes mashups much simpler to write than in other scripting
languages.

• As an executable specification language for workflow applications and process
coordination problems.

Why Orc?
Orc is designed to solve a computational pattern inherent in many wide-area applications:
acquire data from one or more remote services, perform some calculation with those data,
and invoke yet other remote services with the results. We call such services sites and the
integration of sites orchestration. Orchestration demands an understanding of the kinds of
computations that can be performed efficiently over a wide-area network, where the delays
associated with communication, unreliability of servers, and competition for resources from
multiple clients are dominant concerns.

The theory behind Orc is that smooth orchestration requires only four simple combinators:
parallel computation, sequencing, selective pruning, and termination detection. Together,
these combinators prove powerful enough to express typical distributed communication
patterns.

Consider a typical wide-area computing problem. A client contacts two airlines
simultaneously for price quotes. He buys a ticket from either airline if its quoted price is no
more than $300, the cheapest ticket if both quotes are above $300, and any ticket if the
other airline does not provide a timely quote. The client should receive an indication if neither
airline provides a timely quote. Such problems are typically programmed using elaborate
manipulations of low-level threads. We regard this as an orchestration problem in which each
airline is a site; we can express such orchestrations very succinctly in Orc.

To see how this is achieved and learn more about Orc's syntax and semantics, please visit
our Web site at http://orc.csres.utexas.edu/

Dig in!
Orc Web site: orc.csres.utexas.edu

In-browser demo:
orc.csres.utexas.edu/tryorc.shtml

Download: orc.csres.utexas.edu/
download.shtml

Documentation: orc.csres.utexas.edu/
documentation.shtml

Mailing list:  
groups.google.com/group/orc-lang/

Wiki: orc.csres.utexas.edu/wiki/

Google Code project:  
orc.googlecode.com

ORC Language Project

ORC LANGUAGE PROJECT Department of Computer Science, The University of Texas at Austin! orc.csres.utexas.edu

ORC SYNTAX REFERENCE
From the Orc Reference Manual section 10.1. EBNF Grammar , at  
URL: http://orc.csres.utexas.edu/documentation/html/refmanual/index.html

E ::=	 	 Expression
	 C	 constant value
	 | X	 variable
 	 | (E , ... , E)	 tuple
	 | [E , ... , E]	 list
	 | stop	 silent expression
	 | E G...	 call
	 | E op E | op E	 operator
	 | E >P> E	 sequential combinator
	 | E | E	 parallel combinator
	 | E <P< E	 pruning combinator
	 | E ; E	 otherwise combinator
	 | lambda (P , ... , P) = E	 closure
	 | if E then E else E	 conditional
	 | D # E	 (# optional)	 declaration and its scope

C ::=	 boolean | number | string	 Constant
	 | signal | null	 signal & null values

X ::=	 identifier	 Variable

G ::=	 	 Argument group
	 (E , ... , E)	 arguments
	 | . field	 field access
	 | ?	 dereference

D ::=	 	 Declaration
	 val P = E	 value declaration
	 | def X(P , ... , P) = E	 function declaration
	 | import site X = "address"	 site declaration
	 | import class X = "classname"	 class declaration
	 | include "filename"	 inclusion

P ::=	 	 Pattern
	 X	 variable
	 | C	 constant
	 | _	 wildcard
	 | X (P , ... , P)	 call pattern
	 | (P , ... , P)	 tuple pattern
	 | [P , ... , P]	 list pattern
	 | P : P	 cons pattern
	 | P as X	 bind sub-pattern to X !

Where relevant, syntactic constructs are ordered by
precedence, from highest to lowest. For example,
among expressions, calls have higher precedence than
any of the combinators, which in turn have higher
precedence than conditionals.

!
!
!
!
These are the four Orc “combinators” that give the
language its ability to structure concurrent operations
and combine the flow of results from these operations.
The combinators are the central concept of Orc. !
Most of the rest of the language is straightforward, and
would feel familiar to Haskell or ML programmers. !!!!!
Comments are enclosed in {- and -}  
or run from -- to the end of the line. !!!!!
Sites and class declarations enable access to remote or
local resources (such as Web services or Java class
files) as a “site call” in Orc expressions. !
The Orc prelude (standard library) defines about 50
sites, which are automatically available in Orc
programs. !!
Predefined operators: 
:= || && < > = /= :> >=  
<: <= ~ : + - / % * **

(These are just syntactic sugar for calls.)

ORC Language Project

ORC LANGUAGE PROJECT Department of Computer Science, The University of Texas at Austin! orc.csres.utexas.edu

