
Orc Reference Manual v2.1.1

Orc Reference Manual v2.1.1
Publication date 2016-01-07
Copyright © 2016 The University of Texas at Austin

License and Grant Information
Use and redistribution of this file is governed by the license terms in the LICENSE file found in the project's top-level directory and also found
at URL: http://orc.csres.utexas.edu/license.shtml .

This material is based upon work supported by the National Science Foundation under Grant No. CCF-0811536. Any opinions, findings, and
conclusions or recommendations expressed in this document are those of the authors and do not necessarily reflect the views of the National Science
Foundation.

iii

Table of Contents
1. Data Values ... 1

1.1. Booleans ... 2
1.2. Numerics .. 4
1.3. Character Strings .. 8
1.4. signal .. 10
1.5. Lists ... 11
1.6. Tuples ... 15
1.7. Records ... 17
1.8. Algebraic Data Types .. 19
1.9. Closures .. 22
1.10. Mutable State ... 24
1.11. External Values ... 25

2. Expressions .. 27
2.1. Literal Value .. 28
2.2. Variable .. 29
2.3. stop .. 31
2.4. Site and Function Calls .. 33
2.5. Dot Access .. 37
2.6. Operators .. 40
2.7. if then else .. 44
2.8. lambda .. 46

3. Combinators ... 48
3.1. Parallel Combinator ... 49
3.2. Sequential Combinator ... 51
3.3. Pruning Combinator .. 53
3.4. Otherwise Combinator ... 56

4. Declarations ... 59
4.1. val: Bind Value .. 60
4.2. def: Define Function .. 63
4.3. def class: Define Site in Orc .. 69
4.4. import site: Import Site .. 77
4.5. import class: Import Class from Java .. 79
4.6. type: Declare Type .. 82
4.7. include: Include Orc File ... 85

5. Patterns ... 86
5.1. Literal Pattern .. 87
5.2. Variable Pattern .. 88
5.3. Tuple Pattern ... 90
5.4. List Pattern .. 91
5.5. Record Pattern ... 92
5.6. Call Pattern ... 93
5.7. Cons Pattern .. 97
5.8. As Pattern ... 98
5.9. Wildcard Pattern ... 99

6. Sites and Services .. 101
6.1. Library sites ... 102
6.2. Java sites ... 103
6.3. Web Services .. 107
6.4. Custom sites ... 110

7. Time ... 112
7.1. Real Time .. 113

Orc Reference Manual v2.1.1

iv

7.2. Virtual Time ... 115
8. Concepts .. 119

8.1. Publication ... 120
8.2. Silence .. 122
8.3. Expression States .. 124
8.4. Deflation ... 127
8.5. Helpful Sites .. 129
8.6. Approximation in Orc Implementation .. 130

9. Type System ... 131
9.1. Metatheory ... 132
9.2. Parametric Polymorphism ... 133
9.3. Subtyping .. 135
9.4. Adding Type Information ... 137
9.5. Type Override .. 139
9.6. Typing Contexts .. 140

10. Syntax ... 141
10.1. EBNF Grammar .. 142
10.2. Lexical Specifications ... 145
10.3. Precedence, Fixity, and Associativity ... 148

11. Standard Library .. 150
11.1. Introduction .. 151
11.2. core: Fundamental sites and operators. ... 152
11.3. idioms: Higher-order Orc programming idioms. ... 159
11.4. list: Operations on lists. .. 168
11.5. reflect: Metalanguage operations. .. 186
11.6. state: General-purpose supplemental data structures. ... 187
11.7. text: Operations on strings. .. 200
11.8. time: Real and virtual time. ... 204
11.9. util: Miscellaneous utility functions. .. 206
11.10. web: Web browsing, HTTP, and JSON capabilities. .. 215
11.11. xml: XML manipulation. ... 217

Index of Key Terms .. 219

v

List of Tables
10.1. Orc Combinator/Operator Precedence, Fixity, and Associativity .. 148

vi

List of Examples
1.1. Boolean XOR .. 3
1.2. Operator Precedence ... 5
1.3. Integer to Number Promotion ... 6
1.4. Square Roots and Squares .. 6
1.5. String Concatenation ... 9
1.6. String Functions ... 9
1.7. Sample Lists .. 12
1.8. Lists Are Not Sets .. 12
1.9. Building Lists with Cons .. 13
1.10. Tuple Selection ... 15
1.11. Fork-Join ... 16
1.12. Normalizing Vectors .. 18
1.13. Record Extension .. 18
1.14. Enumeration ... 20
1.15. Geometric shape datatype ... 20
1.16. Binary tree node ... 20
1.17. Polymorphic binary tree node .. 21
1.18. Orc built-in Option type ... 21
1.19. Staged Addition .. 22
1.20. One Two Sum .. 22
1.21. Java BitSet ... 25
1.22. Java HashMap .. 25
2.1. String Literal as Expression .. 28
2.2. Blocking on a Variable .. 29
2.3. Print Silently .. 31
2.4. Square Root ... 31
2.5. Sites are Strict .. 34
2.6. Functions are Lenient .. 34
2.7. Function with Domain and Range .. 35
2.8. Record Access ... 37
2.9. Channel Operations ... 38
2.10. Capture Channel Methods ... 38
2.11. Operator precedence .. 42
2.12. Operators publish once ... 42
2.13. Redefine an operator .. 42
2.14. Binary Search in a Sorted Array .. 45
2.15. One Two Sum .. 46
3.1. Parallel Publication ... 49
3.2. Parallel Site Calls ... 50
3.3. Variable Binding ... 51
3.4. Filtering .. 52
3.5. Suppressed Publication .. 52
3.6. Exclusive Publication .. 54
3.7. Print First Result .. 54
3.8. Pattern Publication .. 54
3.9. Timed Termination .. 55
3.10. Fall-back Search ... 56
3.11. Lexicographic sublist ... 57
3.12. Channel Transfer ... 57
3.13. Helpful publication .. 58
4.1. Binding variables to values ... 60

Orc Reference Manual v2.1.1

vii

4.2. Timeout .. 60
4.3. Roll Die .. 61
4.4. Available Pairs ... 65
4.5. Parallel-Or Function .. 66
4.6. Even/Odd Using Mutual Recursion .. 66
4.7. List Head .. 66
4.8. List Length .. 67
4.9. List Sum ... 67
4.10. Same-Length Zip .. 67
4.11. Fibonacci Function .. 68
4.12. Matrix Definition .. 70
4.13. Create a Write-Once Site .. 71
4.14. Extend Functionality of an Existing Site .. 72
4.15. Managing Concurrent Access .. 73
4.16. Computing with the Goal Expression .. 74
4.17. Stopwatch .. 75
4.18. Declaring a user-supplied site .. 77
4.19. Invoke a Java constructor and instance method ... 80
4.20. Invoke a Java static method .. 80
4.21. Declaring and instantiating a Java generic class .. 80
4.22. Aliasing Types .. 83
4.23. Importing Types .. 83
4.24. Binary Tree Type .. 83
4.25. fold.inc,used below .. 85
4.26. Include a separate file .. 85
5.1. Implication by Cases ... 87
5.2. Sum Pair ... 88
5.3. Pair to List .. 88
5.4. Filtering .. 90
5.5. Pattern Publication .. 90
5.6. Insertion Sort ... 91
5.7. Student Applications ... 92
5.8. Trees .. 94
5.9. Integer square root .. 95
5.10. Factoring Using Multimatch .. 96
5.11. List Deconstruction .. 97
5.12. Simplified Fragment .. 98
5.13. Wildcard Assignments .. 99
5.14. Implication by Fewer Cases .. 99
6.1. Using a standard library site .. 102
6.2. Another standard library site: Ift .. 102
6.3. Construct a Java object, and invoke methods .. 105
6.4. Accessing class members .. 105
6.5. No-arg constructor invocation, field assignment, and field dereference 106
6.6. Integer conversion overflow .. 106
6.7. Random Bytes from Fourmilab .. 109
7.1. Simple example of using Rwait ... 113
7.2. Timeout ... 113
7.3. Shortest path using a virtual clock .. 117
8.1. Publish no values .. 120
8.2. Publish one value .. 120
8.3. Publish two values .. 120
8.4. Publish an unbounded number of values (metronome) .. 121
8.5. Silence with Side Effects .. 122

Orc Reference Manual v2.1.1

viii

8.6. Conditional Silence ... 122
8.7. Parallel site calls; ready and blocked states .. 125
8.8. Pruning combinator; killed state ... 125
8.9. Sequential and otherwise combinators ... 125
8.10. Search Comparison .. 127

1

Chapter 1. Data Values
The primitive data types in Orc are Booleans, numbers, strings, and a unit value signal. Orc also has
structured values: lists, tuples, records, and algebraic datatypes. Functions are values, called closures.
Additionally, sites are themselves values, and may be passed to sites or returned by sites.

All of the preceding values are immutable. Orc also has access to mutable state through sites. The Standard
Library includes many such sites, e.g. Ref and Channel.

Orc sites may create and manipulate many more kinds of values, such as Java objects, XML documents,
video files, relational databases, etc. In fact, all of the built-in datatypes could be implemented by external
sites.

Data Values

2

1.1. Booleans
Orc supports Boolean values, true and false.

1.1.1. Syntax
[53] BooleanLiteral::=true ❙ false

1.1.2. Operations
Notable Boolean operations include:

• Logical negation (not): ~

• Logical and: &&

• Logical or: ||

as well as the comparison operators, which yield Boolean results:

• Less than: <:

• Greater than: :>

• Less than or equal to: <=

• Greater than or equal to: >=

• Equal to: =

• Not equal to: /=

Note: Unlike the typical symbols < and > for arithmetic relations, Orc uses <: and :> respectively. This
usage avoids ambiguity with the sequential combinator and the pruning combinator.

1.1.3. Type
A Boolean value has type Boolean.

1.1.4. Java calls
Orc Boolean values are passed in calls to and returns from Java code as java.lang.Boolean, which is
boxed and unboxed per The Java Language Specification [http://docs.oracle.com/javase/specs/jls/se5.0/
html/conversions.html#5.1.7] as boolean.

http://docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#5.1.7
http://docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#5.1.7
http://docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#5.1.7

Data Values

3

1.1.5. Examples
Example 1.1. Boolean XOR

{- Define exclusive or -}

def xor(a,b) = (a || b) && ~(a && b)

xor(true, true) | xor(false, false)

{-
OUTPUT:
false
false
-}

1.1.6. Related Links
Related Reference Topics

• if then else

• Ift [152]

• Iff [152]

Related Tutorial Sections

• Literal Values

• Conditionals

../userguide/userguide.html#ug.introduction.simple.values
../userguide/userguide.html#ug.introduction.complex.conditionals

Data Values

4

1.2. Numerics
Orc includes two numeric types, integers and numbers. Orc's integers are arbitrary-precision two's
complement integers. Orc's numbers are floating point numbers, with an arbitrary-precision two's
complement significand and a 32-bit two's complement exponent (base 10). These numbers behaves in
accordance with the ANSI INCITS 274-1996 subset of ANSI/IEEE Std 754-2008. Namely, "infinite, NaN,
or subnormal results are always treated as errors, and –0 results are hidden".

Note that the divide operation [154] on Orc numbers can encounter a non-terminating decimal
expansion, where there is no exact representable decimal result. In this case, the divide operation falls back
to division using IEEE 754 binary64 (formerly called double precision) binary floating-point operands.
This fall back may result in a loss of precision for this operation.

Similarly, the exponent operation [154] may fall back to IEEE 754 binary64 binary floating-point
operands in the case of a fractional exponent. This fall back may result in a loss of precision for this
operation.

1.2.1. Literals
1.2.1.1. Syntax

[54] IntegerLiteral::=DecimalDigit+
[55] NumberLiteral::= IntegerLiteral DecimalPart? ExponentPart?
[56] DecimalPart::=. IntegerLiteral
[57] ExponentPart::=E IntegerLiteral

❙ E+ IntegerLiteral
❙ E- IntegerLiteral
❙ e IntegerLiteral
❙ e+ IntegerLiteral
❙ e- IntegerLiteral

Numeric literals in Orc are specified in decimal. Leading zeros are allowed, but have no significance.
Trailing zeros after a decimal point also have no significance. If a numeric literal contains a decimal point
or an "E", it is a number (floating point) literal, otherwise it is an integer literal.

1.2.2. Operations
Notable operations on integers and numbers include:

• Add: +

• Subtract: -

• Negate (unary minus): -

• Multiply: *

• Divide: /

• Exponent: **

• Remainder: %

• Absolute value: abs

Data Values

5

• Signum: signum

• Floor: Floor

• Ceiling: Ceil

Arithmetic operators with two integer arguments will perform an integer operation and return an integer
result; for example, 5 / 2 performs integer division and returns 2. However, if either argument to an
operator has a decimal part (even if it is trivial, as in 3.0), the other argument will be promoted, and
a decimal operation will be performed. For example, 5 / 2.0 and 5.0 / 2 both perform decimal
division and return 2.5.

1.2.3. Java calls
Orc integer values are passed in calls to and returns from Java code as java.math.BigInteger,
or if the callee method expects a specific numeric type, an Orc integer will be converted
to a java.lang.Byte, java.lang.Short, java.lang.Integer, java.lang.Long,
java.lang.Float, or java.lang.Double, as appropriate. These values are boxed and
unboxed per The Java Language Specification [http://docs.oracle.com/javase/specs/jls/se5.0/html/
conversions.html#5.1.7].

Orc number values are passed in calls to and returns from Java code as java.math.BigDecimal,
or if the callee method expects a specific numeric type, an Orc number will be converted to
a java.lang.Float or java.lang.Double, as appropriate. These values are boxed and
unboxed per The Java Language Specification [http://docs.oracle.com/javase/specs/jls/se5.0/html/
conversions.html#5.1.7].

1.2.4. Type
All numeric values (integers and numbers) have type Number. Integer values also have the more specific
type Integer, which is a subtype of Number.

1.2.5. Examples

Example 1.2. Operator Precedence

{- Operators follow common precedence practice.
 Combinators have lower precedence than operators.
-}

4 + 15 / 3 * 2 >result> result

{-
OUTPUT:
14
-}

See the Orc precedence table.

http://docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#5.1.7
http://docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#5.1.7
http://docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#5.1.7
http://docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#5.1.7
http://docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#5.1.7
http://docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#5.1.7

Data Values

6

Example 1.3. Integer to Number Promotion

{- Arithmetic operations, when all arguments are integers,
 operate as integer operations. If any argument is a floating-
 point number, then the operation treats all arguments as
 floating-point numbers and operates in that domain.
-}

16 - 8 + 50.0 / 3 * 1 >a>
16 - Floor(8.5) + Ceil(4e1 + 9.99) / 3 * 1 >b>
(a, b)

{-
OUTPUT:
(24.666666666666668, 24)
-}

Example 1.4. Square Roots and Squares

{- Calculate the square roots and squares of
 a list of numbers
-}

val nums = [1, 2, 3, 4.0, 5.00]

each(nums) >x> (
 x**(1.0/2) >sqrt>
 x**2 >sq>
 (x,sqrt,sq)
)

{-
OUTPUT:PERMUTABLE
(1, 1.0, 1)
(2, 1.4142135623730951, 4)
(3, 1.7320508075688772, 9)
(4.0, 2.0, 16.00)
(5.00, 2.23606797749979, 25.0000)
-}

1.2.6. Related Links
Related Reference Topics

• + operator [153]

• - operator [153]

• unary - operator [153]

• * operator [153]

Data Values

7

• ** (exponentiation) operator [154]

• / operator [154]

• % (modulus) operator [154]

• abs function [156]

• signum function [156]

• Floor site [157]

• Ceil site [157]

Related Tutorial Sections

• Literal Values

• Operators

../userguide/userguide.html#ug.introduction.simple.values
../userguide/userguide.html#ug.introduction.simple.operators

Data Values

8

1.3. Character Strings
Orc's character sequence representation is a string. Characters in Orc strings are drawn from the Unicode
character set, and are encoded in the UTF-16 encoding form. (Note that Orc source code files are encoded
in the UTF-8 encoding form.) Orc strings have an explicit length and are not zero-terminated. They are
limited to a maximum length of 2^31-1 (2 147 483 647) characters.

1.3.1. Literals
1.3.1.1. Syntax

[58] CharacterStringLiteral::="Character+" ❙ ""

String literals are enclosed in quotation marks (U+0022). Any Unicode character can be placed between
the quotation marks, except: line terminators (CR, LF, NEL [U+0085], LS [U+2028], FF, or PS [U+2029])
or a quotation mark. A reverse solidus (backslash) and its subsequent character are treated as follows:

• \f: represents form feed (FF) (U+000C)

• \n: represents line feed (LF) (U+000A)

• \r: represents carriage return (CR) (U+000D)

• \t: represents character tabulation (HT) (U+0009)

• \u followed by 4 hexadecimal digits: represents the character at the Unicode code point indicated by
the four hexadecimal digits

• \u{ hexadecimal digits with space seperators }: represents the characters at the Unicode code points
indicated by the hexadecimal digits, with multiple characters indicated by separating the hex digits by
spaces (UTS 16 § 1.1 style)

• \\: represents reverse solidus (backslash) (U+005C)

• \": represents quotation mark (U+0022)

• \ followed by any other character: represents that character

1.3.2. Operations
Notable string operations include:

• All java.lang.String operations

• Convert an Orc value to a string: write [201]

• Split a string into a list of strings corresponding to its lines: lines [201]

• Combine a list of strings into one multi-line string: unlines [202]

• Split a string into a list of strings corresponding to its words: words [202]

• Combine a list of strings into one multi-word strings: unwords [202]

1.3.3. Type
A string value has type String.

Data Values

9

1.3.4. Java calls
Orc strings are passed in calls to and returns from Java code as java.lang.String.

1.3.5. Examples
Example 1.5. String Concatenation

{- Concatenate two strings -}

"hello" + " world"

{-
OUTPUT:
"hello world"
-}

Example 1.6. String Functions

{- Showcase some Orc library string functions -}

Println("I go to the console") >>
unwords(["I", "like", "Orc"])

{-
OUTPUT:
I go to the console
"I like Orc"
-}

1.3.6. Related Links
Related Reference Topics

• Write site [201]

• lines function [201]

• unlines function [202]

• words function [202]

• unwords function [202]

Related Tutorial Sections

• Literal Values

../userguide/userguide.html#ug.introduction.simple.values

Data Values

10

1.4. signal
A signal is a value that carries no information. It typically indicates completion of a call, when there is no
other meaningful value to return. It is analogous to void in Java or () in ML.

1.4.1. Syntax
[52] SignalLiteral::=signal

1.4.2. Operations
Notable signal operations include:

• Publish a signal if an expression is true: Ift [152]

• Publish a signal if an expression is false: Iff [152]

• Publish some number of signals simultaneously: signals [207]

1.4.3. Type
The signal value has type Signal.

1.4.4. Java calls
Orc signals don't correspond to any Java value, so if a signal is passed to Java code, it will be as an
java.lang.Object of a type not specified here. A return of type void from Java code is converted
into a signal return value.

1.4.5. Related Links
Related Reference Topics

• Ift site [152]

• Iff site [152]

• metronome function [204]

• signals function [207]

Related Tutorial Sections

• Sites

../userguide/userguide.html#ug.introduction.simple.sites

Data Values

11

1.5. Lists
A list consists of a finite sequence of values. The empty list is written as [].

1.5.1. Syntax
[4] List::=[Expression , … , Expression]

1.5.2. Constructors
The list expression [E0 , … , En] publishes the list [v0 , … , vn] only if each expression Ei deflates
to value vi. Otherwise, it halts silently.

1.5.3. Operations
Notable list operations include:

• Cons (construct) a list with first element h and remaining elements t: h:t

• Publish true iff the list l has no elements: empty(l)

• Publish the length of list l: length(l)

• Publish the first element of list l: head(l)

• Publish a list with every element in list l except the first: tail(l)

• Publish all but the last element of list l: init(l)

• Publish the last element of list l: last(l)

• Publish the nth element of a list, counting from 0: index(l, n)

• Publish a list with the first n elements of the list l: take(n, l)

• Publish a list with all but the first n elements of the list l: drop(n, l)

• Publish every value in list l, simultaneously: each(l)

• Concatenate list a and list b: append(a, b)

• Publish a list with the elements of list l in reverse order: reverse(l)

• Publish a list containing only those elements of l which satisfy the function f: filter(f, l)

• Apply unary function f to every element of list l (in parallel), and return a list of the results: map(f,
l)

• Apply a binary function to every element of a list: foldl, foldr, and many variations thereof.

• Combine two lists into a list of pairs, and its reverse: zip and unzip

• Concatenate a list of lists l into a single list: concat(l)

• Publish true if item x is a member of list l: member(l)

Data Values

12

1.5.4. Type
The type of a list is List[U], where U is the join of the types of each of its elements. In particular, if all
of the elements have the same type T, then the list will have type List[T].

1.5.5. Java calls
Orc lists do not correspond to any Java value, so if a list is passed to Java code, it will be as a
java.lang.Object of a type not specified here.

1.5.6. Examples

Example 1.7. Sample Lists

 [] -- empty list
| [1, 2, 3] -- a list of integers
| [(1, 2), (2, 3), (3, 4)] -- a list of tuples of integers
| [1, 1 * 2, 1 * 2 * 3] -- a list of the first 3 factorials
| [[1], [2, 2], [3, 3, 3]] -- a list of lists of integers

{-
OUTPUT:PERMUTABLE:
[]
[1, 2, 3]
[(1, 2), (2, 3), (3, 4)]
[1, 2, 6]
[[1], [2, 2], [3, 3, 3]]
-}

Example 1.8. Lists Are Not Sets

{-
 Lists do not behave like sets.
 The order and number of elements in a list do matter.
-}

 [2,3] /= [3,2]
| [2] /= [2,2]

{-
OUTPUT:
true
true
-}

Data Values

13

Example 1.9. Building Lists with Cons

 3:[]
| 4:3:[2,1]

{-
OUTPUT:PERMUTABLE:
[3]
[4, 3, 2, 1]
-}

1.5.7. Related Links
Related Reference Topics

• List pattern

• Cons pattern

• Standard library list functions

• each function [168]

• map function [168]

• reverse function [168]

• filter function [169]

• head function [169]

• tail function [169]

• init function [170]

• last function [170]

• empty function [170]

• index function [171]

• append function [171]

• foldl function [171]

• foldl1 function [172]

• foldr function [172]

• foldr1 function [173]

• afold function [173]

• cfold function [173]

• zip function [174]

Data Values

14

• unzip function [175]

• concat function [175]

• length function [175]

• take function [176]

• drop function [176]

• member function [177]

• merge function [177]

• mergeBy function [177]

• mergeUnique function [179]

• mergeUniqueBy function [179]

• sort function [178]

• sortBy function [178]

• sortUnique function [179]

• sortUniqueBy function [180]

• group function [180]

• groupBy function [181]

• range function [182]

• rangeBy function [181]

• any function [182]

• all function [182]

• sum function [183]

• product function [183]

• and function [184]

• or function [184]

• minimum function [184]

• maximum function [185]

Related Tutorial Sections

• Lists

• Idioms: Lists

../userguide/userguide.html#ug.introduction.structures.lists
../userguide/userguide.html#ug.idioms.lists

Data Values

15

1.6. Tuples
A tuple is a sequence of at least two values. Orc does not have 0-tuples or 1-tuples.

Tuples are intended to be used for sequences with a fixed length and varying element types, whereas lists
are intended to be used for sequences with varying length and a fixed element type.

1.6.1. Syntax
[3] Tuple::=(Expression , … , Expression)

1.6.2. Constructors
The tuple expression (E0 , … , En) publishes the tuple value (v0 , … , vn) only if each expression
Ei deflates to value vi. Otherwise, it halts silently.

1.6.3. Operations
Notable tuple operations include:

• Return the tuple element at position index, starting from 0: tuple(index)

• Return the first element of a pair: fst(tuple)

• Return the second element of a pair: snd(tuple)

1.6.4. Type
The type of a tuple value (v0 , … , vn) where vi has type Ti, is a tuple type, written (T0 , … , Tn).

1.6.5. Java calls
Orc tuples don't correspond to any Java value, so if a tuple is passed to Java code, it will be as a
java.lang.Object of a type not specified here.

1.6.6. Examples
Example 1.10. Tuple Selection

{- Unzip a list of tuples into a tuple of lists -}

val squares = [(1,1), (2,4), (3,9), (4,16)]

(map(fst,squares) , map(snd,squares))

{-
OUTPUT:
([1, 2, 3, 4], [1, 4, 9, 16])
-}

Data Values

16

Example 1.11. Fork-Join

{- Print "fork", but wait at least 500ms before printing "join" -}

(Println("fork"), Rwait(500)) >> Println("join") >> stop

{-
OUTPUT:
fork
join
-}

1.6.7. Related Links
Related Reference Topics

• Tuple pattern

• fst function [198]

• snd function [198]

Related Tutorial Sections

• Tuples

• Fork-Join

../userguide/userguide.html#ug.introduction.structures.tuples
../userguide/userguide.html#ug.idioms.forkjoin

Data Values

17

1.7. Records
A record is an unordered finite map from keys to values. The empty record is written as {. .}.

1.7.1. Syntax
[5] Record::={. Key = Expression , … , Key = Expression .}

1.7.2. Constructors
A record is constructed from a comma-separated sequence of bindings enclosed by dotted braces. Each
binding associates a key with an expression.

The record expression {. K0 = E0 , … , Kn = En .} publishes the record {. K0 = v0 , … , Kn = vn
.} only if each expression Ei deflates to value vi. Otherwise, it halts silently.

Duplicate bindings for the same key are allowed, but only the rightmost binding will be used in the resulting
record value.

1.7.3. Operations
Notable record operations include:

• Publish the value bound to key k in record r (a dot access): r.k

• Extend a record r with new entries : r + s

A record extension r + s publishes a new record with all of the bindings of s, plus all of the bindings in
r which do not bind keys mentioned in s. In other words, s overrides r. Record extension is associative,
but not commutative. The expression {. K0 = E0 , … , Kn = En .} is equivalent to the expression {.
K0 = E0 .} + … + {. Kn = En .}.

1.7.4. Special Keys
There are two record keys that have special meanings:

• If a record has a binding for the apply key, then the record may be called like a site or function.

• If a record has a binding for the unapply key, then the record may be used in a call pattern.

1.7.5. Type
The type of a record value {. K0 = v0 , … , Kn = vn .} where vi has type Ti, is a record type, written
{. K0 :: T0 , … , Kn :: Tn .}.

1.7.6. Java calls
Orc records do not correspond to any Java value, so if a record is passed to Java code, it will be as a
java.lang.Object of a type not specified here.

Data Values

18

1.7.7. Examples
Example 1.12. Normalizing Vectors

{- Normalize a given integer vector using records -}

def magnitude(v) =
 (v.x * v.x +
 v.y * v.y +
 v.z * v.z) ** 0.5

def norm(v) =
 val m = magnitude(v)
 {. x = v.x / m,
 y = v.y / m,
 z = v.z / m .}

val velocity = {. x = 3.0, y = 0.0, z = 4.0 .}
norm(velocity)

{-
OUTPUT:
{. x = 0.6, y = 0, z = 0.8 .}
-}

Example 1.13. Record Extension

{- Add an alpha field to an rgb color record -}

val rgb = {. red = 60, green = 230, blue = 5 .}
val rgba = rgb + {. alpha = 128 .}
rgba.alpha

{-
OUTPUT:
128
-}

1.7.8. Related Links
Related Reference Topics

• Record pattern

• Dot access

Related Tutorial Sections

• Records

../userguide/userguide.html#ug.additional.records

Data Values

19

1.8. Algebraic Data Types
An Orc datatype is an algebraic data type, or "tagged union". A datatype value contains a sequence of
values enclosed by a tag. This value can be matched by a pattern.

Datatypes are defined by a type declaration. Each constructor in the declaration introduces a new tag,
followed by a sequence of slots. The | separator allows multiple constructors to be defined at the same
time.

In an untyped program, slots are written as _. In a typed program, slots contain types.

1.8.1. Syntax
[32] DeclareDatatype::=type TypeVariable TypeParameters? = Constructor | … |

Constructor
[33] Constructor::=Variable (Slot , … , Slot)
[34] Slot::=Type ❙ _

1.8.2. Constructors
Each constructor is a site, which takes one argument for each slot of the constructor, and publishes a
datatype value consisting of the sequence of argument values, tagged with that constructor's unique tag.

Each constructor also has a corresponding unapply member, which takes a value with that constructor's
tag, removes the tag, and publishes the sequence of values as a tuple. If its argument does not have the tag,
it halts. Thus, constructors can be used in pattern matching.

1.8.3. Type
A datatype declaration defines a new sum type.

Each constructor defined by the datatype has the function type lambda [X0 , … , Xn](T0 , … , Tn
) :: S, where Xi are the type parameters of the datatype, Ti are the types in the slots of the constructor,
and S is the sum type.

Each constructor also has a corresponding unapply member, with type lambda [X0 , … , Xn](S)
:: (T0 , … , Tn).

A datatype declaration may define a recursive type: the name of the type may be used in the definition of
the type itself. In fact, this is the only way to declare a recursive type in Orc.

1.8.4. Examples

Data Values

20

Example 1.14. Enumeration

{- An enumeration, such as Java's enum, can be represented by a datatype
 whose constructors have no arguments. Note that an empty argument list,
 (), is still needed.
-}
type objective = Primary() | Secondary() | Tertiary()

[Secondary(), Tertiary()]

{-
OUTPUT:
[Secondary(), Tertiary()]
-}

Example 1.15. Geometric shape datatype

{- A Shape type with three data constructors -}
type Shape = Rectangle(_, _) | Circle (_)

def area(Rectangle(width,height)) = width * height
def area(Circle(radius)) = 3.1415926535897 * radius ** 2

area(Rectangle(2, 3)) | area(Circle(1))

{-
OUTPUT:PERMUTABLE:
6
3.1415926535897
-}

Example 1.16. Binary tree node

{- This is a binary tree datatype
 Leaf nodes carry integer values
-}

type Node = LeafNode(Integer) | InnerNode(Node, Node)

{- Constructing a simple tree
 /\
 1 /\
 2 3
-}
InnerNode(LeafNode(1),InnerNode(LeafNode(2),LeafNode(3)))

{-
OUTPUT:
InnerNode(LeafNode(1), InnerNode(LeafNode(2), LeafNode(3)))
-}

Data Values

21

Example 1.17. Polymorphic binary tree node

{- This is a binary tree datatype
 Leaf nodes carry values of type T
-}

type Node[T] = LeafNode(T) | InnerNode(Node[T], Node[T])

{- Constructing a simple tree
 /\
 "A" /\
 "B" "C"
-}
InnerNode[String](LeafNode("A"),InnerNode(LeafNode("B"),LeafNode("C")))

{-
OUTPUT:
InnerNode(LeafNode("A"), InnerNode(LeafNode("B"), LeafNode("C")))
-}

Example 1.18. Orc built-in Option type

{- A datatype for optional values of type T -}

type Option[T] = Some(T) | None()

{-
NONRUNNABLE
-}

1.8.5. Related Links
Related Reference Topics

• Call pattern

• type: Declare Type

Related Tutorial Sections

• Datatypes

• Patterns

../userguide/userguide.html#ug.additional.datatypes
../userguide/userguide.html#ug.introduction.structures.patterns

Data Values

22

1.9. Closures
Functions are first-class values in Orc. Defining a function creates a special value called a closure; the
defined name of the function is a variable and the value bound to it is the closure. A closure can be
published, passed as an argument to a call, or put into a data structure, just like any other value.

Since all declarations — including function declarations — are lexically scoped, these closures are lexical
closures [https://en.wikipedia.org/wiki/Lexical_closure]. When a closure is created, if the body of the
function contains any variables other than the formal parameters, closure creation blocks until those
variables are bound, and then the values bound to those variables are stored as part of the closure. Then,
when the closure is called, the evaluation of the function body uses those stored bindings.

1.9.1. Type
The type of a closure is a function type lambda [X0 , … , Xm](T0 , … , Tn) :: R, where Ti are
the argument types of the closure, R is its return type, and Xj are the type parameters if the function is
polymorphic. This type is derived from the original definition of the function.

1.9.2. Examples

Example 1.19. Staged Addition

{- Create a closure using inc, and then apply it -}

def inc(n) =
 def addnto(x) = x + n
 addnto

val f = inc(3)
f(4)

{-
OUTPUT:
7
-}

Example 1.20. One Two Sum

{- The function triple() is used as a closure -}

def onetwosum(f) = f(1) + f(2)
def triple(x) = x * 3
onetwosum(triple)

{-
OUTPUT:
9
-}

https://en.wikipedia.org/wiki/Lexical_closure
https://en.wikipedia.org/wiki/Lexical_closure
https://en.wikipedia.org/wiki/Lexical_closure

Data Values

23

1.9.3. Related Links
Related Reference Topics

• def: Define Function

• lambda Expression

• Function Calls

• Adding Type Information to Functons

Related Tutorial Sections

• First-Class Functions

../userguide/userguide.html#ug.additional.closures

Data Values

24

1.10. Mutable State
A mutable object is a value on which operations may yield different results when called at different times.
Mutable objects are common in imperative programming languages. They reflect the concept of a storage
location in a von Neumann style architecture.

Most of Orc's value types are immutable. The standard library provides the following kinds of mutable
objects:

• Ref: Reference to a value that can be changed

• Cell: A write-once Ref

• Channel: A queue of values

• BoundedChannel: A queue of values with a maximum size

• Array: A mutable integer-indexed sequence of values

• Counter: A value that can be incremented and decremented atomically

• Dictionary: A mutable dynamic record

1.10.1. Related Links
Related Reference Topics

• Ref site [188]

• Cell site [187]

• Channel site [190]

• BoundedChannel site [192]

• Array site [193]

• Counter site [196]

• Dictionary site [197]

Related Tutorial Sections

• Mutable References

• Channels

../userguide/userguide.html#ug.idioms.mutable
../userguide/userguide.html#ug.idioms.channels

Data Values

25

1.11. External Values
Orc's value set is "open" — any value returned from a site call can be used in an Orc execution. For
example, Orc programs running on a Java virtual machine (JVM) can interact with any Java object.

1.11.1. Type
External values usually have types that cannot be represented using Orc's primitive types or structured
types. An import type declaration may be used to import such a type into the Orc type system.

1.11.2. Examples
Example 1.21. Java BitSet

{- Using the Java class java.util.BitSet,
 construct a new instance, and then
 set bits 2 and 4 in the BitSet instance
-}

import class BitSet = "java.util.BitSet"

BitSet() >b> b.set(2) >> b.set(4) >> b.toString()

{-
OUTPUT:
"{2, 4}"
-}

Example 1.22. Java HashMap

{- Using the Java class java.util.HashMap, construct a new instance,
 and then put and get some entries
-}

import class HashMap = "java.util.HashMap"

HashMap[String, String]() >m> m.put("Mickey", "Minnie") >>
m.put("Donald", "Daisy") >> m.get("Mickey")

{-
OUTPUT:
"Minnie"
-}

1.11.3. Related Links
Related Reference Topics

• Java Sites

Data Values

26

• Web Services

• Custom Sites

• Typing of Sites

Related Tutorial Sections

• Importing Resources

../userguide/userguide.html#ug.additional.import

27

Chapter 2. Expressions
Orc expressions are executed, rather than evaluated. An execution may call external services and publish
some number of values (possibly zero). Different executions of the same expression may have completely
different behaviors; they may call different services, may receive different responses from the same site,
and may publish different values. This chapter shows how various expressions are executed in Orc.

Expressions

28

2.1. Literal Value
A literal value may occur on its own as an expression. Execution of a literal value immediately publishes
that value and then halts.

2.1.1. Syntax
[51] Literal::=SignalLiteral

❙ BooleanLiteral
❙ NumberLiteral
❙ CharacterStringLiteral
❙ null

2.1.2. Type
The type for each literal value is given in the Data Values chapter.

2.1.3. Examples
Example 2.1. String Literal as Expression

{-
 https://en.wikipedia.org/wiki/The_Treachery_of_Images
-}

"ceci n'est pas une |"

{-
OUTPUT:
"ceci n'est pas une |"
-}

2.1.4. Related Links
Related Reference Topics

• Data Values

• Publication

Related Tutorial Sections

• Literal Values

../userguide/userguide.html#ug.introduction.simple.values

Expressions

29

2.2. Variable
A variable may occur on its own as an expression. Execution of a variable publishes the value bound to
that variable, and then halts.

The variable might be executed before it is bound to a value. This could occur if the variable was introduced
by a pruning combinator, or if it is the name of a defined function whose body contains unbound variables.
In this case, execution of that variable blocks until the variable is bound.

If the variable was introduced by a pruning combinator, and the right side of that combinator halts before
the variable becomes bound, execution of the variable also halts.

2.2.1. Syntax
[59] Variable::= Identifier

2.2.2. Type
The type of a variable expression is the type given to it by the current typing context.

2.2.3. Examples
Example 2.2. Blocking on a Variable

{-
 Publish the values bound to two variables.
 One of the bindings occurs only after some time has passed,
 so execution of that variable blocks.
-}

val x = 0
val y = Rwait(1000) >> 1

x | y

{-
OUTPUT:
0
1
-}

2.2.4. Related Links
Related Reference Topics

• Publication

• Halting

• Blocking

Expressions

30

• Combinators

Related Tutorial Sections

• Sequential Combinator

../userguide/userguide.html#ug.introduction.complex.combinators.sequential

Expressions

31

2.3. stop
The stop expression does nothing. Execution of stop immediately halts silently.

2.3.1. Syntax
[2] Stop::=stop

2.3.2. Type
stop has type Bot.

2.3.3. Examples

Example 2.3. Print Silently

{-
 Print three numbers in sequence, and then halt without publishing
 a signal from Println.
-}

Println("1") >>
Println("2") >>
Println("3") >>
stop

{-
OUTPUT:
1
2
3
-}

Example 2.4. Square Root

{- Define a square root function which halts silently if
 its argument is negative.
-}

def squareroot(n) = if (n <: 0) then stop else (n ** 0.5)

squareroot(-1)

{-
OUTPUT:
-}

Expressions

32

2.3.4. Related Links
Related Reference Topics

• Halting

• Silence

• Bot

• Otherwise combinator

Related Tutorial Sections

• Sequential Combinator

../userguide/userguide.html#ug.introduction.complex.combinators.sequential

Expressions

33

2.4. Site and Function Calls
A call is an invocation of a target expression on a sequence of argument expressions. First, the target
expression is deflated to a value g. If g is a site, then the call is a site call. If g is a closure, then the call is a
function call. If g is a record, then the call is a record application. Each of these cases is described below.

2.4.1. Syntax
[6] Call::=Expression TypeArguments? Arguments
[68] Arguments::=(Expression , … , Expression)
[69] TypeArguments::=[Type , … , Type]

2.4.2. Site Calls
A site call is strict. Execution of a site call g(E0 , … , En) deflates each expression Ei to a value vi.
The site g is then invoked with arguments vi.

A site call publishes at most one value. Once it publishes a value, it immediately halts. If the site is helpful,
the call may halt without publishing a value.

2.4.3. Function Calls
Unlike a site call, a function call is lenient. Execution of a function call g(E0 , … , En) deflates each
expression Ei, but does not wait for values to be published; instead, the body of the function executes
immediately.

Since a function call executes an arbitrary expression, it may publish any number of values.

2.4.4. Record Application
A record may be called if it has a member named apply. In this case, the value v bound to apply in
the record is retrieved, and then v is called on the arguments. v may be a site, a closure, or even another
record. The call behaves exactly as if v had been the original call target.

If a record without an apply member is called, the call halts silently.

2.4.5. Type
In addition to argument expressions, a call may also have type arguments Aj, since the target may have
a polymorphic type.

Suppose the target expression E has type S, and each argument expression Ei has type Si.

If S is a function type lambda [X0 , … , Xm](T0 , … , Tn) :: R, then there must be exactly as many
arguments as argument types, and each argument type Si must be a subtype of the corresponding type Ti
(with all Xj replaced by Aj). Then the type of the whole call is R, the return type.

If S is the type of a site, S itself behaves like a site during typehcecking. The typechecker passes the
argument types Si and type arguments Aj to S, which then responds with the return type R, or indicates
that the argument types are not appropriate. If S does respond, then the type of the call expression is the
return type R.

Expressions

34

2.4.6. Examples

Example 2.5. Sites are Strict

{- A site call is strict. -}

Println(Rwait(500) >> "Waited 0.5 seconds" | Rwait(1000) >> "Waited 1 second") >> stop

{-
OUTPUT:
Waited 0.5 seconds
-}

Example 2.6. Functions are Lenient

{-
 A function call is lenient.
 Parts of the function that do not need the arguments can execute immediately.
 However, any part that uses the arguments must wait.
-}

def Printfn(s) =
 Println("Immediate")
 | s >> Println("Waiting")

Printfn(Rwait(1000) >> signal) >> stop

{-
OUTPUT:
Immediate
Waiting
-}

Expressions

35

Example 2.7. Function with Domain and Range

{-
 Use a record with an apply member to create
 a function enhanced with .domain and .range members.
-}

val implies =
 def imp(true,false) = false
 def imp(_,_) = true
 {.
 apply = imp,
 domain = [(true,true),(true,false),(false,true),(false,false)],
 range = [true, false]
 .}

each(implies.domain) >(x,y)>
implies(x,y) >z>
member(z, implies.range)

{-
OUTPUT:
true
true
true
true
-}

2.4.7. Related Links
Related Reference Topics

• Call Pattern

• Dot Access

• Operators

• Sites and Services

• Records

• Closures

• def: Define Function

• Deflation

• Publication

• Silence

• Blocking

• Halting

Expressions

36

• Killing

• Helpful Sites

• Polymorphic Calls

Related Tutorial Sections

• Importing Resources

../userguide/userguide.html#ug.additional.import

Expressions

37

2.5. Dot Access
A dot access is an expression that retrieves a named member of a value. It consists of a target expression
E and a key K. First, E is deflated to a value v. If the value v has a member named K, that member is
published. Otherwise, the expression halts.

Not all values have members. Records have members, as do many sites. A value created by an imported
class has a member for each method and field of the corresponding class. A value created by a defined
class has a member for each def and def class declaration in the class.

Like many expressions in Orc, a dot access is simply another form of site call. The key is converted to a
special value and passed to the site call as the only argument. The site call publishes the member named
by the key if it exists, and halts otherwise.

2.5.1. Syntax
[7] DotAccess::=Expression.Key

2.5.2. Type
If the target expression E has the record type {. K0 :: T0 , … , Kn :: Tn .}, then the dot access E.Ki
has type Ti.

If the target has a Java class or object type, the usual Java typing rules apply.

If the target is a site, then the type of the dot access is determined entirely by the site, like any other site call.

2.5.3. Examples

Example 2.8. Record Access

{- Add two members of a record -}

val displacement = {. dx = 3.0, dy = 0.3, dz = 1.1 .}

displacement.dx + displacement.dy

{-
OUTPUT:
3.3
-}

Expressions

38

Example 2.9. Channel Operations

{- Create a channel, and perform some operations on it. -}

val b = Channel()

 b.get() >x> b.put(x+1) >> stop
| b.get() >y> b.put(y*2) >> stop
| b.put(3) >> stop
 ;
 b.get()

{-
OUTPUT:
7
-}
{-
OUTPUT:
8
-}

Example 2.10. Capture Channel Methods

{- Access the 'put' and 'get' members of a channel, and use them as separate sites. -}

val c = Channel()
val send = c.put
val receive = c.get

map(send, [1, 2, 3]) >>
signals(3) >>
receive() >x>
Println("Received: " + x) >>
stop

{-
OUTPUT:PERMUTABLE:
Received: 1
Received: 2
Received: 3
-}

2.5.4. Related Links
Related Reference Topics

• Records

• def class: Define Site in Orc

• import class: Import Class from Java

Expressions

39

• Java Sites

Related Tutorial Sections

• The . notation

../userguide/userguide.html#ug.additional.dotaccess

Expressions

40

2.6. Operators
Orc has a standard set of infix, prefix, and postfix operators. Operators in Orc are syntactic sugar for site
calls; they publish at most once, and their operands are deflated. For example, 1 + 2 is equivalent to (+)
(1, 2) and 1 + 2 * 3 is equivalent to (+)(1, (*)(2, 3)).

Operators are parsed using the precedence and associativity rules of Orc. In particular, these rules describe
the relationship between operators and combinators.

2.6.1. Syntax
[8] PrefixOperation::=PrefixOperator Expression
[9] InfixOperation::=Expression InfixOperator Expression
[10] PostfixOperation::=Expression PostfixOperator

2.6.2. Standard Orc Operators
2.6.2.1. Arithmetic Operators

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

** Exponentiation

- (unary
prefix
form)

Arithmetic negation

Numeric literals with no decimal part, such as 3, are treated as integers. Arithmetic operators with two
integer arguments will perform an integer operation and return an integer result; for example, 5 / 2
performs integer division and returns 2. However, if either argument to an operator has a decimal part
(even if it is trivial, as in 3.0), the other argument will be promoted, and a decimal operation will be
performed. For example, 5 / 2.0 and 5.0 / 2 both perform decimal division and return 2.5.

2.6.2.2. Comparison Operators

= Equal to

/= Not equal to

<: Less than

:> Greater than

<= Less than or equal to

>= Greater than or equal to

The = operator can compare values of any type. Values of different type are always unequal; for example,
10 = true publishes false.

Expressions

41

2.6.2.3. Logical Operators

&& Logical and

|| Logical or

~ Logical negation

2.6.2.4. String Operators

+ Concatenation

2.6.2.5. List Operators

: List construction

2.6.2.6. Record Operators

+ Extension

2.6.2.7. Reference Operators

? Dereference

:= Assignment

2.6.3. Redefining Operators
The operators' syntax (fixity, precedence, and associativity) is fixed by the Orc grammar; however, the site
called is defined by the library and can be changed by a def or import site declaration.

Orc permits a special identifier form for operators: the operator name surrounded by parenthesis, as in
(+). To disambiguate the unary prefix operator - from the binary infix operator -, Orc translates the
unary prefix operator as (0-). Binding a value to such an identifier redefines the corresponding operator
in the scope of that binding.

2.6.4. Type
Assuming that an operator has not been redefined, it obeys the following typing rules:

• An arithmetic operation publishes an Integer if all of its operands have type Integer. If any
operand has type Number (but not Integer), the operation publishes a Number.

• A comparison operation allows operands of any type, and publishes a Boolean.

• A logical operation allows only Boolean operands, and publishes a Boolean.

• A string concatenation requires at least one String operand. Other operands may be of type Top; they
are converted to strings. String concatenation publishes a String.

• List construction is polymorphic. It takes an operand of type T and an operand of type List[T]. It
returns a value of type List[T].

• Record extension takes two records and publishes a record.

Expressions

42

• Dereference takes an operand of type Ref[T] and publishes a T.

• Assignment takes operands of types Ref[T] and T, and publishes a Signal.

2.6.5. Examples
Example 2.11. Operator precedence

1 + 2 * 3

{-
OUTPUT:
7
-}

Example 2.12. Operators publish once

1 + (2 | 3)

{-
OUTPUT:
3
-}
{-
OUTPUT:
4
-}

Example 2.13. Redefine an operator

{- Redefine the "||", "~", and "?" operators -}

def (||)(x,y) = x + ", or " + y
def (~)(x) = "not " + x
def (?)(r) = r + ", that is the question."

("To be" || ~ "to be")?

{-
OUTPUT:
"To be, or not to be, that is the question."
-}

2.6.6. Related Links
Related Reference Topics

• Precedence and Associativity Table

• Site Calls

Expressions

43

• Numerics

• Strings

• Booleans

• Lists

• Records

• Ref [188]

Related Tutorial Sections

• Operators

../userguide/userguide.html#ug.introduction.simple.operators

Expressions

44

2.7. if then else

The expression if Ec then Et else Ef is a conditional expression. It executes as follows:

• If Ec deflates to true, execute Et.

• If Ec deflates to false, execute Ef.

• If Ec deflates to a non-Boolean value, halt.

• If Ec halts silently, halt.

2.7.1. Syntax
[15] Conditional::=if Expression then Expression else Expression

2.7.2. Type
The type of if Ec then Et else Ef is the join of the types of Et and Ef. Additionally, Ec must have
type Boolean.

Expressions

45

2.7.3. Examples
Example 2.14. Binary Search in a Sorted Array

{-
 Binary search in a sorted array.
-}

def binary_search(x,a) =
 def searchIn(lo, hi) =
 if (lo >= hi) then
 false
 else (
 val mid = (lo+hi) / 2
 val y = a(mid)?
 if (x = y) then
 true
 else if (x <: y) then
 searchIn(lo, mid)
 else
 searchIn(mid+1, hi)
)
 searchIn(0, a.length?)

val a = Array(15)

for(0, 15) >i>
a(i) := 2*i >>
stop ;

binary_search(19, a) | binary_search(22, a)

{-
OUTPUT:PERMUTABLE
true
false
-}

2.7.4. Related Links
Related Reference Topics

• Booleans

• Ift [152]

• Iff [152]

Expressions

46

2.8. lambda
Sometimes one would like to create a closure directly, without bothering to give it a name. There is a
special keyword lambda for this purpose. By writing a function definition without the keyword def
and replacing the function name with the keyword lambda, that definition becomes an expression which
publishes a closure.

Note that a lambda cannot create a recursive function, since the function is not given a name in the body.

2.8.1. Syntax
[16] Lambda::=lambda TypeParameters? Parameters ReturnType? = Expression

2.8.2. Examples
Example 2.15. One Two Sum

{- Define a function that sums the results of its argument function
 evaluated with arguments 1 and 2
-}

def onetwosum(f) = f(1) + f(2)

onetwosum(lambda(x) = x * 3)

{-
 identical to:
 def triple(x) = x * 3
 onetwosum(triple)
-}

{-
OUTPUT:
9
-}

2.8.3. Type
The type of a lambda expression is exactly the type of the closure it creates.

2.8.4. Related Links
Related Reference Topics

• Closures

• def: Define Function

• Higher-Order Idioms

Expressions

47

• map function [168]

• filter function [169]

Related Tutorial Sections

• First-Class Functions

../userguide/userguide.html#ug.additional.closures

48

Chapter 3. Combinators
Orc has four combinators: parallel, sequential, pruning, and otherwise. A combinator forms an
expression from two component expressions. Each combinator captures a different aspect of concurrency.
Syntactically, the combinators are written infix, and have lower precedence than operators or calls, but
higher precedence than other expression forms.

Combinators

49

3.1. Parallel Combinator

F | G
Execution of expression F | G occurs by executing F and G concurrently. Whenever F or G
communicates with a service or publishes a value, F | G does so as well. Therefore, F | G
interleaves the publications of F and G arbitrarily.

3.1.1. Syntax
[11] Parallel::=Expression | Expression

Combinator Precedence Level: sequential > parallel > pruning > otherwise [Full Table]

3.1.2. Notable Identities
F | G | H = (F | G) | H (Left Associative)
F | G | H = F | (G | H) (Right Associative)

F | G = G | F (Commutative)

3.1.3. Type
The type of F | G is the join of the types of F and G.

3.1.4. Examples

Example 3.1. Parallel Publication

{- Publish 1 and 2 in parallel -}

1 | 1+1

{-
OUTPUT:PERMUTABLE
1
2
-}

../userguide/userguide.html#ug.introduction.complex.combinators.sequential
../userguide/userguide.html#ug.introduction.complex.combinators.parallel
../userguide/userguide.html#ug.introduction.complex.combinators.pruning
../userguide/userguide.html#ug.introduction.complex.combinators.otherwise

Combinators

50

Example 3.2. Parallel Site Calls

include "search.inc"

{- Access two search sites, Google and Yahoo, in parallel.

 Publish any results they return.

 Since each call may publish a value, the expression
 may publish up to two values.
-}

Google("cupcake") | Yahoo("cupcake")

3.1.5. Related Links
Related Reference Topics

• Publication

• Join

Related Tutorial Sections

• Parallel Combinator

• Patterns

../userguide/userguide.html#ug.introduction.complex.combinators.parallel
../userguide/userguide.html#ug.introduction.structures.patterns

Combinators

51

3.2. Sequential Combinator

F >x> G
The execution of F >x> G starts by executing F. Whenever F publishes a value, a new execution of
G begins in parallel with F (and with any previous executions of G); in that execution of G, variable
x is bound to the value published by F. Any value published by any executions of G is published by
the whole expression, but the values published by F are not published by the whole expression; they
are consumed by the variable binding.

F >P> G
The sequential combinator may be written as F >P> G, where P is a pattern instead of just a variable
name. Any value published by F is matched against the pattern P. If this match is successful, a new
execution of G begins, with all of the bindings from the match. Otherwise, the published value is
simply ignored, and no new execution of G is begun.

F >> G
This is equivalent to using a wildcard pattern: F >_> G. Every publication of F will match the
combinator pattern, causing an execution of G for every individual publication of F. No bindings will
be made in G from these publications.

3.2.1. Syntax
[12] Sequence::=Expression >Pattern?> Expression

Combinator Precedence Level: sequential > parallel > pruning > otherwise [Full Table]

3.2.2. Notable Identities
F >P> G >P> H = F >P> (G >P> H) (Right Associative)

3.2.3. Type
The type of F >P> G is the type of G in the context ΓF, where ΓF is the result of matching the pattern
P against the type of F.

3.2.4. Examples
Example 3.3. Variable Binding

{- Publish 1 and 2 in parallel -}

(0 | 1) >n> n+1

{-
OUTPUT:PERMUTABLE
1
2
-}

../userguide/userguide.html#ug.introduction.complex.combinators.sequential
../userguide/userguide.html#ug.introduction.complex.combinators.parallel
../userguide/userguide.html#ug.introduction.complex.combinators.pruning
../userguide/userguide.html#ug.introduction.complex.combinators.otherwise

Combinators

52

Example 3.4. Filtering

{- Filter out values of the form (_,false) -}

((4,true) | (5,false) | (6,true)) >(x,true)> x

{-
OUTPUT:PERMUTABLE
4
6
-}

Example 3.5. Suppressed Publication

{- Print two strings to the console,
 but don't publish the return values of the calls.
-}

Println("goodbye") >>
Println("world") >>
stop

{-
OUTPUT:
goodbye
world
-}

3.2.5. Related Links
Related Reference Topics

• Publication

• Silence

• Patterns

• signal

Related Tutorial Sections

• Sequential Combinator

• Patterns

• Sites

../userguide/userguide.html#ug.introduction.complex.combinators.sequential
../userguide/userguide.html#ug.introduction.structures.patterns
../userguide/userguide.html#ug.introduction.simple.sites

Combinators

53

3.3. Pruning Combinator

F <x< G
The execution of F <x< G starts by executing F and G in parallel. Whenever F publishes a value,
that value is published by the entire execution. When G publishes its first value, that value is bound
to x in F, and then the execution of G is immediately killed. A killed expression cannot call any sites
or publish any values. During the execution of F, any part of the execution that depends on x will
be blocked until x is bound (to the first value published by G). If G never publishes a value, those
parts remain blocked forever.

F <P< G
The pruning combinator may include a full pattern P instead of just a variable name. Any value
published by G is matched against the pattern P. If this match is successful, then G is killed and all
of the bindings of pattern P are made in F. Otherwise, the published value is simply ignored and G
continues to execute.

F << G
This is equivalent to using a wildcard pattern, F <_< G. G continues to execute until it publishes a
value. Any value published by G will match the pattern. After the successful match, G is killed, but
no bindings are made in F. No part of execution of F is suspended by the pruning combinator since
there is no variable to be bound.

3.3.1. Syntax
[13] Prune::=Expression <Pattern?< Expression

Combinator Precedence Level: sequential > parallel > pruning > otherwise [Full Table]

3.3.2. Notable Identities
F <P< G <P< H = (F <P< G) <P< H (Left Associative)

3.3.3. Type
The type of F <P< G is the type of F in the context ΓG, where ΓG is the result of matching the pattern
P against the type of G.

../userguide/userguide.html#ug.introduction.complex.combinators.sequential
../userguide/userguide.html#ug.introduction.complex.combinators.parallel
../userguide/userguide.html#ug.introduction.complex.combinators.pruning
../userguide/userguide.html#ug.introduction.complex.combinators.otherwise

Combinators

54

3.3.4. Examples

Example 3.6. Exclusive Publication

{- Simulate a coin toss by publishing either "heads" or "tails" arbitrarily -}

x <x< ("heads" | "tails")

{-
OUTPUT:
"heads"
-}
{-
OUTPUT:
"tails"
-}

Example 3.7. Print First Result

include "search.inc"

{- Query Google and Yahoo for a search result
 Print out the result that arrives first; ignore the other result
-}

Println(result) <result< (Google("cupcake") | Yahoo("cupcake"))

Example 3.8. Pattern Publication

{- Publish either 9 or 25, but not 16. -}

x*x <(x,true)< ((3,true) | (4,false) | (5,true))

{-
OUTPUT:
9
-}
{-
OUTPUT:
25
-}

Combinators

55

Example 3.9. Timed Termination

{- Print all publications of the metronome function for 90 msec
 (after the execution of metronome starts).
 Then kill metronome. Note that metronome(20) publishes a
 signal every 20 msec.
-}

stop << (metronome(20) >x> Println(x) >> stop | Rwait(90))

{-
OUTPUT:
signal
signal
signal
signal
signal
-}

3.3.5. Related Links
Related Reference Topics

• Publication

• Patterns

• val Declaration

• Blocking

• Killing

• Halting

• Deflation

Related Tutorial Sections

• Pruning Combinator

• Patterns

• Sites

../userguide/userguide.html#ug.introduction.complex.combinators.pruning
../userguide/userguide.html#ug.introduction.structures.patterns
../userguide/userguide.html#ug.introduction.simple.sites

Combinators

56

3.4. Otherwise Combinator

F ; G
The execution of F ; G proceeds as follows. First, F is executed. If F halts, and has not published
any value, then G executes. If F publishes one or more values, then G is ignored. The publications of
F ; G are those of F if F publishes, or those of G if F is silent.

3.4.1. Syntax
[14] Otherwise::=Expression ; Expression

Combinator Precedence Level: sequential > parallel > pruning > otherwise [Full Table]

3.4.2. Notable Identities
F ; G ; H = (F ; G) ; H (Left Associative)
F ; G ; H = F ; (G ; H) (Right Associative)

3.4.3. Type
The type of F ; G is the join of the types of F and G.

3.4.4. Examples

Example 3.10. Fall-back Search

include "search.inc"

{- Attempt to retrieve search results from Google.
 If Google does not respond, then use Yahoo.
-}

Google("cupcake") ; Yahoo("cupcake")

../userguide/userguide.html#ug.introduction.complex.combinators.sequential
../userguide/userguide.html#ug.introduction.complex.combinators.parallel
../userguide/userguide.html#ug.introduction.complex.combinators.pruning
../userguide/userguide.html#ug.introduction.complex.combinators.otherwise

Combinators

57

Example 3.11. Lexicographic sublist

{- A call to sum(n, xs), where n is an integer and xs is a list
 of integers, find the first sublist of xs lexicographically
 whose elements add up to n. The call publishes nothing if
 there is no solution
-}

def sum(0,[]) = []
def sum(n,[]) = stop
def sum(n, x:xs) =
 x:sum(n-x, xs) ; sum(n, xs)

sum(-5,[-2,5,1,4,8,-7])

{-
OUTPUT:
[-2, 4, -7]
-}

Example 3.12. Channel Transfer

{- Transfer all items from a channel to a list. Assume that the
 process has exclusive access to the channel, so that no other
 process is adding or removing items.
-}

def xfer(ch) =
 ch.getD() >x> x:xfer(ch) ; []

val ch = Channel()

ch.put(1) >> ch.put(2) >> ch.put(3) >> ch.put(4) >> xfer(ch)

{-
OUTPUT:
[1, 2, 3, 4]
-}

Combinators

58

Example 3.13. Helpful publication

{- Publish a list of all publications of f.
 Assume f is helpful. Assume you have xfer() from above.
-}

f() >x> b.put(x) >> stop ; xfer(b)

{-
NONRUNNABLE
-}

{- (1 | 2 | 3) >x> c.put(x) >> stop ; xfer(c) outputs
 [1,2,3]
-}

3.4.5. Related Links
Related Reference Topics

• Halting

• Publication

• Silence

• Helpful Sites

• stop

• Join

Related Tutorial Sections

• Otherwise Combinator

• Patterns

• Sites

../userguide/userguide.html#ug.introduction.complex.combinators.otherwise
../userguide/userguide.html#ug.introduction.structures.patterns
../userguide/userguide.html#ug.introduction.simple.sites

59

Chapter 4. Declarations
A declaration binds variables to values, or type variables to types, in an expression. The values may be as
simple as integers or booleans, or as complex as functions, sites, or classes. Declarations follow the rules
of lexical scoping [https://en.wikipedia.org/wiki/Lexical_scoping#Lexical_scoping].

https://en.wikipedia.org/wiki/Lexical_scoping#Lexical_scoping
https://en.wikipedia.org/wiki/Lexical_scoping#Lexical_scoping

Declarations

60

4.1. val: Bind Value
The val declaration binds variables to values. The declaration val P = G, followed by expression F, is
a different way of writing the expression F <P< G. Thus, val shares all of the behavior of the pruning
combinator.

4.1.1. Syntax
[21] DeclareVal::=val Pattern = Expression

4.1.2. Examples

Example 4.1. Binding variables to values

{- Bind x to true or false arbitrarily
 Bind y to 2
-}

val x = true | false
val y = Rwait(200) >> 2 | Rwait(300) >> 3

"x is " + x + ", " +
"y is " + y

{-
OUTPUT:
"x is true, y is 2"
-}
{-
OUTPUT:
"x is false, y is 2"
-}

Example 4.2. Timeout

include "search.inc"

{- Publish the result of a Google search.
 If it takes more than 5 seconds, time out.
-}

val result = Google("impatience") | Rwait(5000) >> "Search timed out."

result

Declarations

61

Example 4.3. Roll Die

{- Bind an arbitrary integer between 1 and 6, inclusive,
 to a variable in order to simulate a 6-sided die roll.
-}

val roll = (1 | 2 | 3 | 4 | 5 | 6)
"You rolled " + roll

{-
OUTPUT:
"You rolled 1"
-}
{-
OUTPUT:
"You rolled 2"
-}
{-
OUTPUT:
"You rolled 3"
-}
{-
OUTPUT:
"You rolled 4"
-}
{-
OUTPUT:
"You rolled 5"
-}
{-
OUTPUT:
"You rolled 6"
-}

4.1.3. Related Links
Related Reference Topics

• Pruning Combinator

• Publication

• Patterns

• Blocking

• Killing

• Halting

Related Tutorial Sections

• val Declaration

../userguide/userguide.html#ug.introduction.complex.val

Declarations

62

• Val

• Sequential Combinator

• Pruning Combinator

• Patterns

../userguide/userguide.html#ug.introduction.complex.val
../userguide/userguide.html#ug.introduction.complex.combinators.sequential
../userguide/userguide.html#ug.introduction.complex.combinators.pruning
../userguide/userguide.html#ug.introduction.structures.patterns

Declarations

63

4.2. def: Define Function

The def declaration defines a function. A function definition consists of an identifier, a sequence of
parameters, and a body expression.

An Orc function behaves much like a function, method, procedure, or subroutine in other programming
languages. However, there are two key differences:

• Orc functions are lenient: when a function is called, the argument expressions and the function body
are evaluated in parallel.

• Orc functions may publish any number of values, including zero, during the execution of the function
body.

Orc functions have additional features, many of them adopted from typed functional programming
languages:

• Orc functions may be recursive. A group of functions may be mutually recursive.

• Patterns may be used as function parameters.

• A function may have a guard, which allows the function body to be executed only if a given condition
holds.

• A function may be defined by multiple clauses.

4.2.1. Syntax
[22] DeclareDefinition::=def Variable TypeParameters? Parameters ReturnType? Guard? =

Expression
[64] Parameters::=(Pattern , … , Pattern)
[24] Guard::=if (Expression)

4.2.2. Function Execution
The simplest case of argument binding uses only variables and wildcards as parameters.

When a function is called, the function body executes, and in parallel the argument expressions of the call
are deflated.

If the execution of the body encounters a use of a parameter whose corresponding argument expression
has not yet published a value, that use blocks until the argument value is available, but the rest of the body
continues to execute.

Whenever the execution of the body would publish a value, the function call publishes that value. If
execution of the body halts, the function call also halts. As a result, a function call might publish any
number of times, including zero.

If the function call is killed, execution of the body expression is also immediately killed.

Because functions are lenient, the following two programs are equivalent:

def fn(x,y) = E
fn(G,H)

Declarations

64

val x = G
val y = H
E

4.2.3. Patterns as Parameters
A function parameter may be any pattern. A lenient pattern is either a variable pattern or a wildcard pattern;
such patterns will never fail to match. Any other pattern is a strict pattern, which could fail to match.

When a function is called, the call blocks until a value is available for each strict pattern. The values are
then matched against the strict patterns. If all of these matches succeed, then the function call executes as
described earlier. If any strict pattern match fails, or if any of the argument expressions corresponding to
a strict pattern halts, then the function call halts.

Suppose P is a strict pattern. The following two programs are equivalent:

def fn(x,P) = E
fn(G,H)

val x = G
val z = H
z >P> E

4.2.4. Recursion

Functions can be recursive; that is, the name of a function may be used in its own body.

{- A recursive factorial function -}
def fact(n) = if (n <= 1) then 1 else n * fact(n-1)

A recursive function might continue executing indefinitely, producing an infinite number of publications.

{- Publishes a signal every second, forever -}
def metronome() = signal | Rwait(1000) >> metronome()

A set of functions may be mutually recursive by naming each other in their bodies. There is no special
keyword for mutual recursion; whenever two or more function definitions are adjacent, they are allowed
to mutually recurse.

4.2.5. Guards
A function definition may include a guard, of the form if (E). When a function is called, and each strict
pattern matches successfuly as described earlier, then the guard expression E is deflated. If E deflates to
true, then the function body is executed. If E deflates to some other value, or halts without publishing
a value, then the function call halts silently.

Suppose P is a strict pattern and Gd is a guard expression. The following two programs are equivalent:

def fn(x,P) if (Gd) = E

Declarations

65

fn(G,H)

val x = G
val z = H
z >P> Ift(Gd) >> E

4.2.6. Clausal Definition
A function can be defined by a sequence of clauses: repeated function definitions with the same identifier
but different parameters. Each clause must have the same number of parameters.

When a function with multiple clauses is called, the argument expressions are deflated, and in parallel the
first clause is executed. The clause will fail under any of the following conditions:

1. One of the parameters is a strict pattern, and that pattern fails to match.

2. One of the parameters is a strict pattern, and the corresponding argument expression has halted silently.

3. There is a guard expression, and it did not deflate to true.

If each strict pattern matches successfully, and the guard expression (if present) deflates to true, then
the corresponding function body executes. If the clause fails, then the next clause is executed. If the last
clause fails, then the function call halts silently.

4.2.7. Type
When a function is defined, the function identifier is bound to a closure. A definition must be given
additional type information so that the typechecker can deduce the correct function type for the identifier.

4.2.8. Examples
Example 4.4. Available Pairs

{-
 Publish pairs of results from three computations, as they become available.
-}
def pairs(x, y, z) = (x, y) | (x, z) | (y, z)

pairs(Rwait(2000) >> 0, 1, Rwait(1000) >> 2)

{-
OUTPUT:
(1, 2)
(0, 1)
(0, 2)
-}
{-
OUTPUT:
(1, 2)
(0, 2)
(0, 1)
-}

Declarations

66

Example 4.5. Parallel-Or Function

{-
 Define a parallel-or function.
-}
def parallelor(x,y) =
 val first = Ift(x) >> true | Ift(y) >> true | (x || y)
 first

parallelor(false, Rwait(1000) >> true)

{-
OUTPUT:
true
-}

Example 4.6. Even/Odd Using Mutual Recursion

{- Test if a number is even or odd, using mutual recursion -}
def even(n) = Ift(n = 0) >> true
 | Ift(n <: 0) >> odd(n+1)
 | Ift(n :> 0) >> odd(n-1)

def odd(n) = Ift(n = 0) >> false
 | Ift(n <: 0) >> even(n+1)
 | Ift(n :> 0) >> even(n-1)

odd(-4)

{-
OUTPUT:
false
-}

Example 4.7. List Head

{-
 Publish the head of a nonempty list.
 If the list is empty, halt silently.
-}
def head(h:_) = h

head([2, 3]) | head([])

{-
OUTPUT:
2
-}

Declarations

67

Example 4.8. List Length

{- Find the length of a list -}
def length([]) = 0
def length(_:rest) = length(rest) + 1

length([1, 2, 4])

{-
OUTPUT:
3
-}

Example 4.9. List Sum

{- Sum the elements of a list -}

def sum([]) = 0
def sum(h:t) = h + sum(t)
sum([1, 2, 3])

{-
OUTPUT:
6
-}

Example 4.10. Same-Length Zip

{-
 "Zip" a pair of lists together into a list of pairs.
 If the lists are of inequal length, halt silently.
-}
def zip(x:xs, y:ys) = (x, y):zip(xs, ys)
def zip([], []) = []

 zip([0, 1], [false, true])
| zip([1, 2, 3], signal)

{-
OUTPUT:
[(0, false), (1, true)]
-}

Declarations

68

Example 4.11. Fibonacci Function

{- Fibonacci numbers -}

def fib(0) = 1
def fib(1) = 1
def fib(n) if (n :> 1) = fib(n-1) + fib(n-2)

fib(5)

{-
OUTPUT:
8
-}

4.2.9. Related Links
Related Reference Topics

• Function Calls

• Patterns

• Publication

• Blocking

• Deflation

• lambda Expressions

• Closures

• Adding Type Information to Functions

• def class: Define Site in Orc

Related Tutorial Sections

• Functions

• First-class Functions

../userguide/userguide.html#ug.introduction.functions
../userguide/userguide.html#ug.additional.closures

Declarations

69

4.3. def class: Define Site in Orc
The def class declaration provides the capability to implement sites within Orc itself. It is syntactically
similar to the def declaration, but serves a different purpose.

The body of a def class consists of a sequence of declarations followed by a goal expression. Each
def or def class declaration in this sequence is called a method.

Orc's def class provides encapsulation in a manner similar to classes in object-oriented languages.
In addition to colocating methods and the shared resources on which they operate, an Orc class may
also encapsulate some computation via the goal expression, colocating methods and resources with some
orchestration which manages or monitors those resources.

4.3.1. Syntax
[23] DeclareDefclass::=def class Variable TypeParameters? Parameters ReturnType?

Guard? = Expression

4.3.2. Creating Instances
A def class declaration binds its identifier to a new site, which we call an Orc class. When this site is
called, it creates and publishes an instance, a site which has all of the methods defined in the class.

In parallel, execution of the goal expression begins. Any value published by the goal expression is
discarded. The class is a site, meaning that the execution of the goal expression cannot be killed by Orc;
it continues independently of the rest of the program.

When an instance is created, each val declaration begins to execute, and each method is captured as a
closure. This has two important implications:

• Different instances will have different values for each val declaration, created by separate
computations, and these bindings are captured by the method closures. In particular, this means that
an instance could create some mutable resource, such as a mutable cell or a semaphore, which is
then manipulated by the methods; different instances will have different underlying mutable resources.
Instances are thus very similar to objects in object-oriented languages, and val declarations are
analogous to private fields.

• Recall that creation of a closure is strict in the closure's free variables. Thus, the creation of the instance
may block on some free variable within the class (i.e. a variable bound by val), or a free variable in
the scope of the class. In practice, this means that instance creation will block on every val declaration
whose name is mentioned in any method. Furthermore, the goal expression might begin executing even
before the instance is published.

4.3.3. Calling Methods
Each instance returned by a call to the class has a method for each def or def class declaration in the
class body. A method is accessed using a dot access; the identifier name of the declaration is used as the
key. When a method is called, the corresponding definition executes.

Each method behaves as a site, in particular a helpful site. Therefore,

Declarations

70

• A method call, unlike a function call, is strict in all of its arguments.

• A method call publishes at most one value. If the method is a def, its first publication is used, and
execution of the body continues, but subsequent publications are ignored.

• If the method is a def, and execution of its body expression halts silently, then the method call also
halts silently, exactly like a helpful site.

• A method call cannot be killed by the pruning combinator. Once the method has been called, its execution
continues independently of the rest of the Orc program.

The methods of an instance may be executed concurrently through concurrent invocations; there is no
synchronization or serialization mechanism to prevent this. Different calls to the same method may even
execute concurrently with each other. If any method uses a shared resource, care must be taken to ensure
that different method invocations do not interfere with each other in unexpected ways.

4.3.4. Type
A def class declaration is typechecked in the same way as a def declaration, with one exception.
The return type of a closure created by def class, rather than being the type of the body expression,
is instead a record type {. m0 :: T0 , … , mn :: Tn .}, where each mi is the name of a method, and
Ti is its type.

4.3.5. Examples
Example 4.12. Matrix Definition

Orc's standard library supports only one dimensional arrays, and array indices always start at 0. We define
a template for a 2-dimensional matrix whose row and column indices range over arbitrary intervals.

{- Create a matrix whose indices range from
 (rowlo, collo) to (rowhi, colhi) inclusive,
 with a method to access its elements.
-}

def class Matrix((rowlo, rowhi), (collo, colhi)) =
 val mat = Array((rowhi - rowlo + 1) * (colhi - collo + 1))

 def access(i, j) = mat((i - rowlo) * (colhi - collo + 1) + j)

stop

{- Usage -}
val A = Matrix((-2, 0), (-1, 3)).access
A(-1, 2) := 5 >> A(-1, 2) := 3 >> A(-1, 2)?

{-
OUTPUT:
3
-}

Note: We have defined A as the "access" method of the defined matrix. This allows us to retrieve and
update the matrix elements using traditional notation.

Declarations

71

Example 4.13. Create a Write-Once Site

We create a site, Cell, that defines a write-once variable. It supports two methods: read blocks until the
variable has been written, and then it publishes its value; write(v) blocks forever if a value has already
been written, otherwise it writes v as the value and publishes a signal.

We use two library sites, Semaphore (to ensure blocking of write if a value has been written) and Ref
to store the value.

{- Create a mutable cell site -}

def class Cell() =
 val s = Semaphore(1)
 val r = Ref()

 def write(v) = s.acquire() >> r := v
 def read() = r?

 stop

val c = Cell()

c := 42 >> c?

{-
OUTPUT:
42
-}

Declarations

72

Example 4.14. Extend Functionality of an Existing Site

The Channel site implements an unbounded channel. We add a new method, length, that returns the
number of items in the channel.

{- Extend the pre existing channel site with a length field -}

def class CustomChannel() =
 val ch = Channel()
 val chlen = Counter(0)

 def put(x) = chlen.inc() >> ch.put(x)
 def get() = ch.get() >x> chlen.dec() >> x
 def length() = chlen.value()

 stop

val cc = CustomChannel()

 signals(10) >> cc.put("item") >> stop
| signals(5) >> cc.get() >> stop
; cc.length()

{-
OUTPUT:
5
-}

Declarations

73

Example 4.15. Managing Concurrent Access

The methods of a class instance may be executed concurrently through concurrent invocations. Concurrent
execution may cause interference, as in the example of the Newset example. Typically, semaphores are
used to restrict access to methods and/or data. We rewrite Newset in which all accesses to shared data
ne are protected using a semaphore.

{- Manage access to a set via a site -}

def class Newset(n) =
 val b = BoundedChannel(n)
 val (s , ne) = (Semaphore(1) , Ref(0))

 {- Add an element to the set if it is non-full.
 If the set is full, wait until the set becomes non-full.
 Return a signal on completion.
 -}
 def add(x) = b.put(x) >> s.acquire() >> ne := ne? + 1 >> s.release()

 {- Remove some element from the set if it is non-empty.
 If the set is empty, wait until the set becomes non-empty.
 Return the removed value.
 -}
 def remove() = b.get() >x> s.acquire() >> ne := ne? - 1 >>
 s.release() >> x

 {- Return the size, i.e., the number of elements currently in the set
 -}
 def size() = s.acquire() ne? >x> s.release() >> x

stop

{-
OUTPUT:
-}

Declarations

74

Example 4.16. Computing with the Goal Expression

All the goal expressions shown so far have been merely stop. In the following example, the goal
expression of the class initiates an computation in which a number is printed every second; all the
publications of the goal expression are ignored.

{- Perform a print action with the goal expression
 of a class: counting down from n to 0.
-}

def class countdown(n) =

 def downfrom(i) if (i >= 0) = i | Rwait(1000) >> downfrom(i-1)

 {- Goal -} downfrom(n) >i> Println(i)

val _ = countdown(5)
{- Goal of the whole program -} stop

{-
OUTPUT:
5
4
3
2
1
0
-}

Declarations

75

Example 4.17. Stopwatch

{-
 An instance of Stopwatch has the following operations:

 start():
 Start a paused stopwatch and publish a signal.
 If the stopwatch is already running, halt instead.
 finish():
 Pause a running stopwatch and publish the time
 that has passed since it was last started.
 If the stopwatch is already paused, halt instead.
-}

def class Stopwatch() =
 val now = Rclock().time
 val checkpoint = Ref(now())
 val (startlock, finishlock) = (Semaphore(0), Semaphore(0))
 def start() =
 startlock.acquireD() >>
 now() >starttime>
 checkpoint := starttime >>
 finishlock.release()
 def finish() =
 finishlock.acquireD() >>
 checkpoint? >starttime>
 now() >endtime>
 checkpoint := endtime >>
 startlock.release() >>
 endtime - starttime

 startlock.release()

val watch = Stopwatch()

watch.start() >> Rwait(400) >> watch.finish() >i>
Rwait(200) >>
watch.start() >> Rwait(100) >> watch.finish() >j>
(i+j >= 500) && (i+j <= 525)

{-
OUTPUT:
true
-}

4.3.6. Related Links
Related Reference Topics

• Site Calls

• Dot Access

Declarations

76

• Publication

• Record Types

• Helpful Sites

• def: Define Function

Related Tutorial Sections

• Defining Classes

../userguide/userguide.html#ug.additional.defclass

Declarations

77

4.4. import site: Import Site
 A site declaration makes an Orc site that is present in the environment available for use by the program.

Orc sites provide operations such as arithmetic functions, platform facilities, or Web services for Orc
programs to invoke. The Orc standard prelude, which is implicitly included in Orc programs by the
compiler, contains declarations for all items in the Orc standard library. Sites beyond those in the standard
library are made available by a site declaration. A site declaration names a variable to bind to the site and
specifies a location from with the site is obtained (site resolution). In the present Orc implementation, this
location is specified as a fully qualified name of a class that can be loaded from the JVM classpath.

4.4.1. Syntax
[26] DeclareSite::=import site Variable = ClassName

4.4.2. Site Resolution
A site is resolved as follows: The site class loader is requested to load the class of the fully qualified
name specified in the site declaration. The resolver verifies that the loaded class is a subtype of
orc.values.site.Site. If so, that class is bound to the variable name in the site declaration. If it is
not, the resolver attempts to load the Scala companion module for this class. If this exists and is a subtype
of orc.values.site.Site, it is bound to the variable name in the site declaration. If it is not found,
or is not the expected type, site resolution fails.

The site class loader referred to above is the usual JVM stack of delegating class loaders. In the Orc
implementation, the stack is initially the first non-null of: 1) the current thread's context class loader, 2)
the class loader of the site resolver class, or 3) the JVM system class loader. This loader has a URL class
loader stacked on it if a site classpath is configured. Thus, if a site classpath is configured, is is searched
first. If no class is found on the site classpath, or the site classpath is not configured, then the normal
classpath is searched.

4.4.3. Type
The type of a site is determined entirely by the site itself. It may be representable in Orc, for example as a
function type, or it may be an entirely opaque type. The type of a site behaves very much like a site itself
during typechecking; it is invoked with argument types and responds with a return type.

The Orc typechecker cannot independently verify that a site's stated type is correct. If the site misrepresents
its type, this may result in a runtime type error.

4.4.4. Examples
Example 4.18. Declaring a user-supplied site

{-
 - Assume a JVM class file named com.example.MySite is
 - availalble on the classpath, and that it implements
 - the orc.values.site.Site trait.
 -}

import site MySite = "com.example.MySite"

MySite()

Declarations

78

4.4.5. Related Links
Related Reference Topics

• Standard Library

Related Tutorial Sections

• Importing Resources

../userguide/userguide.html#ug.additional.import

Declarations

79

4.5. import class: Import Class from Java
Orc programs can use services of the platform on which the Orc runtime engine runs. In this implementation
of Orc, this platform is the Java Runtime Environment (JRE). Java classes may be imported into Orc
programs and called as Orc sites.

The declaration import class S = "J" binds the variable S to a site representing the Java class J.
Calls to S invoke the corresponding constructor of the Java class J. The created class instance is published
from the site call. Instance methods may be invoked on this published value. Calls to S.m invoke the
corresponding class static method of the Java class J. The return value of the method is published from
the site call. Further details of the Orc-Java interface are in the Java sites section.

4.5.1. Syntax
[27] DeclareClass::=import class Variable = ClassName

4.5.2. Type
When typechecking declared classes, the Orc typechecker interfaces with the Java type system, so that
operations on Java objects typecheck as one would expect in a Java program, with a few exceptions.

• Methods with return type void in Java have return type Signal in Orc.

• Interfaces are not fully supported.

• Type parameter bounds are not supported.

In addition to declaring a site, the import class declaration also declares a type with the same name.
It is the Orc type for instances of that Java class. For example, the declaration import class File
= java.io.File declares a type File, which is the type of all instances of java.io.File.

If a import class declaration binds a generic Java class, then the corresponding Orc type is instead
a type operator, and the constructor site takes type parameters.

Subtyping between Java object types is determined by Java's subtyping relation: if one class is a subclass
of another, then that type will be a subtype of the other. The typechecker does not implement a true join
operation for Java types; it will find a common ancestor, but not the least common ancestor.

Declarations

80

4.5.3. Examples

Example 4.19. Invoke a Java constructor and instance method

{- Use a Java class to count the number of tokens in a string -}

import class StringTokenizer = "java.util.StringTokenizer"

-- Invoke a constructor:
val st = StringTokenizer("Elegance is not a dispensable luxury, but a quality that decides between success and failure.", " ")

-- Invoke a method
st.countTokens()

{-
OUTPUT:
15
-}

Example 4.20. Invoke a Java static method

{- Use a Java class to calculate a log value -}

import class JavaMath = "java.lang.Math"

-- Invoke a static method:
JavaMath.log10(42.0)

{-
OUTPUT:
1.6232492903979006
-}

Example 4.21. Declaring and instantiating a Java generic class

{- Use a Java class to represent tree data structures -}

import class TreeSet = "java.util.TreeSet"

val s = TreeSet[String]()
s.add("Orc") >> s.add("Java") >> s.add("Orc") >> s.size()

{-
OUTPUT:
2
-}

Declarations

81

4.5.4. Related Links
Related Reference Topics

• Java Sites

• Dot Access

• Site Calls

Related Tutorial Sections

• Importing Resources

../userguide/userguide.html#ug.additional.import

Declarations

82

4.6. type: Declare Type

A type declaration binds a type variable to a type. There are three kinds of type declarations: aliases,
imports, and datatypes.

4.6.1. Syntax
[29] DeclareType::=DeclareTypeAlias

❙ DeclareTypeImport
❙ DeclareDatatype

[30] DeclareTypeAlias::=type TypeVariable TypeParameters? = Type
[31] DeclareTypeImport::=import type TypeVariable = ClassName

4.6.2. Type Alias
A type alias gives an existing type a new name, for the programmer's ease of use. There is no distinction
between the alias and the aliased type; they can be used interchangeably. A type alias may not be recursive.

A type alias may have type parameters, in which case it defines a type operator which can be applied to
other types.

4.6.3. Type Import
A type import gives a name to a type described by some external service. This allows new types to be
added to Orc, in much the same way that the import site declaration declaration allows new sites to
be added to Orc. Type imports are often used in conjunction with the import site, to give a name to
the type of values produced by the site.

4.6.4. Datatype

A datatype declaration defines a new type, called a sum type, which is the type of all values produced by
any of the declared constructors.

A datatype declaration may be polymorphic, introducing new type variables which may be used within
the slots of the constructors. It may also be recursive; the type name itself can be used within the slots of
the constructors. A datatype declaration is the only way to define type recursively in Orc.

The datatype declaration also assigns types to each of the constructors that it defines.

Declarations

83

4.6.5. Examples
Example 4.22. Aliasing Types

{- Define a three-dimensional vector type, and a polymorphic relation type -}

type Vector = {. x :: Number, y :: Number, z :: Number .}
type Relation[R] = (R,R) => Boolean

{-
NONRUNNABLE
-}

Example 4.23. Importing Types

{- Import the Cell type of write-once cells, and import Java's URI type -}

import type Cell = "orc.lib.state.types.CellType"
import type URI = "java.net.URI"

{-
NONRUNNABLE
-}

Example 4.24. Binary Tree Type

{-
 Define a polymorphic binary tree datatype,
 then construct a tree of integers and a
 tree of booleans.
-}

type Tree[T] = Node(Tree[T], T, Tree[T]) | Empty()

val intTree =
 val left = Node(Empty(), 0, Empty())
 val right = Node(Empty(), 2, Empty())
 Node(left, 1, right)

val boolTree =
 val left = Node(Empty(), false, Empty())
 Node(left, true, Empty())

intTree | boolTree

{-
OUTPUT:PERMUTABLE
Node(Node(Empty(), false, Empty()), true, Empty())
Node(Node(Empty(), 0, Empty()), 1, Node(Empty(), 2, Empty()))
-}

Declarations

84

4.6.6. Related Links
Related Reference Topics

• Algebraic Data Types

• Parametric Types

• Type System Metatheory

Related Tutorial Sections

• Datatypes

../userguide/userguide.html#ug.additional.datatypes

Declarations

85

4.7. include: Include Orc File
It is often convenient to group related declarations into units that can be shared between programs. The
include declaration offers a simple way to do this. It names a source file containing a sequence of Orc
declarations; those declarations are incorporated into the program as if they had textually replaced the
include declaration. An include declaration may occur wherever any other declaration occurs, even in a
nested scope. An included file may itself contain include declarations. Included files may come from
local files, any URI recognized by the Java library (http, https, ftp, etc.), and include resources found in
the Orc JAR files.

4.7.1. Syntax
[28] DeclareInclude::=include FileName

4.7.2. Examples
Example 4.25. fold.inc,used below

{- Contents of fold.inc -}

def foldl(f,[],s) = s
def foldl(f,h:t,s) = foldl(f,t,f(h,s))

def foldr(f,l,s) = foldl(f,rev(l),s)

Example 4.26. Include a separate file

{- This is the same as inserting the contents of fold.inc here -}
include "fold.inc"

def sum(L) = foldl(lambda(a,b) = a+b, L, 0)

sum([1,2,3])

4.7.3. Related Links
Related Reference Topics

• Declarations

Related Tutorial Sections

• Importing Resources

../userguide/userguide.html#ug.additional.import

86

Chapter 5. Patterns
Patterns are used in combinators, in val declarations, and in clausal definitions of functions, to select
values and bind variables to values. A pattern is given by a shape and a set of variables. A shape is either
a tuple, a list, a record, a call, a literal value, or wildcard (written as _). If the shape describes a structured
value (such as a tuple), its components may also be shapes. For example, the shape (_,3) describes all
pairs whose second element is 3, and the pattern (x,3) binds x to the first element of all such pairs.

Note that a pattern may fail to match a value, if it does not have the same shape as that value. When this
occurs, the unmatched value is simply discarded.

A pattern such as (x,y) may bind multiple variables. However, patterns are linear, meaning that a pattern
may mention a variable name at most once. For example, (x,y,x) is not a valid pattern.

During typechecking, a pattern is matched against a type instead of a value. This match produces a typing
context, which associates a type with each variable that occurs in the pattern.

Patterns

87

5.1. Literal Pattern
A literal pattern matches only the same literal value. It is often used in clausal definitions of functions.

5.1.1. Syntax
[37] LiteralPattern::=Literal

5.1.2. Type
When a literal pattern is matched against a type T , the type of the literal value must be a subtype of the
type T . The match produces an empty typing context, since it binds no variables.

5.1.3. Examples
Example 5.1. Implication by Cases

{- Defining logical implication by cases -}

def implies(true, true) = true
def implies(true, false) = false
def implies(false, true) = true
def implies(false, false) = true

implies(false, false)

{-
OUTPUT:
true
-}

5.1.4. Related Links
Related Reference Topics

• Boolean literals

• Numeric literals

• String literals

Related Tutorial Sections

• Patterns

../userguide/userguide.html#ug.introduction.structures.patterns

Patterns

88

5.2. Variable Pattern
When a variable pattern x is matched against a value v, the variable x is bound to the value v.

5.2.1. Syntax
[38] VariablePattern::=Variable

5.2.2. Type
When a variable pattern x is matched against a type T, it produces the typing context { x has type T }.

5.2.3. Examples
Example 5.2. Sum Pair

{- Sum the elements of a pair -}
val (x, y) = (3, 4)

x + y

{-
OUTPUT:
7
-}

Example 5.3. Pair to List

{- Convert pairs to lists -}

((3,4) | (2,6) | (1,5)) >(x,y)> [x,y]

{-
OUTPUT:PERMUTABLE:
[1, 5]
[2, 6]
[3, 4]
-}

5.2.4. Related Links
Related Reference Topics

• Sequential Combinator

• Pruning Combinator

• val: Bind Value

Patterns

89

Related Tutorial Sections

• Patterns

../userguide/userguide.html#ug.introduction.structures.patterns

Patterns

90

5.3. Tuple Pattern
Each element of a tuple pattern matches the corresponding element of a tuple value.

5.3.1. Syntax
[39] TuplePattern::=(Pattern , … , Pattern)

5.3.2. Type
When a tuple pattern (P0 , … , Pn) is matched against a tuple type (T0 , … , Tn), each Pi is
matched against the corresponding Ti, producing typing contexts Γi. The typing context produced by the
whole match is the union of the contexts Γi.

5.3.3. Examples
Example 5.4. Filtering

{- Publish a signal for each tuple with a first value of true -}

((false, true) | (true, false) | (false, false)) >(true, _)> signal

{-
OUTPUT:
signal
-}

Example 5.5. Pattern Publication

{- Publish 3, 6, and 9 in arbitrary order -}

(3,6,9) >(x,y,z)> (x | y | z)

{-
OUTPUT:PERMUTABLE
3
6
9
-}

5.3.4. Related Links
Related Reference Topics

• Tuples

Related Tutorial Sections

• Patterns

../userguide/userguide.html#ug.introduction.structures.patterns

Patterns

91

5.4. List Pattern
Each element of a list pattern matches the corresponding element of a list value.

5.4.1. Syntax
[40] ListPattern::=[Pattern , … , Pattern]

5.4.2. Type
When a list pattern [P0 , … , Pn] is matched against a list type List[T], each Pi is matched against
the type T, producing typing contexts Γi. The typing context produced by the whole match is the union
of the contexts Γi.

5.4.3. Examples
Example 5.6. Insertion Sort

{- Insertion Sort -}

def insert(x, []) = [x]
def insert(x, y:ys) = if (x <: y) then x:y:ys else y:insert(x,ys)

def sort([]) = []
def sort([x]) = [x]
def sort([x,y]) = if (x <: y) then [x,y] else [y,x]
def sort(x:xs) = insert(x, sort(xs))

sort([3, 1, 4, 1, 5, 9])

{-
OUTPUT:
[1, 1, 3, 4, 5, 9]
-}

5.4.4. Related Links
Related Reference Topics

• Cons Pattern

• Lists

Related Tutorial Sections

• Patterns

../userguide/userguide.html#ug.introduction.structures.patterns

Patterns

92

5.5. Record Pattern
When a record pattern is matched against a record value, each key mentioned in the record pattern must
have a mapping in the record value, and each such mapped value must match its corresponding pattern.
The record value may contain additional keys not mentioned by the record pattern.

5.5.1. Syntax
[41] RecordPattern::={. Key = Pattern , … , Key = Pattern .}

5.5.2. Type
When a record pattern {. K0 = P0 , … , Kn = Pn .} is matched against a record type R, each Ki must
have a binding in R. Then each Pi is matched against the type bound to Ki in R, producing a typing context
Γi. The typing context produced by the whole match is the union of the contexts Γi.

5.5.3. Examples
Example 5.7. Student Applications

{- Use records to test for a given string -}

val applicants =
[
 {. name = "Harry Q. Bovik", college = "Carnegie Mellon University", status = "accepted" .},
 {. name = "Fred Hacker", college = "Massachusetts Institute of Technology", status = "rejected" .},
 {. name = "D. F. Automaton", college = "Final State College", status = "accepted" .}
]
each(applicants) >a>
(
 a >{. name = n, status = "accepted" .}> Println(n + "'s application was accepted") >> stop
 | a >{. name = n, status = "rejected" .}> Println(n + "'s application was not accepted") >> stop
)

{-
OUTPUT:PERMUTABLE
Fred Hacker's application was not accepted
D. F. Automaton's application was accepted
Harry Q. Bovik's application was accepted
-}

5.5.4. Related Links
Related Reference Topics

• Records

Related Tutorial Sections

• Patterns

../userguide/userguide.html#ug.introduction.structures.patterns

Patterns

93

5.6. Call Pattern
A call pattern allows a call to be made within a pattern match.

A pattern x(P0 , … , Pn), is matched against a value v by calling x.unapply(v), and matching each
value published by that call against the tuple pattern (P0 , … , Pn). If there is only one pattern P, then
P is matched on its own, instead of using a tuple pattern. If there are no patterns, a wildcard pattern is used.

If x.unapply(v) halts silently, or halts without producing any matching values, then the match fails.

If multiple values are published and successfully match, then a multimatch occurs: the entire pattern
succeeds multiple times. In a function call, the matching clause is executed multiple times, once for each
match. In a sequential combinator, the right hand side is executed multiple times, once for each match. In
a pruning combinator, one of the matches is chosen arbitrarily.

Warning

When an as pattern contains a call pattern, counterintuitive behavior may result. The as pattern
will capture the value fragment before matching, so if a call pattern changes the value fragment,
that change will not be captured by the as pattern. Avoid using call patterns within as patterns
unless the value fragment is guaranteed to remain unchanged.

5.6.1. Syntax
[43] CallPattern::=Variable (Pattern , … , Pattern)

5.6.2. Type
When a call pattern is matched against a type S, the unapply member of the type S must have the function
type lambda (T) :: (T0 , … , Tn), where S is a subtype of T. Then each argument pattern Pi is
matched against the corresponding type Ti, producing typing contexts Γi. The typing context produced by
the whole match is the union of the contexts Γi.

Patterns

94

5.6.3. Examples

Example 5.8. Trees

{-
 Build up a small binary tree, then use call patterns to deconstruct the tree and extract its contents.
-}

type Tree = Node(_,_,_) | Empty()

val l = Node(Empty(), 0, Empty())
val r = Node(Empty(), 2, Empty())
val t = Node(l,1,r)

t >Node(l,j,r)>
l >Node(_,i,_)>
r >Node(_,k,_)>
(i | j | k)

{-
OUTPUT:PERMUTABLE
0
1
2
-}

Patterns

95

Example 5.9. Integer square root

{-
 A user-defined call pattern match, using a record with an unapply member.

 The integer square root function, isqrt, returns the square root of a
 perfect square, and halts on any input that is not a perfect square.

 isqrt is then used to define a value 'square' that matches perfect squares.
-}

def isqrt(n) =
 if (n <: 0)
 then stop
 else (
 val root = Floor(n ** 0.5)
 if (n = root*root)
 then root
 else stop
)

val square = {. unapply = isqrt .}

each([9, 12, 16, 24, 25]) >square(n)> n

{-
OUTPUT:PERMUTABLE:
3
4
5
-}

Patterns

96

Example 5.10. Factoring Using Multimatch

{-
 A user-defined call pattern match, using a record with an unapply member.

 The factors function publishes all nontrivial positive factors of its argument n
 (any factor greater than 1 and less than n)

 factors is then used to define a value 'multipleOf' that matches all
 nontrivial positive factors of an integer.
-}

def factors(n) if (n <: 0) = factors(-n)
def factors(n) = for(2, n/2 + 1) >i> Ift(n % i = 0) >> i

val multipleOf = {. unapply = factors .}

30 >multipleOf(n)> n

{-
OUTPUT:PERMUTABLE:
2
3
5
6
10
15
-}

5.6.4. Related Links
Related Reference Topics

• Algebraic Data Types

• unapply key

• Site and Function Calls

Related Tutorial Sections

• Patterns

../userguide/userguide.html#ug.introduction.structures.patterns

Patterns

97

5.7. Cons Pattern
The cons pattern matches the head and the tail of a nonempty list.

5.7.1. Syntax
[42] ConsPattern::=Pattern : Pattern

5.7.2. Type
When a cons pattern Ph:Pt is matched against a list type List[T], pattern Ph is matched against type T,
producing typing context Γh, and pattern Pt is matched against type List[T], producing typing context
Γt. The typing context produced by the whole match is Γh ∪ Γt.

5.7.3. Examples
Example 5.11. List Deconstruction

{- Publish the head and tail of a list as a tuple -}

val a = [1, 2, 3]
a >x:y> (x, y)

{-
OUTPUT:
(1, [2, 3])
-}

5.7.4. Related Links
Related Reference Topics

• List Pattern

• Lists

Related Tutorial Sections

• Patterns

../userguide/userguide.html#ug.introduction.structures.patterns

Patterns

98

5.8. As Pattern
The as keyword binds a variable to the value matched by a pattern. It is a more general way of binding
variables than using variable patterns alone.

5.8.1. Syntax
[44] AsPattern::=Pattern as Variable

5.8.2. Type
When P as x is matched against a type T, the pattern P is matched against T, producing typing context Γ.
The typing context produced by the whole match is Γ ∪ {x has type T}.

5.8.3. Examples
Example 5.12. Simplified Fragment

{- Consider this initial program fragment, without an 'as' pattern -}
val (a,b) = ((1,2),(3,4))
val (ax,ay) = a
val (bx,by) = b

{- Compared to the following fragment -}
val ((ax,ay) as a, (bx,by) as b) = ((1,2),(3,4))

[ax, ay, a] | [bx, by, b]

{-
OUTPUT:PERMUTABLE
[1, 2, (1, 2)]
[3, 4, (3, 4)]
-}

5.8.4. Related Links
Related Reference Topics

• Variable Patterns

Related Tutorial Sections

• Patterns

../userguide/userguide.html#ug.introduction.structures.patterns

Patterns

99

5.9. Wildcard Pattern
The wildcard pattern matches any value and binds no variables.

5.9.1. Syntax
[36] WildcardPattern::=_

5.9.2. Type
A wildcard pattern matches any type. The matching produces an empty typing context.

5.9.3. Examples
Example 5.13. Wildcard Assignments

{- Showcase various wildcard assignments -}

val (_,(_,x),_) = (0,(2,2),[5,5,5])
val [[_,y],[_,z]] = [[1,3],[2,4]]

[x, y, z]

{-
OUTPUT:
[2, 3, 4]
-}

Example 5.14. Implication by Fewer Cases

{-
 Defining logical implication by cases,
 using wildcard to abbreviate the 'true' cases.
-}

def implies(true, false) = false
def implies(_, _) = true

implies(true, true)

{-
OUTPUT:
true
-}

5.9.4. Related Links
Related Reference Topics

• Sequential Combinator, >> Form

Patterns

100

Related Tutorial Sections

• Patterns

../userguide/userguide.html#ug.introduction.structures.patterns

101

Chapter 6. Sites and Services
Orc programs communicate with their environment by calling sites. Sites perform services, which the Orc
program orchestrates. A site call may return a single value, or may be silent, returning no value. Beyond
this, there are no restrictions on sites' behavior. In prticular, site calls may interact with other site calls,
have side effects, or continue to run after returning a value.

Orc has no built-in services, so even operations as simple as addition are performed by sites. Sites may
also provide complex services, such as a database management system.

Sites may be provided by various types of software components, such as Java classes, Web services, or
custom Orc sites. An Orc program's views of sites, however, remains uniform across these types.

Some sites, called classes, create other sites when called. Orc programs may import previously-defined
sites and classes for use, through use of the import site and import class declarations. Programs
may also define classes directly in Orc code, using the def class declaration.

Sites and Services

102

6.1. Library sites
The Orc Standard Library provides a variety of sites, functions, and types for use in Orc programs. These
sites are declared in the Orc prelude, a sequence of declarations which is implicitly included in all Orc
programs.

Orc programs are expected to rely on the host language and environment for all but the most essential
sites. For example, in the Java implementation of Orc, the entire Java standard library is available to Orc
programs via import class declarations. Therefore, the Orc standard library aims only to provide
convenience for the most common Orc idioms, not the complete set of features needed for general-purpose
programming.

6.1.1. Examples
Example 6.1. Using a standard library site

{- The Floor site, also called the greatest integer function or integer value -}

Floor(2.5)

{-
OUTPUT:
2
-}

Example 6.2. Another standard library site: Ift

{- Orc's conditional site: Ift(), publishes a signal if the argument is true -}

Ift(1 :> 0) >> "correct"

{-
OUTPUT:
"correct"
-}

6.1.2. Related Links
Related Reference Topics

• Standard Library

• Helpful Sites

Sites and Services

103

6.2. Java sites
Essential to Orc's role as an orchestration language is Orc's interaction with its host platform, which in this
implementation is the Java virtual machine (JVM). In addition to calling Orc sites per se, Orc programs
can access arbitrary Java classes using the import class declaration. Values in Java fields, values
returned from Java methods, and values returned from Java constructors may be used in Orc programs
just as any other Orc value.

6.2.1. Java classes
Java classes are named in an Orc program using the import class declaration. In the scope of such a
declaration, the declared name is bound to a value that acts as a proxy for the Java class. This class proxy
may be called as an Orc site, which invokes the Java class constructor corresponding to the arguments
of the site call. The class proxy also presents the class static methods and class static fields in the same
manner as an Orc record, with keys corresponding to the Java class members' names. Class methods appear
as record elements that are sites, and are invoked by projecting the record element using the dot notation
and calling the site. Fields appear as record elements that are references [188], and are accessed and
assigned by projecting the record element using the dot notation and using Orc's ? and := operators.

Note that Java allows fields and methods with identical names to be members of the same class. In this case,
Orc's Java class proxy resolves from the usage of a record element whether to access the field or method.

Orc Java class proxies are not true Orc record values, although they appear syntactically as if they are.

Java classes are loaded from the Orc site classpath, which may be specified as a setting of the Orc runtime
engine; for example via a command-line option or an Eclipse project property. If the class is not found on
the Orc site classpath, the loading attempt continues using the normal Java classpath.

6.2.2. Java objects
Java objects may be returned by any Orc site call, including constructor or class static method invocations
of an Orc Java class proxy. Java objects' methods and fields appear in the same manner as an Orc record
with keys corresponding to the members' names. Methods appear as record elements that are sites, and
are invoked by projecting the record element using the dot notation and calling the site. Fields appear as
record elements that are references, and are accessed and assigned by projecting the record element using
the dot notation and using Orc's ? and := operators. If a Java object is called as a site without projecting
a member, the method name apply is implicitly used.

Note that Java allows fields and methods with identical names to be members of the same class. In this
case, Orc's Java object proxy attempts to resolve from the usage of a record element whether to access
the field or method.

If a field's value is a class with a member named read this member will be invoked when an Orc program
accesses that field with the ? operator. Similarly, if a field's value is a class with a member named write,
this member will be invoked when an Orc program assigns a new value to that field with the := operator.
Note that this is a potentially surprising name conflict.

6.2.3. Java value conversions
When interacting with Java classes and objects, Orc performs some conversions of values passed to and
from the Java code. Specifically, Orc applies conversions to the following:

Sites and Services

104

• Arguments of invoked constructors and methods

• Return values of invoked constructors and methods

• Accessed values from fields

• Assigned values to fields

• Accessed values from array components

• Assigned values to array components

The conversions applied are the following:

• void Java methods return signal in Orc.

• Orc integers are converted to Java Byte, Short, Integer, Long, Float, or Double, as needed.

• Orc numbers are converted to Java Float or Double, as needed.

• Java Byte, Short, Integer, and Long are converted to Orc integers.

• Java Float and Double are converted to Orc numbers.

• Java primitive values are boxed and unboxed as needed, per The Java Language Specification [http://
docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#5.1.7] §5.1.7 and §5.1.8.

• Java widening primitive conversions are applied as needed, per The Java Language Specification [http://
docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#5.1.2] §5.1.2.

Note that Orc integers and numbers represent a larger range of values than the standard Java numeric types.
If an integer conversion is applied to an out-of-range value, the result is the least significant bits of the out-
of-range value. This will change the magnitude of the number and may change its sign. If a floating-point
conversion is applied to an out-of-range value, the result is positive or negative infinity, as appropriate.

6.2.4. Java method and constructor invocation
Orc invokes a Java method or constructor by closely approximating the Java method invocation
rules specified in The Java Language Specification [http://docs.oracle.com/javase/specs/jls/se5.0/html/
expressions.html#15.12] §15.12. This is only an approximation, because Orc performs Java compile-time
steps at run time using Java's reflection facilities, and therefore has a different view of the types of values
than the Java compiler. However, in most cases, this difference has no effect. At present, Orc does not
recognize Java variable arity methods. (In practice, this is a very rarely used feature of Java.)

Orc has a Java stack trace option, which may be specified as a setting to the Orc runtime engine (for
example, via a command-line option or an Eclipse run configuration setting). This may be helpful when
debugging Java invocations.

6.2.5. Java arrays
Java arrays are accessible in Orc. To refer to a component of a Java array, follow the array value with
a nonnegative integer-valued expression in parenthesis. Java arrays are zero-origin. Array components
appear as references in Orc. Their values may be accessed and assigned using Orc's ? and := operators.
The Java length pseudo-field of arrays is available in Orc as length?.

http://docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#5.1.7
http://docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#5.1.7
http://docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#5.1.7
http://docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#5.1.2
http://docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#5.1.2
http://docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#5.1.2
http://docs.oracle.com/javase/specs/jls/se5.0/html/expressions.html#15.12
http://docs.oracle.com/javase/specs/jls/se5.0/html/expressions.html#15.12
http://docs.oracle.com/javase/specs/jls/se5.0/html/expressions.html#15.12

Sites and Services

105

6.2.6. Examples

Example 6.3. Construct a Java object, and invoke methods

{- Name a Java class and use it to invoke object methods -}
import class URL = "java.net.URL"

{- Create an instance-}
val googleUrl = URL("http://www.google.com/")

{- Invoke some methods -}
googleUrl.openConnection().getResponseMessage()

{-
OUTPUT:
"OK"
-}

Example 6.4. Accessing class members

{- Access Java's String and Boolean classes -}

import class JavaBoolean = "java.lang.Boolean"
import class JavaString = "java.lang.String"

-- Static field access
JavaBoolean.TRUE? |

-- Constructor invocation
JavaBoolean("true") |

-- Static method access
JavaBoolean.parseBoolean("true") |

-- Overloading and Orc-Java conversion -- String.valueOf(double) is invoked
JavaString.valueOf(2e108)

{-
OUTPUT:PERMUTABLE
true
true
true
"2E+108"
-}

Sites and Services

106

Example 6.5. No-arg constructor invocation, field assignment, and field dereference

{- Constructor invocation -}

import class FieldTestClass = "org.omg.CORBA.portable.ServantObject"

-- No-arg constructor invocation
FieldTestClass() >testInstance>

-- Field assignment
testInstance.servant := "test 4" >>

-- Field derefence
testInstance.servant?

{-
OUTPUT:
"test 4"
-}

Example 6.6. Integer conversion overflow

{- Demonstrate an Orc-to-Java integer conversion of an out-of-range value -}

import class JavaInteger = "java.lang.Integer"

val x = 1230000000000000000456789

JavaInteger.valueOf(x)

{-
OUTPUT:
-1530464171
-}

6.2.7. Related Links
Related Reference Topics

• import class declaration

• External data values

• Custom sites

• Interacting with Java Types

Related Tutorial Sections

• import class declaration

../userguide/userguide.html#ug.additional.import

Sites and Services

107

6.3. Web Services
Some sites provide access to remote services, rather than performing local computation. In particular, a site
could provide access to a Web service. The Orc library provides sites which perform basic HTTP requests
and manipulate JSON and XML data representations; these capabilities are sufficient to interact with many
simple web services, especially RESTful services.

6.3.1. HTTP

The HTTP [215] site provides a simple mechanism to send GET and POST requests to a URL.

• HTTP(U), where U is a java.net.URL, publishes a site which accepts HTTP requests on the URL U.

• HTTP(S) parses the string S as an absolute URL U, and then behaves as HTTP(U).

• HTTP(S,Q) maps the record Q to a URL query string QS by translating each record binding to a query
pair, escaping characters if necessary. The call then behaves as HTTP(S+QS).

The HTTP site publishes a site (call it H) with methods get and post:

• H.get() performs a GET request on the URL used to create H.

• H.post(P,T) performs a POST request with payload P on the URL used to create H. The request's
Content-Type header is set to T.

If the request is successful, the response is published as a single string, which may be translated to a more
useful representation by other library sites.

6.3.2. Data Processing
Web services often expect inputs or provide outputs in a particular format, such as XML or JSON. The Orc
library provides sites which convert between string representations of these data formats and structured
representations which Orc can manipulate.

6.3.2.1. JSON

JSON [http://www.json.org] (JavaScript Object Notation) is a lightweight data format often used by Web
services, especially by services with simple interfaces. The structure of JSON values maps onto Orc values,
using nested lists and records.

The library sites ReadJSON [216] and WriteJSON [216] convert between string representations of
JSON values and Orc representations of those values. ReadJSON parses a string representation of JSON
and creates an Orc value, where each JSON array becomes an Orc list, each JSON object becomes an
Orc record, and literal values map to their Orc counterparts. WriteJSON performs the inverse operation,
taking a structured value of this form and producing a string representation of an equivalent JSON value.
If j is an Orc representation of a JSON value, then ReadJSON(WriteJSON(j)) is equal to j.

6.3.2.2. XML

XML [http://www.w3.org/XML/] (Extensible Markup Language) is a structured data format used in many
contexts, including Web services.

http://www.json.org
http://www.json.org
http://www.w3.org/XML/
http://www.w3.org/XML/

Sites and Services

108

The library sites ReadXML [217] and WriteXML [217] convert between string representations of
XML values and Orc representations of those values. ReadXML parses a string representation of XML and
creates an Orc representation, which can be manipulated by Orc's XML library sites. WriteXML performs
the inverse operation, taking an Orc representation of XML and serializing it to a string. If x is an Orc
representation of an XML fragment, then ReadXML(WriteXML(x)) is equal to x.

Unlike JSON, the structure of XML does not map directly to Orc's structured values. Instead, Orc provides
a set of library sites and functions which manipulate XML in a manner similar to Orc's datatypes. Orc's
XML manipulation capabilities are currently incomplete; in particular, it does not handle namespaces. All
constructed elements have the default namespace, element and attribute tags have no prefixes, and element
matching discards namespace and prefix information. For more comprehensive XML manipulation, use
of underlying platform capabilities (such as Scala or Java libraries) is recommended.

6.3.2.2.1. Primitive XML Sites

There are three library sites that construct XML nodes directly. Each of these sites may also be used in a
call pattern to match the corresponding constructed value.

• XMLElement [217](tag, attr, children) creates a new XML element with the tag given by
string tag, the set of attributes specified by the record attr, and the sequence of child elements given
by the list children. Each value mapped by attr is converted to a string in the XML representation.
attr may be an empty record. Each element of children must be an XML node. children may
be an empty list.

• XMLText [217](txt) creates a new XML text node whose content is the string txt. Characters
in txt which are not permitted in XML text will be encoded.

• XMLCData [217](txt) creates a new XML CDATA node whose content is the string txt.
Characters in txt are not encoded.

The library site IsXML [217] verifies that its argument is an XML node of some type. IsXML(x)
publishes x if x is an XML node; otherwise it halts silently.

6.3.2.2.2. Manipulating XML

The library provides two records, xml [218] and xattr [218], to manipulate XML nodes more
conveniently than by using the primitive XML sites. Each record has two members, apply and unapply,
that are both functions. The apply function builds XML values, and the unapply function is used in pattern
matching.

xml is convenient when working only with the tree structure of XML, and not with the attributes of the
element nodes. Note that xml's apply and unapply members are not inverses of each other.

• xml(t, cs) returns a new XML element with the tag t, the list of children cs, and no attributes. If
any element of cs is not an XML node, it is converted to a string and enclosed in a text node.

• The pattern xml(ptag, pchild) matches an XML element. The pattern ptag is matched against the
element tag. The pattern pchild is matched against each child of the element; it is a multimatch, so it
may succeed multiple times and produces a result on each success. Additionally, when pchild matches
a text or CDATA node rather than an element node, it is bound to the string contents of the node, rather
than the node itself.

xattr is convenient when working only with the attributes of XML element nodes, and not with the
overall tree structure.

Sites and Services

109

• xattr(x, attr) returns a new XML element which is the same as x except that all bindings in the
record attr have been added to the attributes of the element. If attr binds any attribute names already
bound in x, attr takes precedence and overwrites those bindings.

• The pattern xattr(pe, pa) matches an XML element. The pattern pe is matched against a copy of
the element with no attributes. The pattern pa is matched against a record containing the attributes of
the element.

6.3.3. SOAP Web Services
Though Orc does not provide direct bindings to SOAP web services, it is possible to access such services
through Java bindings. Frameworks such as JAX-WS map SOAP web service functionality to Java classes;
these classes can then be used as sites in Orc.

6.3.4. Examples
Example 6.7. Random Bytes from Fourmilab

{-
 Make a request to the Fourmilab HotBits service
 to produce a sequence of 4 random bytes in hex.
-}

{- Returns a string of n random hexadecimal bytes -}
def randombytes(n) =
 val query = {. nbytes = n, fmt = "xml" .}
 val location = "https://www.fourmilab.ch/cgi-bin/Hotbits"
 val response = HTTP(location, query).get()
 val xml("hotbits", xml("random-data", data)) = ReadXML(response)
 data.trim()

randombytes(4)

6.3.5. Related Links
Related Reference Topics

• Standard Library: Web

• Standard Library: XML

• Lists

• Records

Sites and Services

110

6.4. Custom sites
For services beyond those available as library sites, Java sites, and Web service sites, Orc programs may
call sites developed specifically as Orc sites. The calling Orc program names the site with an import
site declaration. This declaration causes the Orc engine to load the Java class of the given name from the
Orc site classpath or JVM classpath. Calls to this site are dispatched via Orc's site interface, which permit
the site to interact with the calling program natively.

6.4.1. Implementing new custom sites
Orc sites may be implemented in any language that can produce Java class files. However, the Orc
team rec ommends the Scala programming language from Martin Odersky and his team at EPFL (École
Polytechnique Fédérale de Lausanne). For information on Scala, see http://www.scala-lang.org/.

The Orc runtime engine provides a basic Site interface which a site must implement. This interface
specifies an abstract call method that receives a call handle for the site to respond to the site call. The
Handle interface provides methods to respond by either:

• Publishing a value

• Halting silently

• Throwing an exception

Additionally, sites may notify the Orc runtime engine of events via the Handle, such as the need to write
a string to the standard output stream.

Site call arguments and return values are not subject to Orc-Java conversions, so the site must work with
native Orc values. Sites are also responsible for enforcing arity and type requirements on the argument
lists of calls.

Orc provides a number of convenience mix-in traits for site implementors:

Site interface mix-in traits

orc.values.sites.Site
The basic site trait -- a site that can be called. Implement the call method.

orc.values.sites.TotalSite
A site that always publishes. Implement the evaluate method instead of the call method.

orc.values.sites.PartialSite
A site that sometimes publishes and sometimes halts silently. Implement the evaluate method
instead of the call method. evaluate should return an Option, Some(x) to publish x, or None
to halt.

orc.values.sites.UnimplementedSite
A site that throws orc.error.NotYetImplementedException when called or type checked.

orc.values.sites.TypedSite
A site that declares its type to the Orc type checker.

orc.values.sites.UntypedSite
A site that does not participate in type checking. Use sparingly.

http://www.scala-lang.org/

Sites and Services

111

For a detailed description of the Orc-site interface, refer to the Orc implementation Javadoc [https://
orc.csres.utexas.edu/javadoc/STABLE/index.html].

6.4.2. Related Links
Related Reference Topics

• import site declaration

Related Tutorial Sections

• import site

https://orc.csres.utexas.edu/javadoc/STABLE/index.html
https://orc.csres.utexas.edu/javadoc/STABLE/index.html
https://orc.csres.utexas.edu/javadoc/STABLE/index.html
../userguide/userguide.html#ug.additional.import

112

Chapter 7. Time
Orc is designed to communicate with the external world, and one of the most important characteristics
of the external world is the passage of time. Orc implicitly interacts with the passage of time by calling
external services which take time to respond. However, Orc can also explicitly wait for some amount of
time, using the special site Rwait.

Virtual time....

Time

113

7.1. Real Time
7.1.1. Rwait

The site Rwait is a relative timer. It takes as a nonnegative integer argument a number of milliseconds to
wait. It waits for approximately that amount of time, and then responds with a signal.

7.1.2. Rtime
The site Rtime is a program clock. When called, it returns the number of milliseconds that have elapsed
since the program began executing.

7.1.3. Rclock
The site Rclock creates new clock instances. When called, it returns a new clock, with two members:
wait and time. The wait member behaves exactly like Rwait. The time member returns the number
of milliseconds that have passed since the clock was created.

7.1.4. Examples
Example 7.1. Simple example of using Rwait

{- Print "red", wait for 3 seconds (3000 ms), and then print "green" -}

Println("red") >> Rwait(3000) >> Println("green") >> stop

{-
OUTPUT:
red
green
-}

Example 7.2. Timeout

include "search.inc"

{- Publish the result of a Google search.
 If it takes more than 5 seconds, time out.
-}
result
 <result< (Google("impatience")
 | Rwait(5000) >> "Search timed out.")

7.1.5. Related Links
Related Reference Topics

• Standard Library: Time

Time

114

• metronome function [204]

Related Tutorial Sections

• Timeout

../userguide/userguide.html#ug.idioms.timeout

Time

115

7.2. Virtual Time
Virtual time provides the ability to order events in an Orc execution. As an expression is executed, the Orc
runtime tracks the "current" virtual time. A Vawait site call waits for a particular point in time. Through
use of Vawait, one can set up temporal dependencies among Orc expressions.

Simulations in Orc can make use of virtual time to simulate time passage without the unproductive delays
caused by real time waits. Certain algorithms can be succinctly expressed using virtual time. (See the
shortest path example.)

An Orc virtual clock is created with four parameters, conceptually:

• A set of points of time (for example, the integers)

• Equality and total ordering relations over this set (for example, = and <)

• Optionally, a parent clock

• The scope (part of the program) over which it applies

(In an actual Orc program, only the total ordering relation is given as an actual argument to a Vclock
call. The other parameters are implicit.)

During execution. a virtual clock tracks:

• The current time

• A priority queue of pending Vawait calls, in order of their awaited time, as given by the clock's total
ordering relation.

When Vawait is called with a time value greater than the current time, that call is enqueued, and does not
return until that time. Virtual time advances when all execution in the clock's scope becomes quiescent,
defined below. Upon quiescence in a clock's scope, the clock's current time is updated to the least time
among its waiters, and all Vawait calls for that time return.

7.2.1. Quiescence
An expression is quiescent when all execution in the expression is either blocked on variables, blocked
on certain site calls, halted, or killed. In other words, quiescence means no progress can be made in the
expression without certain kinds of unblocking. Most site calls are not considered quiescent while they are
invoked, however a few are; most notably Vawait when it is called with a future time value argument.
Other not-quiescent-while-invoked sites are documented in their entry in the Standard Library chapter.
Child virtual clocks are not quiescent until all execution in their scope has halted. So, a child clock whose
scope is quiescent but not halted is non-quiescent from the viewpoint of the parent clock.

Note that expressions blocked on variables are quiescent. This normally is the intuitive behavior: for
example, x <x< Q() is quiescent if the call to Q is. However, if the right side of a pruning combinator is
not in the clock's scope, then blocking on a variable bound by the pruning combinator will be quiescent.
This might be surprising: Suppose val x = F is followed by Vclock(IntegerTimeOrder) >>
x. The virtual clock scope x will be quiescent if executed before F has published and x has a bound value.
To avoid this, use the Orc join idiom. Before calling Vclock, join all potentially-unbound variables used
inside the clock scope, like so: (x, y, z) >> Vclock(IntegerTimeOrder) >> x + y + z.

7.2.2. Vclock
Executing Vclock(timeComparator) >> e executes the expression e with a virtual clock that
has time values ordered by timeComparator. A time comparator operates on a particular time value

../userguide/userguide.html#ug.idioms.forkjoin

Time

116

type, for example integers. A time comparator is a site that takes two arguments, each of the time value
type, and returns the value -1, 0, or 1 to indicate the first argument is less than, equal to, or greater than,
respectively, the second argument. Note that in the current version of Orc, the site must be a Java site; it
cannot be defined in Orc. (This limitation may be removed in a future Orc release.) The time value type
of a clock is implicitly defined by the type of arguments that the given time comparator site accepts. The
initial value of a virtual clock is established by the first Vawait call in the clock's scope that publishes.

The scope over which a virtual clock is effective is the right side of the pruning combinator in
Vclock(timeComparator) >> e. A Vclock call can only be used on the left side of a sequential
combinator; use in any other context will be marked by the compiler as an error. When the expression e
publishes, the publication, as usual, is a publication of the sequential combinator expression. If the Vclock
call is in the scope of another virtual clock, that clock is considered the parent clock of this clock.

7.2.3. Vawait
Executing Vawait(t) waits quiescently until the the current (innermost) virtual clock advances to time
t. There may be more than one Vawait call awaiting a given time value. All such calls will publish at
the same time. Exactly one call, selected arbitrarily, will publish true, and the others (if any) will publish
false. If Vawait(t) is called when the current virtual time is already t, the call immediately publishes
false, without becoming quiescent. If the current virtual time is greater than t, the call halts silently. If
the current virtual clock does not have defined time—that is, Vawait has not been called yet in the scope
of this clock—then the Vawait behaves as if its argument is a future time value. If Vawait is called
outside of the scope of any virtual clock, the call halts silently.

7.2.4. Vtime
The Vtime site publishes the current value of the current (innermost) virtual clock. If the clock has not
had a value set by a Vawait call, or Vtime is calls outside of the scope of any virtual clock, Vtime
halts silently.

Time

117

7.2.5. Examples
Example 7.3. Shortest path using a virtual clock
{- Shortest path through a directed graph, using a virtual clock -}

def Vwait(t :: Integer) = Vawait(t + (Vtime() :!: Integer))

Vclock(IntegerTimeOrder) >> Vawait(0) >> (
type Node = Integer
type Distance = Integer

def path(source :: Node,
 sink :: Node,
 cell :: lambda(Node) :: Cell[List[Node]],
 succ :: lambda(Node) :: (Node,Distance)
) :: List[Node] =
 def run(n :: Node, p :: List[Node]) :: Bot =
 cell(n).write(p) >>
 succ(n) >(m,d)>
 Vwait(d) >>
 run(m,m:p)
 run(source, [source])
 ; reverse(cell(sink).read())

-- A small test graph
val source = 0
val sink = 3

def mkcell() = Cell[List[Node]]()

val cell0 = mkcell()
val cell1 = mkcell()
val cell2 = mkcell()
val cell3 = mkcell()

def cell(Node) :: Cell[List[Node]]
def cell(0) = cell0
def cell(1) = cell1
def cell(2) = cell2
def cell(3) = cell3

def succ(Node) :: (Node,Distance)
def succ(0) = (1,2) | (2,6) | (3,9)
def succ(1) = (3,7)
def succ(2) = (3,2)
def succ(3) = stop

path(source, sink, cell, succ)
)

{-
OUTPUT:
[0, 2, 3]
-}

Time

118

7.2.6. Related Links
Related Reference Topics

• Standard Library: Time

• Vclock site [204]

• Vawait site [205]

• Vtime site [205]

Related Tutorial Sections

• Fork-join

../userguide/userguide.html#ug.idioms.forkjoin

119

Chapter 8. Concepts
These are a few concepts which are essential to Orc, and are used frequently in other parts of the reference
manual.

Concepts

120

8.1. Publication
An Orc expression publishes a value when the expression produces a value to be used in the context
enclosing the expression. An extremely simple example of publication is a literal, for example the
expression 1, which publishes a single integer value. Orc expressions may publish zero or more values
during their execution. The effect of publication depends on the context. For example, each publication of
F in the sequential combinator expression F >x> G causes G to be run with x bound to the published
value. An expression that never publishes is said to be silent.

The following is the publication behavior of a few common forms of Orc expressions.

• Site calls publish only zero or one value.

• Function calls may publish any number of values.

• A literal expression publishes exactly one value.

• stop never publishes.

• A variable expression, when executed, publishes its value, if bound. If not, execution of the variable
is blocked until it is bound.

• Each of the Orc combinators has a unique publication behavior.

8.1.1. Examples
Example 8.1. Publish no values

(1 | 2) >> stop
{-
OUTPUT:
-}

Example 8.2. Publish one value

1
{-
OUTPUT:
1
-}

Example 8.3. Publish two values

(1 | 2) >x> x + 30
{-
OUTPUT:PERMUTABLE
31
32
-}

Concepts

121

Example 8.4. Publish an unbounded number of values (metronome)

def metronome() = signal | Rwait(1000) >> metronome()

metronome()

8.1.2. Related Links
Related Reference Topics

• Combinators

• Site Call

• Function Call

• stop

• Silent

Related Tutorial Sections

• Orc expressions

• Combinators

• Nesting expressions

• Sites

../userguide/userguide.html#ug.introduction.simple
../userguide/userguide.html#ug.introduction.complex.combinators
../userguide/userguide.html#ug.introduction.complex.nesting
../userguide/userguide.html#ug.introduction.simple.sites

Concepts

122

8.2. Silence
8.2.1. Definition

An expression is silent in an execution if it never publishes in that execution. An expression is always silent
if it does not publish in any execution. A silent expression may call sites. The type of a silent expression
is Bot.

8.2.2. Examples
Example 8.5. Silence with Side Effects

{- Silent expressions never publish but may have side effects
 such as output to the console.
-}

 Println("print but don't publish") >> stop
| stop >> Println("never runs")

{-
OUTPUT:
print but don't publish
-}

Example 8.6. Conditional Silence

{-
 Ift(x) is silent if x is bound to false
 Ift(y) is silent because y is always bound to false
 Ift(z) is silent because z is never bound
-}

val x = true | false
val y = false
val z = stop

Ift(x) | Ift(y) | Ift(z)

{-
OUTPUT:
signal
-}
{-
OUTPUT:
-}

8.2.3. Related Links
Related Reference Topics

• Publish

Concepts

123

• stop

• Bot

• Otherwise combinator

Concepts

124

8.3. Expression States
A site call, from the site's perspective, has three possible outcomes: the site will definitely publish a value,
the site knows that it will never publish a value, and the site does not know if it will ever publish a value.
For example, a call to Ift(true) publishes a signal, Ift(false) never publishes, and c.get() on
channel c that is currently empty may eventually publish or remain non-responsive, depending on whether
a value is put in c in the future.

A site call, from the caller's perspective, is ready, blocked or halted. A call is ready if all its arguments
have deflated to values, so that a call can be made. A call is blocked if either (1) the caller can not make
the call because not all argument values are bound (since site calls are strict); this is an internally blocked
call, or (2) the caller is waiting for the response after having called the site; this is an externally blocked
call. A site call is halted if the caller has already received a response or the site has indicated that it will
never send a response. A site call is killed if it is part of G in F <x< G and G publishes.

An internally blocked call becomes ready when all its arguments are bound to values. An internally blocked
call halts if one of its arguments will never be bound because the expression that computes its value has
halted or has been killed. A ready call becomes externally blocked once the call is made. A blocked call
transitions to halted if it receives a response or if the called site can determine that it will never respond;
a blocked call may remain blocked forever if the called site can not determine if if it will ever respond.
Note that a halted call stays halted unless it is killed.

We extend these concepts to execution of an expression. At any moment, an expression has an associated
set of site calls under consideration for execution; if the expression has begun additional executions, as in
F >x> G, all the versions of G being executed contribute to this set; if the expression includes function
calls, those calls initiate execution of the function bodies which are also expressions that contribute to this
set; any variable x used as an expression on its own is equivalent to a site call Let [152](x). If some
site call in this set is ready, the expression is ready; if all calls are blocked, the expression is blocked, and
if all calls are halted the expression is halted.

8.3.1. Ready
A site call is ready if all its argument variables are bound to values, so that a call can be made. An expression
is ready if some site call in its set of associated site calls is ready.

8.3.2. Blocked
A site call is blocked if (1) the call can not be made because some argument of the call is unbound, the call
is then internally blocked, or (2) the caller is waiting for a response, the call is then externally blocked.
An expression is blocked if its set of associated site calls are all blocked. All component expressions of a
blocked expression are blocked. A blocked expression stays blocked unless (1) an internally blocked site
call is made ready by the bindings of its arguments, or (2) it is halted, or (3) killed.

8.3.3. Halted
A site call is halted if (1) it was internally blocked and one of its arguments will never be bound because
the expression that computes its value has been halted or killed, or (2) it was externally blocked and either
a response has been received or an indication that there never will be a response. An expression is halted
if the set of associated site calls have all halted. All component expressions of a halted expression are
halted. A halted expression stays halted unless it is killed. A halted expression never makes site calls nor
publishes any value.

Concepts

125

8.3.4. Killed
Expression G is killed in F <x< G if G has published. All component expressions of a killed expression are
killed. A killed expression stays killed. A killed expression never makes site calls nor publishes any value.

8.3.5. Helpful Sites
Sites that may indicate absence of response are called helpful (see Helpful Sites). Not all sites are helpful.

8.3.6. Examples
Example 8.7. Parallel site calls; ready and blocked states

Let c be a channel. Consider expression G given by

c.get() | Rwait(1000)

The expression is ready because it can make both calls. After both calls have been made, the expression
is blocked waiting for their responses. Suppose Rwait(1000) responds first. Then the expression stays
blocked waiting for the response to c.get(). If a response is received, the expression halts; if c is empty
and another caller closes c, then c.get() indicates that there will be no response, causing G to halt;
otherwise, G stays blocked forever.

Example 8.8. Pruning combinator; killed state

Consider the expression

F <x< G

where G from the previous example is

c.get() | Rwait(1000)

As we have shown, G will definitely publish. Then G is killed, and so are its sub-expressions.

Example 8.9. Sequential and otherwise combinators

In the previous example let F be

x >> c.get() >> true ; false

In F <x< G, expression F is blocked until x is bound to a value. Since G eventually publishes, x will be
bound eventually. Then the call c.get() is made in F. As we have discussed, this call (1) may receive
a response, in which case true will be published, and the entire expression halts, (2) the call receives an
indication that there will be no response (in case c is empty and it is closed) in which case x >> c.get()
>> true halts silently, causing false to be published, or (3) the call remains blocked forever, causing
F to remain blocked.

8.3.7. Related Links
Related Reference Topics

• Expressions

Concepts

126

• Site and Function Calls

• stop

• Combinators

• Helpful Sites

Concepts

127

8.4. Deflation
8.4.1. Definition

Deflation is an execution mechanism which extracts a single value from an expression that might publish
many values, so that such an expression can be executed in a context that expects at most one value.

A expression E is deflated to a value v in a context C by rewriting

C{E}

to

C{x} <x< E

When E publishes a value v, that value is bound to x and used in the context C, and E is killed.

The context C may contain multiple expressions to be deflated, so this transformation may be applied
multiple times. For example, the expression

(E, F, G)

rewrites to

(x, y, z) <x< E <y< F <z< G

If any deflated expression halts silently, then the enclosing expression also halts silently. In the example
above, if F halted silently, then the expression (E, F, G) would also halt silently.

However, there is one exception to this rule: if C is a function call it does not halt, since function evaluation
is lenient.

Notice that each deflated expression is evaluated concurrently, due to the behavior of the pruning
combinator. This is what makes Orc a functional concurrent language: when an expression is evaluated
recursively, all such evaluations take place simultaneously.

8.4.2. Examples
Example 8.10. Search Comparison

include "search.inc"

{-
 Return search results from two major search engines in the form of a record.
 Each search has a timeout; if the search engine does not respond by the timeout,
 the result is instead "no result".
-}

{.
 google = Google("Jack Burton") | Rwait(5000) >> "no result",
 yahoo = Yahoo("Jack Burton") | Rwait(7000) >> "no result"
.}

Concepts

128

8.4.3. Related Links
Related Reference Topics

• Pruning Combinator

• Publication

• Silence

• Killing

• Site and Function Calls

• Operators

• Tuples

• Lists

• Records

Related Tutorial Sections

• Fork-join

../userguide/userguide.html#ug.idioms.forkjoin

Concepts

129

8.5. Helpful Sites

A helpful site responds with an indication that it will never publish, when it knows this outcome for a call.

All library sites in Orc are helpful. Thus, Ift [152] is a helpful site, and Ift(false) sends an
indication to the caller that it will never publish. A Channel [190] is a helpful site, and some of its
methods will send an indication that they will never publish. In particular, the get method is blocked on
an empty channel, but it sends an indication it will never publish if the channel is closed.

The indication from a helpful site that it will never publish causes the call to halt. This can be exploited
by the caller by using the otherwise combinator.

We do not expect arbitrary services to be helpful.

8.5.1. Related Links
Related Reference Topics

• Otherwise Combinator

• Halting

• Standard Library

Concepts

130

8.6. Approximation in Orc Implementation
This reference manual describes the ideal behavior of Orc programs. In particular, it assumes unbounded
memory, an arbitrary amount of concurrent processing power, and any level of speed of computation
demanded by the program. Therefore, we have not treated aspects such as floating point overflow, overhead
for platform-level thread creation, nor the exact speeds of computation.

For example, the program

 val z = Rwait(2) >> true | Rwait(3) >> false

is ideally expected to bind value true to z. In practice, we can only make a best effort to implement the
ideal behavior of Rwait. Given that Rwait(2) and Rwait(3) are very close in real time, an actual
implementation may indeed assign false to z. The programmer should be aware of such limitations, and
program around them.

8.6.1. Related Links
Related Reference Topics

• Rwait

• Numerics

131

Chapter 9. Type System
The Orc language is dynamically typed. If an operation occurs at runtime which is not type correct, that
operation halts silently, and reports an error on the console.

Orc also has an optional static typechecker, which will guarantee that a program is free of type errors
before the program is run. For every expression in the program, the typechecker tries to find the types of
values that the expression could publish, and then checks that all such types are consistent. The typechecker
performs a limited form of type inference, so it can discover many of these types automatically. However,
the programmer must provide additional type information for function definitions and for a few other
specific cases.

The typechecker is disabled by default, though typed syntax is still permitted (and types are still checked
for syntax errors) even when the typechecker is not used. It may be enabled as a project property in the
Eclipse plugin, or by using the --typecheck switch on the command line.

If the typechecker can verify that a program is correctly typed, it will display the message

Program type checks as T

This means that the program has no type errors, and that every value published by the program will be
of type T.

Type System

132

9.1. Metatheory

The typechecker uses the local type inference algorithm described by Pierce and Turner in the paper Local
Type Inference [http://www.cis.upenn.edu/~bcpierce/papers/lti-toplas.pdf]. The typechecker extends this
algorithm with polymorphic type operators (e.g. List or Channel), forming a second-order type system.
It also includes polymorphic user-defined datatypes and a typing procedure for site calls.

The typechecker supports both generics and subtyping, though it does not currently implement bounded
polymorphism, which combines the two. Sites may also be overloaded (ad-hoc polymorphism), but the
programmer cannot write overloaded functions within Orc itself.

The Orc type system currently uses an erasure semantics, meaning that type information does not affect
runtime behavior, and may be removed from a program after typechecking is finished. In the case of
datatype declarations, the type information and constructor bindings are separated by the compiler, so that
datatypes may be used in an untyped setting.

9.1.1. Related Links
Related Reference Topics

• Parametric Polymorphism

• Subtyping

• Datatype Declaration

Related Tutorial Sections

• Type Checking

http://www.cis.upenn.edu/~bcpierce/papers/lti-toplas.pdf
http://www.cis.upenn.edu/~bcpierce/papers/lti-toplas.pdf
http://www.cis.upenn.edu/~bcpierce/papers/lti-toplas.pdf
../userguide/userguide.html#ug.additional.typecheck

Type System

133

9.2. Parametric Polymorphism
The Orc type system supports parametric polymorphism: functions, sites, and types may accept type
parameters. This is the same theory that underlies Java's generics.

Parametric polymorphism occurs in three contexts: the declaration of a parametric type, the definition of
a polymorphic function, or a call to a polymorphic function or site.

9.2.1. Parametric types
[50] TypeApplication::=Type TypeArguments

Orc has a special form of type, called a type application, which applies a type operator to a sequence
of type arguments. This permits the instantiation of multiple variations of the same type. The simplest
example of this feature is the List type operator. For example, the list value [1,2,3] has the type
List[Integer], whereas the list value [true, false] has the type List[Boolean].

Lists are not the only parametric type. The standard library includes other parametric types, such as
Option, Channel [190], and Cell [187]. A type alias may have type parameters, thus defining
a parametric type. Similarly, a datatype declaration may also have type parameters.

9.2.2. Parametric functions
A function may be polymorphic, taking one or more type parameters. Such functions can be operate
generically over different types. Consider the following definition of the append function, which appends
two lists:

def append[T](List[T], List[T]) :: List[T]
def append([], l) = l
def append(h::t, l) = h::append(t,l)

The function append has a type parameter T in its signature. The type T is the type of the elements in the
lists being appended. Notice that both argument lists must contain the same type of elements. The resulting
list contains elements of that same type.

9.2.3. Polymorphic calls
When calling the append function, in addition to providing its normal arguments, we must also provide
its type argument:

append[Integer]([1,2,3], [4,5])

However, it would be very burdensome and verbose to provide type arguments to all such calls. Fortunately,
in most cases, the type checker can infer the correct type arguments, in the same way that it infers the
correct type for many expressions without any additional information. So in this case, we can simply write:

append([1,2,3], [4,5])

and the typechecker infers that the parameter T is Integer, since both argument lists are of type
List[Integer]. For a more thorough explanation of how this inference occurs, please refer to the
typing algorithm [132] on which the Orc typechecker is based.

Type System

134

Inference of type arguments will always fail on certain kinds of calls, because the typechecker does not
have enough information to infer the correct type. The most common case is a site call which constructs a
parametric type without taking any arguments. For example, the call Channel() will never typecheck,
since there is no way for the typechecker to know what type of elements the channel should contain. In
other languages such as ML, the typechecker might be able to infer this information from the rest of the
program, but Orc's typechecker is based on local type inference, which must find the information locally,
such as from the types of the arguments. So, to construct a channel that will contain numbers, a type
argument must be given: Channel[Number]().

9.2.4. Related Links
Related Reference Topics

• Type System Metatheory

• Variance

• Site and Function Calls

• Adding Type Information to Functions

• Datatype Declaration

Related Tutorial Sections

• Type Checking

../userguide/userguide.html#ug.additional.typecheck

Type System

135

9.3. Subtyping
A type S is a subtype of a type T, written S ≤ T, if a value of type S can be used in any context expecting
a value of type T.

A type U is a supertype of a type T if T ≤ U.

Subtyping is reflexive: S ≤ S. Subtyping is also transitive: if S ≤ T and T ≤ U, then S ≤ U.

If an expression has type S, and S ≤ T, then that expression also has type T. This is called subsumption.

Types in Orc form a bounded lattice. The lattice is ordered by the subtyping relation, its maximal element
is the special type Top, and its minimal element is the special type Bot.

9.3.1. Top

Top is the universal type. Every value has type Top. Every type is a subtype of Top.

9.3.2. Bot

Bot is the empty type. No value has type Bot. Bot is a subtype of every type. An expression has type
Bot only if it is silent.

Bot has an interesting status in Orc. In other typed languages, if an expression has type Bot, this usually
indicates a guaranteed error, infinite loop, or other failure to return a value. Since sequential programming
rarely involves subexpressions that are guaranteed never to return, Bot is usually just a curiosity or a
formal artifact of the type system, and indeed many type systems do not have a Bot type at all.

In Orc, however, Bot is very useful, since it is frequently the case that Orc expressions are written to carry
out ongoing concurrent activities but never publish any values, and the type system can use the type Bot
to indicate that no publications will ever be seen from such expressions.

9.3.3. Join
A common supertype of two types S and T is any type U such that S ≤ U and T ≤ U. The join of S and T is
the least common supertype of S and T: it is a subtype of every common supertype of S and T.

Some common cases:

• The join of T and T is T.

• If S ≤ T, then the join of S and T is T.

• The join of T and Top is Top.

• The join of T and Bot is T.

The join of two unrelated types is usually Top.

9.3.4. Meet
A common subtype of two types S and T is any type U such that U ≤ S and U ≤ T. The meet of S and T is
the greatest common subtype of S and T: it is a supertype of every common subtype of S and T.

Type System

136

Some common cases:

• The meet of T and T is T.

• If S ≤ T, then the meet of S and T is S.

• The meet of T and Top is T.

• The meet of T and Bot is Bot.

The meet of two unrelated types is usually Bot.

9.3.5. Variance
When types contain other types as components, such as a tuple type or a polymorphic type, the
subtype relationship between these composite types depends on the subtype relationships between their
components. Suppose we have a composite type of the form C{T}, where T is a type and C is the context
in which it appears. The variance of the context C is defined in the standard way:

• C is covariant if S ≤ T implies that C{S} ≤ C{T}

• C is contravariant if S ≤ T implies that C{T} ≤ C{S}

• C is invariant if S = T implies that C{S} = C{T}.

Tuple types, record types, and list types are all covariant contexts. In a function type, the return type is
a covariant context, but the argument types are contravariant contexts. The type parameters of mutable
object types are invariant contexts.

The variance of the type parameters in an aliased type or datatype is determined from the declaration
itself, by observing the contexts in which the parameters appear. If a parameter appears only in covariant
contexts, it is covariant. If it appears only in contravariant contexts, it is contravariant. If it appears in both
contexts, it is invariant.

9.3.6. Related Links
Related Reference Topics

• Type System Metatheory

Type System

137

9.4. Adding Type Information

The Orc typechecker uses a type inference algorithm [132] to deduce type information from a program
without any help from the programmer. In many contexts, the typechecker can find all of the type
information it needs; however, there are some cases where extra information is needed. For this purpose,
there are four kinds of type information that may be added to an Orc program.

Note that due to the erasure [132] property of the Orc type system, adding type information will never
change the runtime behavior of the program.

9.4.1. Explicit Type Arguments
Type information may be added to a polymorphic site or function call by providing explicit type arguments.
The typechecker can usually infer type arguments, but there are certain cases where it does not have enough
information, such as when calling polymorphic factory sites like Channel [190] or Ref [188].

9.4.2. Function Type Information
Whenever a function is defined, in order for the typechecker to determine its type, the definition must be
accompanied by information about the argument types and return type of the function. If the function is
polymorphic, the names of its type parameters must also be given. This is the same information that a
function type carries. There are multiple ways to provide this information, and some of it can be inferred
under certain conditions.

The most comprehensive way to provide type information about a function is through a signature. A
signature precedes a function definition, providing a sequence of type parameters, a sequence of argument
types, and a return type.

[25] DeclareSignature::=def Variable TypeParameters? ArgumentTypes ReturnType
[22] DeclareDefinition::=def Variable TypeParameters? Parameters ReturnType? Guard? =

Expression

Type information may also be written directly into a clause of a function definition. For example, the
following definitions are equivalent:

{- Adding type information using a signature -}
def min(Number, Number) :: Number
def min(x,y) = if (x <: y) then x else y

{- Inline type information -}
def min(x :: Number, y :: Number) :: Number = if (x <: y) then x else y

If the function is not recursive, then the inline return type is optional, because the typechecker can infer
the return type from the body expression.

When writing a lambda expression, type information must be included in this way, since there is no way
to write a separate signature. The return type is not needed, since a lambda will never be recursive. The
parameter types are required and cannot be inferred, except in one context: when a lambda expression
appears as an argument to a call which requires no other inference, then the argument types can be inferred
from the type of the target.

Type System

138

9.4.3. Pattern Type Information
[45]PatternWithTypeInformation::=Pattern :: Type

A pattern may specify the type of values against which it may be matched. The typechecker can then
verify this stated type, rather than attempting to infer it, which may provide enough type information to
make other inferences possible or resolve ambiguities. Furthermore, adding extra type information makes
it easier to pinpoint the source of a typechecking failure. Note that this type information has no effect on
the runtime match behavior of the pattern.

9.4.4. Expression Type Information
[18] WithTypeInformation::=Expression :: Type

An expression may specify the type of values that it will publish. The typechecker can then verify this
stated type, rather than attempting to infer it, which may provide enough type information to make other
inferences possible or resolve ambiguities. For example, the typechecker may not be able to infer the
correct join type for a parallel combinator, but it is always able to check that both branches are subtypes
of an already provided type. Furthermore, adding extra type information makes it easier to pinpoint the
source of a typechecking failure.

9.4.5. Related Links
Related Reference Topics

• def: Define Function

• lambda Expressions

• Patterns

Related Tutorial Sections

• Adding Type Information

../userguide/userguide.html#ug.additional.typecheck.moreinfo

Type System

139

9.5. Type Override
[19] TypeOverride::=Expression :!: Type

While the typechecker can be helpful, it will not accept programs that are not typesafe according to its
algorithm. This can be burdensome when the programmer knows that an expression will have a certain
type but the typechecker cannot verify it.

Since the typechecker is optional, it can always be turned off in these cases. But this is often too drastic
a solution: typechecking difficulties often arise from small segments of a much larger program, and the
rest of the program still benefits from typechecking.

The typechecker may be selectively disabled for parts of a program. For this purpose, the typechecker
allows an override of the type of an expression. Overriding is like adding type information to an expression,
but rather than verifying that an expression has the stated type, the typechecker instead assumes that the
stated type is correct, without examining the expression at all. Thus, the programmer can supply any type
without being restricted by the typechecking algorithm.

This feature should be used sparingly, with the knowledge that it does compromise the integrity of the
typechecking algorithm. If the supplied type is wrong, runtime type errors could propagate to any part
of the program that depends on that type. Overrides are useful for rapid prototyping, but they are not
recommended for production code.

9.5.1. Related Links
Related Reference Topics

• Adding Type Information

• Metatheory

Type System

140

9.6. Typing Contexts
Whenever one or more variables is bound, the type checker records information from that binding to
typecheck the uses of that variable in its scope. This information is stored in a typing context, which is just
a sequence of variable names and their types. When an expression is in the scope of many bindings, the
typechecker will carry a composite context of all of the typing contexts created by all of those bindings.

Declarations, combinators, and function calls all bind variables. Often, only a single variable is bound, so
only one binding is generated. However, pattern matching may generate an entire set of variable bindings.

When a variable is typechecked, its type is found by first looking in the most recent context (i.e. from
the nearest binding), and if its type is not found there, proceeding further and further out in scope. If the
variable is not in the typing context, then it is a free variable, which is a syntactic error.

9.6.1. Related Links
Related Reference Topics

• Patterns

141

Chapter 10. Syntax
These sections explain the Orc syntax and keywords.

Syntax

142

10.1. EBNF Grammar
The Orc language grammar is expressed in Extended Backus-Naur Form (EBNF), with the following meta-
notation:

G? denotes zero or one occurrences of G.

G+ denotes one or more occurrences of G.

G sep … sep G denotes zero or more occurrences of G, separated by sep.

[1] Expression::=Literal
❙ Variable
❙ Stop
❙ Tuple
❙ List
❙ Record
❙ Call
❙ DotAccess
❙ PrefixOperation
❙ InfixOperation
❙ PostfixOperation
❙ Parallel
❙ Sequence
❙ Prune
❙ Otherwise
❙ Conditional
❙ Lambda
❙ WithDeclaration
❙ WithTypeInformation
❙ TypeOverride
❙ (Expression)

[2] Stop::=stop
[3] Tuple::=(Expression , … , Expression)
[4] List::=[Expression , … , Expression]
[5] Record::={. Key = Expression , … , Key = Expression .}
[6] Call::=Expression TypeArguments? Arguments
[7] DotAccess::=Expression.Key
[8] PrefixOperation::=PrefixOperator Expression
[9] InfixOperation::=Expression InfixOperator Expression
[10] PostfixOperation::=Expression PostfixOperator
[11] Parallel::=Expression | Expression
[12] Sequence::=Expression >Pattern?> Expression
[13] Prune::=Expression <Pattern?< Expression
[14] Otherwise::=Expression ; Expression
[15] Conditional::=if Expression then Expression else Expression
[16] Lambda::=lambda TypeParameters? Parameters ReturnType? = Expression
[17] WithDeclaration::=Declaration Expression
[18] WithTypeInformation::=Expression :: Type
[19] TypeOverride::=Expression :!: Type
[20] Declaration::=DeclareVal #?

❙ DeclareDefinition #?
❙ DeclareDefclass #?
❙ DeclareSignature #?

Syntax

143

❙ DeclareSite #?
❙ DeclareClass #?
❙ DeclareInclude #?
❙ DeclareType #?

[21] DeclareVal::=val Pattern = Expression
[22] DeclareDefinition::=def Variable TypeParameters? Parameters ReturnType? Guard? =

Expression
[23] DeclareDefclass::=def class Variable TypeParameters? Parameters ReturnType?

Guard? = Expression
[24] Guard::=if (Expression)
[25] DeclareSignature::=def Variable TypeParameters? ArgumentTypes ReturnType
[26] DeclareSite::=import site Variable = ClassName
[27] DeclareClass::=import class Variable = ClassName
[28] DeclareInclude::=include FileName
[29] DeclareType::=DeclareTypeAlias

❙ DeclareTypeImport
❙ DeclareDatatype

[30] DeclareTypeAlias::=type TypeVariable TypeParameters? = Type
[31] DeclareTypeImport::=import type TypeVariable = ClassName
[32] DeclareDatatype::=type TypeVariable TypeParameters? = Constructor | … |

Constructor
[33] Constructor::=Variable (Slot , … , Slot)
[34] Slot::=Type ❙ _
[35] Pattern::=WildcardPattern

❙ LiteralPattern
❙ VariablePattern
❙ TuplePattern
❙ ListPattern
❙ RecordPattern
❙ ConsPattern
❙ CallPattern
❙ AsPattern
❙ PatternWithTypeInformation
❙ (Pattern)

[36] WildcardPattern::=_
[37] LiteralPattern::=Literal
[38] VariablePattern::=Variable
[39] TuplePattern::=(Pattern , … , Pattern)
[40] ListPattern::=[Pattern , … , Pattern]
[41] RecordPattern::={. Key = Pattern , … , Key = Pattern .}
[42] ConsPattern::=Pattern : Pattern
[43] CallPattern::=Variable (Pattern , … , Pattern)
[44] AsPattern::=Pattern as Variable
[45]PatternWithTypeInformation::=Pattern :: Type
[46] Type::=TypeVariable

❙ TupleType
❙ RecordType
❙ FunctionType
❙ TypeApplication
❙ (Type)

[47] TupleType::=(Type , … , Type)
[48] RecordType::={. Key = Type , … , Key = Type .}
[49] FunctionType::=lambda TypeParameters? ArgumentTypes ReturnType
[50] TypeApplication::=Type TypeArguments

Syntax

144

[51] Literal::=SignalLiteral
❙ BooleanLiteral
❙ NumberLiteral
❙ CharacterStringLiteral
❙ null

[52] SignalLiteral::=signal
[53] BooleanLiteral::=true ❙ false
[54] IntegerLiteral::=DecimalDigit+
[55] NumberLiteral::= IntegerLiteral DecimalPart? ExponentPart?
[56] DecimalPart::=. IntegerLiteral
[57] ExponentPart::=E IntegerLiteral

❙ E+ IntegerLiteral
❙ E- IntegerLiteral
❙ e IntegerLiteral
❙ e+ IntegerLiteral
❙ e- IntegerLiteral

[58] CharacterStringLiteral::="Character+" ❙ ""
[59] Variable::= Identifier
[60] TypeVariable::= Identifier
[61] Key::= Identifier
[62] ClassName::=CharacterStringLiteral
[63] FileName::=CharacterStringLiteral
[64] Parameters::=(Pattern , … , Pattern)
[65] TypeParameters::=[TypeVariable , … , TypeVariable]
[66] ArgumentTypes::=(Type , … , Type)
[67] ReturnType::=:: Type
[68] Arguments::=(Expression , … , Expression)
[69] TypeArguments::=[Type , … , Type]
Tuple Size ≥ 2

A tuple must contain at least two elements. No 0-tuples or 1-tuples are permitted.

10.1.1. Related Links
Related Reference Topics

• Lexical Specifications

Related Tutorial Sections

• Syntactic and Stylistic Conventions

../userguide/userguide.html#ug.style

Syntax

145

10.2. Lexical Specifications
This page specifies Orc's processing of an input byte stream into an Orc lexical token sequence. This token
sequence is the input to the Orc parsing procedure.

10.2.1. Input Byte Stream
Orc can read source code input byte streams from a number of types of sources. For example, Orc
2.0 running on Java SE 6 accepts input from local files, FTP, Gopher, HTTP, and JAR files. Orc
source code input byte streams must encode a Unicode character sequence using the UTF-8 [http://
www.unicode.org/versions/Unicode5.2.0/ch03.pdf] encoding form. No other encoding is supported. HTTP
headers specifying other charsets are ignored.

10.2.2. Lexical Tokens
Orc lexical scanning reads Unicode characters and emits corresponding Orc lexical tokens. Orc uses seven
lexical token types: identifier, keyword, operator, delimiter, integer literal, floating-point literal, string
literal. Orc comments and whitespace are scanned as separators among other tokens and disregarded.

10.2.2.1. Identifier
Orc scans identifiers per Unicode Standard Annex #31, Unicode Identifier and Pattern Syntax [http://
unicode.org/reports/tr31/], namely:

• Identifiers start with "Characters having the Unicode General_Category of uppercase letters (Lu),
lowercase letters (Ll), titlecase letters (Lt), modifier letters (Lm), other letters (Lo), letter numbers (Nl)".

• Identifiers can continue with "All of the above, plus characters having the Unicode General_Category of
nonspacing marks (Mn), spacing combining marks (Mc), decimal number (Nd), connector punctuations
(Pc)", plus Orc's addition of apostrophe as a "prime" mark.

• All identifiers are normalized to Unicode Normalization Form C as they are parsed.

Examples of allowed Orc identifiers: orchestrate, iscenesætte, ενορχηστρώνω, ماجسنالا, ##, #####, ####
#_####, оркестровать, ###########_####.

Also, mathematical letter-like characters are allowed, such as #, #, ℵ0, and, of course, Greek letters.

Orc also treats an operator (defined below) placed in parenthesis, such as (+), as an identifier with the
name of the operator (without the parenthesis).

An identifier cannot match a keyword; see the following section.

10.2.2.2. Keyword

Any token that otherwise follows the rules for identifiers, but matches an entry in the following list is not
treated as an identifier, but as a keyword instead.

as def else if import include lambda signal stop then type val true
false null _

Note that _ is a special case: Identifiers cannot start with an underscore, but _ scans as a keyword
nonetheless.

http://www.unicode.org/versions/Unicode5.2.0/ch03.pdf
http://www.unicode.org/versions/Unicode5.2.0/ch03.pdf
http://www.unicode.org/versions/Unicode5.2.0/ch03.pdf
http://unicode.org/reports/tr31/
http://unicode.org/reports/tr31/
http://unicode.org/reports/tr31/

Syntax

146

10.2.2.3. Operator
An Orc operator is a character sequence that matches one of the following. This match is greedy — for
example, ** is matched in preference to two * operators, if possible.)

+ - * / % ** && || ~ = <: :> <= >= /= : . ? :=

10.2.2.4. Delimiters
An Orc delimiter is a character sequence that matches one of the following.

() [] {. .} , # < > | ; :: :!:

10.2.2.5. Literals
Numeric literals and character string literals are recognized per the syntax given in those sections.

10.2.2.6. Comments
Orc comments take two forms:

1. --to end of the line (see newlines, below)

2. {- multi-line comment body -}

A multi-line comment body is any character sequence (possibly empty), where {- and -} have lexical
significance. Orc comments can be nested, so {- starts a nested multi-line comment, and -} ends the current
multi-line comment.

10.2.2.7. Whitespace
Per Unicode Standard Annex #31, section 4, recommendation R3 [http://unicode.org/reports/tr31/
#Pattern_Syntax], Orc treats all Unicode Pattern_White_Space characters as whitespace.

• U+0009 HT Character Tabulation

• U+000B VT Line Tabulation

• U+0020 Space

• U+200E Left-to-Right Mark

• U+200F Right-to-Left Mark

• And the six newline characters (below)

10.2.2.8. Newlines
Orc follows the newline definition of Unicode standard section 5.8, Newline Guidelines, recommendation
R4 [http://unicode.org/versions/Unicode5.2.0/ch05.pdf].

Namely, Orc stops reading a line when it encounters one of the following characters:

• U+000D CR Carriage Return

• U+000A LF Line Feed

http://unicode.org/reports/tr31/#Pattern_Syntax
http://unicode.org/reports/tr31/#Pattern_Syntax
http://unicode.org/reports/tr31/#Pattern_Syntax
http://unicode.org/versions/Unicode5.2.0/ch05.pdf
http://unicode.org/versions/Unicode5.2.0/ch05.pdf
http://unicode.org/versions/Unicode5.2.0/ch05.pdf

Syntax

147

• U+0085 NEL Next Line

• U+2028 LS Line Separator

• U+000C FF Form Feed

• U+2029 PS Paragraph Separator

10.2.3. Related Links
Related Reference Topics

• EBNF Grammar

• Numeric values

• Character Strings

Related Tutorial Sections

• Syntactic and Stylistic Conventions

../userguide/userguide.html#ug.style

Syntax

148

10.3. Precedence, Fixity, and Associativity

Precedence rules specify the order in which parts of an expression are parsed, in absence of parenthesis.
For example, in 1 + 2 * 3, Orc's precedence rules prescribe that the multiplication be parsed as a sub-
expression of the addition. Operators or combinators listed in the table below with higher precedence will
be parsed in preference to lower precedence operations or combinators.

Fixity specifies the relative position of an operator and it operands. For example, + is infix, so the + operator
is written in between its operands. However, ? is postfix, so it is written after its operand.

Associativity specifies the grouping of a series of infix operator (or combinator) expressions, in absence
of parenthesis. For example, division is left associative, so 40 / 4 / 2 is grouped as (40 / 4) /
2 which is 5. It is not 40 / (4 / 2) = 20. Similarly, the sequential combinator is right associative, so
e >x> f >y> g is equivalent to e >x> (f >y> g).

Table 10.1. Orc Combinator/Operator Precedence, Fixity, and Associativity

Precedence
Level

Name Symbol Fixity Associativity

Call () Postfix --

Dot Access . Postfix --

13

Dereference ? Postfix --

Arithmetic Negation - Prefix --12

Negation (Logical Complement) ~ Prefix --

11 Exponentiation ** Infix Right

Multiplication * Infix Left

Division / Infix Left

10

Modulus % Infix Left

Addition/Concatenation + Infix Left9

Subtraction - Infix Left

8 List Construction : Infix Right

Equal To = Infix None

Not Equal To /= Infix None

Less Than <: Infix None

Greater Than :> Infix None

Less Than or Equal To <= Infix None

7

Greater Than or Equal To >= Infix None

Logical OR || Infix Left6

Logical AND && Infix Left

5 Assignment := Infix None

4 Sequential >P> Infix Right

3 Parallel | Infix Left

2 Pruning <P< Infix Left

Syntax

149

Precedence
Level

Name Symbol Fixity Associativity

1 Otherwise ; Infix Left

Type Information :: Infix Left

Type Override :!: Infix Left

Closure lambda Prefix --

Conditional if then
else

Prefix --

0

Declaration val, def,
import,
include,
type

Prefix --

10.3.1. Related Links
Related Reference Topics

• Operators

• Combinators

Related Tutorial Sections

• Operators

../userguide/userguide.html#ug.introduction.simple.operators

150

Chapter 11. Standard Library

Standard Library

151

11.1. Introduction
The standard library is a set of declarations implicitly available to all Orc programs. In this section we
give an informal description of the standard library, including the type of each declaration and a short
explanation of its use.

Orc programs are expected to rely on the host language and environment for all but the most essential
sites. For example, in the Java implementation of Orc, the entire Java standard library is available to Orc
programs via import class declarations. Therefore the Orc standard library aims only to provide
convenience for the most common Orc idioms, not the complete set of features needed for general-purpose
programming.

The documentation of library functions uses special notation for types that have dot-accessible members.
Member names of an instance of Type are written in the form type.member, e.g. foo.get refers
to the get member of an object of type Foo. The object type can include type parameters which are
referenced by the member type, so for example @method channel[A].get() :: A means that
when the get method is called on a value of type Channel[A], it will return a value of type A.

The Standard Library makes use of colored tags to quickly convey properties of library sites. The tags and
their definitions are as follows:

Site Property Set

Indefinite
A call to this site may block execution of an expression, since it is not guaranteed to always eventually
publish a value or halt.

Definite
A call to this site will never block execution of an expression, since it is guaranteed to always
immediately publish a value or halt.

Pure
Any call to this site is pure, meaning that it is deterministic, responds immediately, and has no side
effects. A call to a pure site may be textually replaced with its return value (or replaced with stop
if the call halts) in any program context.

Idempotent
The site is idempotent; calling it more than once on the same arguments is equivalent to calling it
once on those arguments.

Standard Library

152

11.2. core: Fundamental sites and operators.
Fundamental sites and operators.

These declarations include both prefix and infix sites (operators). For consistency, all declarations are
written in prefix form, with the site name followed by the operands. When the site name is surrounded in
parentheses, as in (+), it denotes an infix operator.

For a more complete description of the built-in operators and their syntax, see the Operators article.

11.2.1. Let

site Let() :: Signal

Definite Pure

When called with no arguments, returns a signal.

11.2.2. Let

site Let(A) :: A

When called with a single argument, returns that argument (behaving as the identity function).

11.2.3. Let

site Let(A, ...) :: (A, ...)

When called with two or more arguments, returns the arguments as a tuple.

11.2.4. Ift

site Ift(Boolean) :: Signal

Definite Pure

Returns a signal if the argument is true, otherwise halts silently.

Example:

-- Publishes: "Always publishes"
 Ift(false) >> "Never publishes"
| Ift(true) >> "Always publishes"

11.2.5. Iff

site Iff(Boolean) :: Signal

Standard Library

153

Definite Pure

Returns a signal if the argument is false, otherwise halts silently.

Example:

-- Publishes: "Always publishes"
 Iff(false) >> "Always publishes"
| Iff(true) >> "Never publishes"

11.2.6. Error

site Error(String) :: Bot

Definite

Emits the given string as an error message, then halt silently.

Example, using Error to implement assertions:

def assert(b) =
 if b then signal else Error("assertion failed")
-- Fail with the error message: "assertion failed"
assert(false)

11.2.7. (+)

site (+)(Number, Number) :: Number

a+b returns the sum of a and b.

11.2.8. (-)

site (-)(Number, Number) :: Number

a-b returns the value of a minus the value of b.

11.2.9. (0-)

site (0-)(Number) :: Number

Return the additive inverse of the argument. When this site appears as an operator, it is written in prefix
form without the zero, i.e. -a

11.2.10. (*)

site (*)(Number, Number) :: Number

Standard Library

154

a*b returns the product of a and b.

11.2.11. (**)

site (**)(Number, Number) :: Number

a ** b returns ab, i.e. a raised to the bth power.

11.2.12. (/)

site (/)(Number, Number) :: Number

a/b returns a divided by b. If both arguments have integral types, (/) performs integral division,
rounding towards zero. Otherwise, it performs floating-point division. If b=0, a/b halts with an error.

Example:

 7/3 -- publishes 2
| 7/3.0 -- publishes 2.333...

11.2.13. (%)

site (%)(Number, Number) :: Number

a%b computes the remainder of a/b. If a and b have integral types, then the remainder is given by the
expression a - (a/b)*b. For a full description, see the Java Language Specification, 3rd edition [http://
java.sun.com/docs/books/jls/third_edition/html/expressions.html#15.17.3].

11.2.14. (<:)

site (<:)(Top, Top) :: Boolean

a <: b returns true if a is less than b, and false otherwise.

11.2.15. (<=)

site (<=)(Top, Top) :: Boolean

a <= b returns true if a is less than or equal to b, and false otherwise.

11.2.16. (:>)

site (:>)(Top, Top) :: Boolean

a :> b returns true if a is greater than b, and false otherwise.

http://java.sun.com/docs/books/jls/third_edition/html/expressions.html#15.17.3
http://java.sun.com/docs/books/jls/third_edition/html/expressions.html#15.17.3
http://java.sun.com/docs/books/jls/third_edition/html/expressions.html#15.17.3

Standard Library

155

11.2.17. (>=)

site (>=)(Top, Top) :: Boolean

a >= b returns true if a is greater than or equal to b, and false otherwise.

11.2.18. (=)

site (=)(Top, Top) :: Boolean

a = b returns true if a is equal to b, and false otherwise. The precise definition of "equal" depends on the
values being compared, but always obeys the rule that if two values are considered equal, then one may
be substituted locally for the other without affecting the behavior of the program.

Two values with the same object identity are always considered equal. Orc data structures, such as tuples,
are equal if their contents are equal. Other types are free to implement their own equality relationship
provided it conforms to the rules given here.

Note that although values of different types may be compared with =, the substitutability principle requires
that such values are always considered inequal, i.e. the comparison will return false.

11.2.19. (/=)

site (/=)(Top, Top) :: Boolean

a/=b returns false if a=b, and true otherwise.

11.2.20. (~)

site (~)(Boolean) :: Boolean

Return the logical negation of the argument.

11.2.21. (&&)

site (&&)(Boolean, Boolean) :: Boolean

Return the logical conjunction of the arguments. This is not a short-circuiting operator; both arguments
must publish before the result is computed.

11.2.22. (||)

site (||)(Boolean, Boolean) :: Boolean

Return the logical disjunction of the arguments. This is not a short-circuiting operator; both arguments
must publish before the result is computed.

Standard Library

156

11.2.23. (:)

site (:)[A](A, List[A]) :: List[A]

The list a:b is formed by prepending the element a to the list b.

Example:

-- Publishes: (3, [4, 5])
3:4:5:[] >x:xs> (x,xs)

11.2.24. abs

def abs(Number) :: Number

Publishes the absolute value of the argument.

Implementation.

def abs(Number) :: Number
def abs(x) = if x <: 0 then -x else x

11.2.25. signum

def signum(Number) :: Number

signum(a) publishes -1 if a<0, 1 if a>0, and 0 if a=0.

Implementation.

def signum(Number) :: Number
def signum(x) =
 if x <: 0 then -1
 else if x :> 0 then 1
 else 0

11.2.26. min

def min[A](A,A) :: A

Standard Library

157

Publishes the lesser of the arguments. If the arguments are equal, publishes the first argument.

Implementation.

def min[A](A,A) :: A
def min(x,y) = if y <: x then y else x

11.2.27. max

def max[A](A,A) :: A

Publishes the greater of the arguments. If the arguments are equal, publishes the second argument.

Implementation.

def max[A](A,A) :: A
def max(x,y) = if x :> y then x else y

11.2.28. Floor

site Floor(Number) :: Integer

Return the greatest integer less than or equal to this number.

11.2.29. Ceil

site Ceil(Number) :: Integer

Return the least integer greater than or equal to this number.

11.2.30. sqrt

def sqrt(Number) :: Integer

Publish the square root of this number. If the number is negative, halt silently.

Implementation.

Standard Library

158

def sqrt(Number) :: Number
def sqrt(n) = n ** 0.5

Standard Library

159

11.3. idioms: Higher-order Orc programming
idioms.

Higher-order Orc programming idioms. Many of these are standard functional-programming combinators
borrowed from Haskell or Scheme.

11.3.1. curry

def curry[A,B,C](lambda (A,B) :: C) :: lambda(A) :: lambda(B) :: C

Curry a function of two arguments.

Implementation.

def curry[A,B,C](lambda (A,B) :: C) :: lambda(A) :: lambda(B) :: C
def curry(f) = lambda(x) = lambda(y) = f(x,y)

11.3.2. curry3

def curry3[A,B,C,D](lambda (A,B,C) :: D) :: lambda(A) :: lambda(B) ::
lambda(C) :: D

Curry a function of three arguments.

Implementation.

def curry3[A,B,C,D](lambda (A,B,C) :: D) :: lambda(A) :: lambda(B) :: lambda(C) :: D
def curry3(f) = lambda(x) = lambda(y) = lambda(z) = f(x,y,z)

11.3.3. uncurry

def uncurry[A,B,C](lambda (A) :: lambda(B) :: C) :: lambda(A, B) :: C

Uncurry a function of two arguments.

Implementation.

def uncurry[A,B,C](lambda (A) :: lambda(B) :: C) :: lambda(A, B) :: C

Standard Library

160

def uncurry(f) = lambda(x,y) = f(x)(y)

11.3.4. uncurry3

def uncurry3[A,B,C,D](lambda (A)(B)(C) :: D) :: lambda(A,B,C) :: D

Uncurry a function of three arguments.

Implementation.

def uncurry3[A,B,C,D](lambda (A) :: lambda(B) :: lambda(C) :: D) :: lambda(A,B,C) :: D
def uncurry3(f) = lambda(x,y,z) = f(x)(y)(z)

11.3.5. flip

def flip[A,B,C](lambda (A, B) :: C) :: lambda(B, A) :: C

Flip the order of parameters of a two-argument function.

Implementation.

def flip[A,B,C](lambda (A, B) :: C) :: lambda(B, A) :: C
def flip(f) = lambda(x,y) = f(y,x)

11.3.6. constant

def constantA :: lambda() :: A

Create a function which returns a constant value.

Implementation.

def constantA :: lambda() :: A
def constant(x) = lambda() = x

Standard Library

161

11.3.7. defer

def defer[A,B](lambda (A) :: B, A) :: lambda() :: B

Given a function and its argument, return a thunk which applies the function.

Implementation.

def defer[A,B](lambda (A) :: B, A) :: lambda() :: B
def defer(f, x) = lambda() = f(x)

11.3.8. defer2

def defer2[A,B,C](lambda (A,B) :: C, A, B) :: lambda() :: C

Given a function and its arguments, return a thunk which applies the function.

Implementation.

def defer2[A,B,C](lambda (A,B) :: C, A, B) :: lambda() :: C
def defer2(f, x, y) = lambda() = f(x, y)

11.3.9. ignore

def ignore[A](lambda () :: A) :: lambda(Top) :: B

From a function of no arguments, create a function of one argument, which is ignored.

Implementation.

def ignore[A](lambda () :: A) :: lambda(Top) :: A
def ignore(f) = lambda(_) = f()

11.3.10. ignore2

Standard Library

162

def ignore2[A,B,C](lambda () :: C) :: lambda(A, B) :: C

From a function of no arguments, create a function of two arguments, which are ignored.

Implementation.

def ignore2[A,B,C](lambda () :: C) :: lambda(A, B) :: C
def ignore2(f) = lambda(_, _) = f()

11.3.11. compose

def compose[A,B,C](lambda (B) :: C, lambda (A) :: B) :: lambda(A) :: C

Compose two single-argument functions.

Implementation.

def compose[A,B,C](lambda (B) :: C, lambda (A) :: B) :: lambda (A) :: C
def compose(f,g) = lambda(x) = f(g(x))

11.3.12. while

def while[A](lambda (A) :: Boolean, lambda (A) :: A) :: lambda(A) :: A

Iterate a function while a predicate is satisfied, publishing each value passed to the function.

Example:

-- Publishes: 0 1 2 3 4 5
while(
 lambda (n) = (n <= 5),
 lambda (n) = n+1
)(0)

Implementation.

def while[A](lambda (A) :: Boolean, lambda (A) :: A) :: lambda(A) :: A
def while(p,f) =
 def loop(A) :: A
 def loop(x) = Ift(p(x)) >> (x | loop(f(x)))

Standard Library

163

 loop

11.3.13. repeat

def repeat[A](lambda () :: A) :: A

Call a function sequentially, publishing each value returned by the function. The expression repeat(f)
is equivalent to the infinite expression f() >x> (x | f() >x> (x | f() >x> ...))

Implementation.

def repeat[A](lambda () :: A) :: A
def repeat(f) = f() >x> (x | repeat(f))

11.3.14. fork

def fork[A](List[lambda () :: A]) :: A

Call a list of functions in parallel, publishing all values published by the functions.

The expression fork([f,g,h]) is equivalent to the expression f() | g() | h()

Implementation.

def fork[A](List[lambda () :: A]) :: A
def fork([]) = stop
def fork(p:ps) = p() | fork(ps)

11.3.15. forkMap

def forkMap[A,B](lambda (A) :: B, List[A]) :: B

Apply a function to a list in parallel, publishing all values published by the applications.

The expression forkMap(f, [a,b,c]) is equivalent to the expression f(a) | f(b) | f(c)

This function can be thought of as the following composition fork(map(curry(defer)(f), xs))
(hence the name forkMap). It maps f over the list and then forks each of the resulting computations.

Standard Library

164

Implementation.

def forkMap[A,B](lambda (A) :: B, List[A]) :: B
def forkMap(f, []) = stop
def forkMap(f, x:xs) = f(x) | forkMap(f, xs)

11.3.16. seq

def seq[A](List[lambda () :: A]) :: Signal

Call a list of functions in sequence, publishing a signal whenever the last function publishes. The actual
publications of the given functions are not published.

The expression seq([f,g,h]) is equivalent to the expression f() >> g() >> h() >> signal

Implementation.

def seq[A](List[lambda () :: A]) :: Signal
def seq([]) = signal
def seq(p:ps) = p() >> seq(ps)

11.3.17. seqMap

def seqMap[A,B](lambda (A) :: B, List[A]) :: Signal

Apply a function to a list in sequence, publishing a signal whenever the last application publishes. The
actual publications of the given functions are not published.

The expression seqMap(f, [a,b,c]) is equivalent to the expression f(a) >> f(b) >> f(c)
>> signal

This function can be thought of as the following composition seq(map(curry(defer)(f), xs))
(hence the name seqMap). It maps f over the list and then runs each of the resulting computations in
sequence. This is analogous to foreach in Scala or iterate in OCaml.

Implementation.

def seqMap[A,B](lambda (A) :: B, List[A]) :: Signal
def seqMap(f, []) = signal
def seqMap(f, x:xs) = f(x) >> seqMap(f, xs)

Standard Library

165

11.3.18. join

def join[A](List[lambda () :: A]) :: Signal

Call a list of functions in parallel and publish a signal once all functions have completed.

The expression join([f,g,h]) is equivalent to the expression (f(), g(), h()) >> signal

Implementation.

def join[A](List[lambda () :: A]) :: Signal
def join([]) = signal
def join(p:ps) = (p(), join(ps)) >> signal

11.3.19. joinMap

def joinMap[A](lambda (A) :: Top, List[A]) :: Signal

Apply a function to a list in parallel and publish a signal once all applications have completed.

The expression joinMap(f, [a,b,c]) is equivalent to the expression (f(a), f(b), f(c))
>> signal

This function can be thought of as the following composition join(map(curry(defer)(f), xs))
(hence the name joinMap).

Implementation.

def joinMap[A](lambda (A) :: Top, List[A]) :: Signal
def joinMap(f, []) = signal
def joinMap(f, x:xs) = (f(x), joinMap(f, xs)) >> signal

11.3.20. alt

def alt[A](List[lambda () :: A]) :: A

Call each function in the list until one of them publishes (choosing the publishing alternative).

The expression alt([f,g,h]) is equivalent to the expression f() ; g() ; h()

Standard Library

166

Implementation.

def alt[A](List[lambda () :: A]) :: A
def alt([]) = stop
def alt(p:ps) = p() ; alt(ps)

11.3.21. altMap

def altMap[A,B](lambda (A) :: B, List[A]) :: B

Apply the function to each element in the list until one publishes.

The expression altMap(f, [a,b,c]) is equivalent to the expression f(a) ; f(b) ; f(c)

This function can be thought of as the following composition alt(map(curry(defer)(f), xs))
(hence the name altMap).

Implementation.

def altMap[A,B](lambda (A) :: B, List[A]) :: B
def altMap(f, []) = stop
def altMap(f, x:xs) = f(x) ; altMap(f, xs)

11.3.22. por

def por(List[lambda () :: Boolean]) :: Boolean

Parallel or. Execute a list of boolean functions in parallel, publishing a value as soon as possible, and killing
any unnecessary ongoing computation.

Implementation.

def por(List[lambda () :: Boolean]) :: Boolean
def por([]) = false
def por(p:ps) =
 Let(
 val b1 = p()
 val b2 = por(ps)
 Ift(b1) >> true | Ift(b2) >> true | (b1 || b2)
)

Standard Library

167

11.3.23. pand

def pand(List[lambda () :: Boolean]) :: Boolean

Parallel and. Execute a list of boolean functions in parallel, publishing a value as soon as possible, and
killing any unnecessary ongoing computation.

Implementation.

def pand(List[lambda () :: Boolean]) :: Boolean
def pand([]) = true
def pand(p:ps) =
 Let(
 val b1 = p()
 val b2 = pand(ps)
 Iff(b1) >> false | Iff(b2) >> false | (b1 && b2)
)

11.3.24. collect

def collect[A](lambda () :: A) :: List[A]

Run a function, collecting all publications in a list. Publish the list when the function halts.

Example:

-- Publishes: [signal, signal, signal, signal, signal]
collect(defer(signals, 5))

Implementation.

def collect[A](lambda () :: A) :: List[A]
def collect(p) =
 val b = Channel[A]()
 p() >x> b.put(x) >> stop
 ; b.getAll()

Standard Library

168

11.4. list: Operations on lists.
Operations on lists.

Many of these functions are similar to those in the Haskell prelude, but operate on the elements of a list
in parallel.

11.4.1. each

def each[A](List[A]) :: A

Publish every value in a list, simultaneously.

Implementation.

def each[A](List[A]) :: A
def each([]) = stop
def each(h:t) = h | each(t)

11.4.2. map

def map[A,B](lambda (A) :: B, List[A]) :: List[B]

Apply a function to every element of a list (in parallel), publishing a list of the results.

Implementation.

def map[A,B](lambda (A) :: B, List[A]) :: List[B]
def map(f,[]) = []
def map(f,h:t) = f(h):map(f,t)

11.4.3. reverse

def reverse[A](List[A]) :: List[A]

Publish the reverse of the given list.

Implementation.

Standard Library

169

def reverse[A](List[A]) :: List[A]
def reverse(l) =
 def tailrev(List[A], List[A]) :: List[A]
 def tailrev([],x) = x
 def tailrev(h:t,x) = tailrev(t,h:x)
 tailrev(l,[])

11.4.4. filter

def filter[A](lambda (A) :: Boolean, List[A]) :: List[A]

Publish a list containing only those elements which satisfy the predicate. The filter is applied to all list
elements in parallel.

Implementation.

def filter[A](lambda (A) :: Boolean, List[A]) :: List[A]
def filter(p,[]) = []
def filter(p,x:xs) =
 val fxs = filter(p, xs)
 if p(x) then x:fxs else fxs

11.4.5. head

def head[A](List[A]) :: A

Publish the first element of a list.

Implementation.

def head[A](List[A]) :: A
def head(x:xs) = x

11.4.6. tail

def tail[A](List[A]) :: List[A]

Publish all but the first element of a list.

Standard Library

170

Implementation.

def tail[A](List[A]) :: List[A]
def tail(x:xs) = xs

11.4.7. init

def init[A](List[A]) :: List[A]

Publish all but the last element of a list.

Implementation.

def init[A](List[A]) :: List[A]
def init([x]) = []
def init(x:xs) = x:init(xs)

11.4.8. last

def last[A](List[A]) :: A

Publish the last element of a list.

Implementation.

def last[A](List[A]) :: A
def last([x]) = x
def last(x:xs) = last(xs)

11.4.9. empty

def empty[A](List[A]) :: Boolean

Is the list empty?

Implementation.

Standard Library

171

def empty[A](List[A]) :: Boolean
def empty([]) = true
def empty(_) = false

11.4.10. index

def index[A](List[A], Integer) :: A

Publish the nth element of a list, counting from 0.

Implementation.

def index[A](List[A], Integer) :: A
def index(h:t, 0) = h
def index(h:t, n) = index(t, n-1)

11.4.11. append

def append[A](List[A], List[A]) :: List[A]

Publish the first list concatenated with the second.

Implementation.

def append[A](List[A], List[A]) :: List[A]
def append([],l) = l
def append(h:t,l) = h:append(t,l)

11.4.12. foldl

def foldl[A,B](lambda (B, A) :: B, B, List[A]) :: B

Reduce a list using the given left-associative binary operation and initial value. Given the list [x1, x2,
x3, ...] and initial value x0, returns f(... f(f(f(x0, x1), x2), x3) ...)

Example using foldl to reverse a list:

Standard Library

172

-- Publishes: [3, 2, 1]
foldl(flip((:)), [], [1,2,3])

Implementation.

def foldl[A,B](lambda (B, A) :: B, B, List[A]) :: B
def foldl(f,z,[]) = z
def foldl(f,z,x:xs) = foldl(f,f(z,x),xs)

11.4.13. foldl1

def foldl1[A](lambda (A, A) :: A, List[A]) :: A

A special case of foldl which uses the first element of the list as the initial value. If called on an empty
list, halt.

Implementation.

def foldl1[A](lambda (A, A) :: A, List[A]) :: A
def foldl1(f,x:xs) = foldl(f,x,xs)

11.4.14. foldr

def foldr[A,B](lambda (A, B) :: B, B, List[A]) :: B

Reduce a list using the given right-associative binary operation and initial value. Given the list [...,
x3, x2, x1] and initial value x0, returns f(... f(x3, f(x2, f(x1, x0))) ...)

Example summing the numbers in a list:

-- Publishes: 6
foldr((+), 0, [1,2,3])

Implementation.

def foldr[A,B](lambda (A, B) :: B, B, List[A]) :: B
def foldr(f,z,xs) = foldl(flip(f),z,reverse(xs))

Standard Library

173

11.4.15. foldr1

def foldr1[A](lambda (A, A) :: A, List[A]) :: A

A special case of foldr which uses the last element of the list as the initial value. If called on an empty
list, halt.

Implementation.

def foldr1[A](lambda (A, A) :: A, List[A]) :: A
def foldr1(f,xs) = foldl1(flip(f),reverse(xs))

11.4.16. afold

def afold[A](lambda (A, A) :: A, List[A]) :: A

Reduce a non-empty list using the given associative binary operation. This function reduces independent
subexpressions in parallel; the calls exhibit a balanced tree structure, so the number of sequential reductions
performed is O(log n). For expensive reductions, this is much more efficient than foldl or foldr.

Implementation.

def afold[A](lambda (A, A) :: A, List[A]) :: A
def afold(f, [x]) = x
{- Here's the interesting part -}
def afold(f, xs) =
 def afold'(List[A]) :: List[A]
 def afold'([]) = []
 def afold'([x]) = [x]
 def afold'(x:y:xs) = f(x,y):afold'(xs)
 afold(f, afold'(xs))

11.4.17. cfold

def cfold[A](lambda (A, A) :: A, List[A]) :: A

Reduce a non-empty list using the given associative and commutative binary operation. This function
opportunistically reduces independent subexpressions in parallel, so the number of sequential reductions
performed is as small as possible. For expensive reductions, this is much more efficient than foldl or

Standard Library

174

foldr. In cases where the reduction does not always take the same amount of time to complete, it is also
more efficient than afold.

Implementation.

def cfold[A](lambda (A, A) :: A, List[A]) :: A
def cfold(f, []) = stop
def cfold(f, [x]) = x
def cfold(f, [x,y]) = f(x,y)
def cfold(f, L) =
 val c = Channel[A]()
 def work(Number, List[A]) :: A
 def work(i, x:y:rest) =
 c.put(f(x,y)) >> stop | work(i+1, rest)
 def work(i, [x]) = c.put(x) >> stop | work(i+1, [])
 def work(i, []) =
 if (i <: 2) then c.get()
 else c.get() >x> c.get() >y>
 (c.put(f(x,y)) >> stop | work(i-1,[]))
 work(0, L)

11.4.18. zipWith

def zipWith[A, B, C](lambda (A, B) :: C, List[A], List[B]) :: List[C]

Combine two lists into a list of elements, each produced by calling the given function with corresponding
elements of each list. The length of the shortest list determines the length of the result.

Implementation.

def zipWith[A, B, C](lambda (A, B) :: C, List[A], List[B]) :: List[C]
def zipWith(_, [], _) = []
def zipWith(_, _, []) = []
def zipWith(f, x:xs, y:ys) = f(x, y) : zipWith(f, xs, ys)

11.4.19. zip

def zip[A,B](List[A], List[B]) :: List[(A,B)]

Combine two lists into a list of pairs. The length of the shortest list determines the length of the result.

Standard Library

175

Implementation.

def zip[A,B](List[A], List[B]) :: List[(A,B)]
def zip(xs, ys) = zipWith(lambda(x :: A, y :: B) = (x, y), xs, ys)

11.4.20. unzip

def unzip[A,B](List[(A,B)]) :: (List[A], List[B])

Split a list of pairs into a pair of lists.

Implementation.

def unzip[A,B](List[(A,B)]) :: (List[A], List[B])
def unzip([]) = ([],[])
def unzip((x,y):z) = (x:xs,y:ys) <(xs,ys)< unzip(z)

11.4.21. concat

def concat[A](List[List[A]]) :: List[A]

Concatenate a list of lists into a single list.

Implementation.

def concat[A](List[List[A]]) :: List[A]
def concat([]) = []
def concat(h:t) = append(h,concat(t))

11.4.22. length

def length[A](List[A]) :: Integer

Publish the number of elements in a list.

Standard Library

176

Implementation.

def length[A](List[A]) :: Integer
def length([]) = 0
def length(h:t) = 1 + length(t)

11.4.23. take

def take[A](Integer, List[A]) :: List[A]

Given a number n and a list l, publish a list of the first n elements of l. If n exceeds the length of l, or
n < 0, take halts with an error.

Implementation.

def take[A](Integer, List[A]) :: List[A]
def take(0, _) = []
def take(n, x:xs) =
 if n :> 0 then x:take(n-1, xs)
 else Error("Cannot take(" + n + ", _)")

11.4.24. drop

def drop[A](Integer, List[A]) :: List[A]

Given a number n and a list l, publish a list of the elements of l after the first n. If n exceeds the length
of l, or n < 0, drop halts with an error.

Implementation.

def drop[A](Integer, List[A]) :: List[A]
def drop(0, xs) = xs
def drop(n, x:xs) =
 if n :> 0 then drop(n-1, xs)
 else Error("Cannot drop(" + n + ", _)")

11.4.25. member

Standard Library

177

def member[A](A, List[A]) :: Boolean

Publish true if the given item is a member of the given list, and false otherwise.

Implementation.

def member[A](A, List[A]) :: Boolean
def member(item, []) = false
def member(item, h:t) =
 if item = h then true
 else member(item, t)

11.4.26. merge

def merge[A](List[A], List[A]) :: List[A]

Merge two sorted lists.

Example:

-- Publishes: [1, 2, 2, 3, 4, 5]
merge([1,2,3], [2,4,5])

Implementation.

def merge[A](List[A], List[A]) :: List[A]
def merge(xs,ys) = mergeBy((<:), xs, ys)

11.4.27. mergeBy

def mergeBy[A](lambda (A,A) :: Boolean, List[A], List[A]) :: List[A]

Merge two lists using the given less-than relation.

Implementation.

def mergeBy[A](lambda (A,A) :: Boolean,
 List[A], List[A]) :: List[A]
def mergeBy(lt, xs, []) = xs
def mergeBy(lt, [], ys) = ys
def mergeBy(lt, x:xs, y:ys) =

Standard Library

178

 if lt(y,x) then y:mergeBy(lt,x:xs,ys)
 else x:mergeBy(lt,xs,y:ys)

11.4.28. sort

def sort[A](List[A]) :: List[A]

Sort a list.

Example:

-- Publishes: [1, 2, 3]
sort([1,3,2])

Implementation.

def sort[A](List[A]) :: List[A]
def sort(xs) = sortBy((<:), xs)

11.4.29. sortBy

def sortBy[A](lambda (A,A) :: Boolean, List[A]) :: List[A]

Sort a list using the given less-than relation.

Implementation.

def sortBy[A](lambda (A,A) :: Boolean, List[A]) :: List[A]
def sortBy(lt, []) = []
def sortBy(lt, [x]) = [x]
def sortBy(lt, xs) = xs >> (
 val half = Floor(length(xs)/2)
 val front = take(half, xs)
 val back = drop(half, xs)
 mergeBy(lt, sortBy(lt, front), sortBy(lt, back)))

11.4.30. mergeUnique

Standard Library

179

def mergeUnique[A](List[A], List[A]) :: List[A]

Merge two sorted lists, discarding duplicates.

Example:

-- Publishes: [1, 2, 3, 4, 5]
mergeUnique([1,2,3], [2,4,5])

Implementation.

def mergeUnique[A](List[A], List[A]) :: List[A]
def mergeUnique(xs,ys) = mergeUniqueBy((=), (<:), xs, ys)

11.4.31. mergeUniqueBy

def mergeUniqueBy[A](lambda (A,A) :: Boolean, lambda (A,A) :: Boolean,
List[A], List[A]) :: List[A]

Merge two lists, discarding duplicates, using the given equality and less-than relations.

Implementation.

def mergeUniqueBy[A](lambda (A,A) :: Boolean,
 lambda (A,A) :: Boolean,
 List[A], List[A])
 :: List[A]
def mergeUniqueBy(eq, lt, xs, []) = xs
def mergeUniqueBy(eq, lt, [], ys) = ys
def mergeUniqueBy(eq, lt, x:xs, y:ys) =
 if eq(y,x) then mergeUniqueBy(eq, lt, xs, y:ys)
 else if lt(y,x) then y:mergeUniqueBy(eq,lt,x:xs,ys)
 else x:mergeUniqueBy(eq,lt,xs,y:ys)

11.4.32. sortUnique

def sortUnique[A](List[A]) :: List[A]

Sort a list, discarding duplicates.

Example:

Standard Library

180

-- Publishes: [1, 2, 3]
sortUnique([1,3,2,3])

Implementation.

def sortUnique[A](List[A]) :: List[A]
def sortUnique(xs) = sortUniqueBy((=), (<:), xs)

11.4.33. sortUniqueBy

def sortUniqueBy[A](lambda (A,A) :: Boolean, lambda (A,A) :: Boolean,
List[A]) :: List[A]

Sort a list, discarding duplicates, using the given equality and less-than relations.

Implementation.

def sortUniqueBy[A](lambda (A,A) :: Boolean,
 lambda (A,A) :: Boolean,
 List[A])
 :: List[A]
def sortUniqueBy(eq, lt, []) = []
def sortUniqueBy(eq, lt, [x]) = [x]
def sortUniqueBy(eq, lt, xs) = xs >> (
 val half = Floor(length(xs)/2)
 val front = take(half, xs)
 val back = drop(half, xs)
 mergeUniqueBy(eq, lt,
 sortUniqueBy(eq, lt, front),
 sortUniqueBy(eq, lt, back)))

11.4.34. group

def group[A,B](List[(A,B)]) :: List[(A,List[B])]

Given a list of pairs, group together the second elements of consecutive pairs with equal first elements.

Example:

-- Publishes: [(1, [1, 2]), (2, [3]), (3, [4]), (1, [3])]

Standard Library

181

group([(1,1), (1,2), (2,3), (3,4), (1,3)])

Implementation.

def group[A,B](List[(A,B)]) :: List[(A,List[B])]
def group(xs) = groupBy((=), xs)

11.4.35. groupBy

def groupBy[A,B](lambda (A,A) :: Boolean, List[(A,B)]) ::
List[(A,List[B])]

Given a list of pairs, group together the second elements of consecutive pairs with equal first elements,
using the given equality relation.

Implementation.

def groupBy[A,B](lambda (A,A) :: Boolean,
 List[(A,B)])
 :: List[(A,List[B])]
def groupBy(eq, []) = []
def groupBy(eq, (k,v):kvs) =
 def helper(A, List[B], List[(A,B)]) :: List[(A,List[B])]
 def helper(k,vs, []) = [(k,vs)]
 def helper(k,vs, (k2,v):kvs) =
 if eq(k2,k) then helper(k, v:vs, kvs)
 else (k,vs):helper(k2, [v], kvs)
 helper(k,[v], kvs)

11.4.36. rangeBy

def rangeBy(Number, Number, Number) :: List[Number]

rangeBy(low, high, skip) returns a sorted list of numbers n which satisfy n = low + skip*i
(for some integer i), n >= low, and n < high.

Implementation.

def rangeBy(Number, Number, Number) :: List[Number]
def rangeBy(low, high, skip) =

Standard Library

182

 if low <: high
 then low:rangeBy(low+skip, high, skip)
 else []

11.4.37. range

def range(Number, Number) :: List[Number]

Generate a list of numbers in the given half-open range.

Implementation.

def range(Number, Number) :: List[Number]
def range(low, high) = rangeBy(low, high, 1)

11.4.38. any

def any[A](lambda (A) :: Boolean, List[A]) :: Boolean

Publish true if any of the elements of the list match the predicate, and false otherwise. The predicate is
applied to all elements of the list in parallel; the result is returned as soon as it is known and any unnecessary
execution of the predicate killed.

Implementation.

def any[A](lambda (A) :: Boolean, List[A]) :: Boolean
def any(p, []) = false
def any(p, x:xs) =
 Let(
 val b1 = p(x)
 val b2 = any(p, xs)
 Ift(b1) >> true | Ift(b2) >> true | (b1 || b2)
)

11.4.39. all

def all[A](lambda (A) :: Boolean, List[A]) :: Boolean

Standard Library

183

Publish true if all of the elements of the list match the predicate, and false otherwise. The predicate is
applied to all elements of the list in parallel; the result is returned as soon as it is known and any unnecessary
execution of the predicate killed.

Implementation.

def all[A](lambda (A) :: Boolean, List[A]) :: Boolean
def all(p, []) = true
def all(p, x:xs) =
 Let(
 val b1 = p(x)
 val b2 = all(p, xs)
 Iff(b1) >> false | Iff(b2) >> false | (b1 && b2)
)

11.4.40. sum

def sum(List[Number]) :: Number

Publish the sum of all numbers in a list. The sum of an empty list is 0.

Implementation.

def sum(List[Number]) :: Number
def sum(xs) = foldl(
 (+) :: lambda (Number, Number) :: Number,
 0, xs)

11.4.41. product

def product(List[Number]) :: Number

Publish the product of all numbers in a list. The product of an empty list is 1.

Implementation.

def product(List[Number]) :: Number
def product(xs) = foldl(
 (*) :: lambda (Number, Number) :: Number,
 1, xs)

Standard Library

184

11.4.42. and

def and(List[Boolean]) :: Boolean

Publish the boolean conjunction of all boolean values in the list. The conjunction of an empty list is true.

Implementation.

def and(List[Boolean]) :: Boolean
def and([]) = true
def and(false:xs) = false
def and(true:xs) = and(xs)

11.4.43. or

def or(List[Boolean]) :: Boolean

Publish the boolean disjunction of all boolean values in the list. The disjunction of an empty list is false.

Implementation.

def or(List[Boolean]) :: Boolean
def or([]) = false
def or(true:xs) = true
def or(false:xs) = or(xs)

11.4.44. minimum

def minimum[A](List[A]) :: A

Publish the minimum element of a non-empty list.

Implementation.

def minimum[A](List[A]) :: A
def minimum(xs) =

Standard Library

185

 def minA(x :: A, y :: A) = min(x,y)
 foldl1(minA, xs)

11.4.45. maximum

def maximum[A](List[A]) :: A

Publish the maximum element of a non-empty list.

Implementation.

def maximum[A](List[A]) :: A
def maximum(xs) =
 def maxA(x :: A, y :: A) = max(x,y)
 foldl1(maxA, xs)

Standard Library

186

11.5. reflect: Metalanguage operations.
Metalanguage operations.

11.5.1. MakeSite

site MakeSiteA :: A

This site promotes an Orc closure to a site; when the site is called, the closure is executed on those
arguments. This execution behaves like a site call; in particular, the following four properties hold:

• The site, like all sites, is strict in its arguments.

• The site returns only the first value published by the executed closure. The closure continues to run, but
its subsequent publications are discarded.

• The execution of the closure is protected from being killed. If the site call is killed, the closure still runs,
and its publications are simply ignored.

• If the execution of the closure halts, so does the site call.

The typical usage of MakeSite looks like:

def foo(...) = ...
val Foo = MakeSite(foo)

The typing of MakeSite enforces the additional condition that the type A is a function type.

Standard Library

187

11.6. state: General-purpose supplemental data
structures.

General-purpose supplemental data structures.

11.6.1. Some

site SomeA :: Option[A]

An optional value which is available. This site may also be used in a pattern.

Example:

-- Publishes: (3, 4)
Some((3,4)) >s> (
 s >Some((x,y))> (x,y)
 | s >None()> signal
)

11.6.2. None

site None[A]() :: Option[A]

An optional value which is not available. This site may also be used in a pattern.

11.6.3. Cell

site Cell[A]() :: Cell[A]

Create a write-once storage location.

Example:

-- Publishes: 5 5
val c = Cell()
 c.write(5) >> c.read()
| Rwait(1) >> (c.write(10) ; c.read())

cell[A].read() :: A

Indefinite Idempotent

Read a value from the cell. If the cell does not yet have a value, block until it receives one. If a call to
read blocks, it becomes quiescent.

cell[A].readD() :: A

Definite Idempotent

Standard Library

188

Read a value from the cell. If the cell does not yet have a value, halt silently.

cell[A].write(A) :: Signal

Definite Idempotent

Write a value to the cell. If the cell already has a value, halt silently.

11.6.4. Ref

site Ref[A]() :: Ref[A]

Create a rewritable storage location without an initial value.

Example:

val r = Ref()
Rwait(1000) >> r := 5 >> stop
| Println(r?) >>
 r := 10 >>
 Println(r?) >>
 stop

11.6.5. Ref

site RefA :: Ref[A]

Create a rewritable storage location initialized to the provided value.

ref[A].read() :: A

Read the value of the ref. If the ref does not yet have a value, block until it receives one. If a call to read
blocks, it becomes quiescent.

ref[A].readD() :: A

Read the value of the ref. If the ref does not yet have a value, halt silently.

ref[A].write(A) :: Signal

Write a value to the ref, then return a signal.

11.6.6. (?)

def (?)[A](Ref[A]) :: A

Get the value held by a reference. x? is equivalent to x.read().

Implementation.

Standard Library

189

def (?)[A](Ref[A]) :: A
def (?)(r) = r.read()

11.6.7. (:=)

def (:=)[A](Ref[A], A) :: Signal

Set the value held by a reference. x := y is equivalent to x.write(y).

Implementation.

def (:=)[A](Ref[A], A) :: Signal
def (:=)(r,v) = r.write(v)

11.6.8. swap

def swap[A](Ref[A], Ref[A]) :: Signal

Swap the values in two references, then return a signal.

Implementation.

def swap[A](Ref[A], Ref[A]) :: Signal
def swap(r,s) = (r?,s?) >(rval,sval)> (r := sval, s := rval) >> signal

11.6.9. Semaphore

site Semaphore(Integer) :: Semaphore

Return a semaphore with the given initial value, which must be non-negative. The semaphore maintains
the invariant that its value is always non-negative.

An example using a semaphore as a lock for a critical section:

-- Prints:
-- Entering critical section

Standard Library

190

-- Leaving critical section
val lock = Semaphore(1)
lock.acquire() >>
Println("Entering critical section") >>
Println("Leaving critical section") >>
lock.release()

semaphore.acquire() :: Signal

Indefinite

If the semaphore's value is greater than 0, decrement the semaphore and return a signal. If the semaphore's
value is 0, block until it becomes greater than 0. If a call to acquire blocks, it becomes quiescent.

semaphore.acquireD() :: Signal

Definite

If the semaphore's value is greater than 0, decrement the semaphore and return a signal. If the semaphore's
value is 0, halt silently.

semaphore.release() :: Signal

Definite

If any calls to acquire are blocked, allow the oldest such call to return. Otherwise, increment the value
of the semaphore. This may increment the value beyond that with which the semaphore was constructed.

semaphore.snoop() :: Signal

Indefinite

If any calls to acquire are blocked, return a signal. Otherwise, block until some call to acquire blocks.
If a call to snoop blocks, it becomes quiescent.

semaphore.snoopD() :: Signal

Definite

If any calls to acquire are blocked, return a signal. Otherwise, halt silently.

11.6.10. Channel

site Channel[A]() :: Channel[A]

Create a new asynchronous FIFO channel of unlimited size. A channel supports get, put and close
operations.

A channel may be either empty or non-empty, and either open or closed. When empty and open, calls to
get block. When empty and closed, calls to get halt silently. When closed, calls to put halt silently.
In all other cases, calls return normally.

Example:

-- Publishes: 10

Standard Library

191

val b = Channel()
 Rwait(1000) >> b.put(10) >> stop
| b.get()

channel[A].get() :: A

Indefinite

Get an item from the channel. If the channel is open and no items are available, block until one becomes
available. If the channel is closed and no items are available, halt silently. If a call to get blocks, it becomes
quiescent.

channel[A].getD() :: A

Definite

Get an item from the channel. If no items are available, halt silently.

channel[A].put(A) :: Signal

Definite

Put an item in the channel. If the channel is closed, halt silently.

channel[A].close() :: Signal

Indefinite Idempotent

Close the channel and block until it is empty. This has the effect of immediately causing any blocked calls
to get to halt silently. In addition, any subsequent calls to put will halt silently, and once the channel
becomes empty, any subsequent calls to get will halt silently. If a call to close blocks, it becomes
quiescent.

When the channel is empty, return a signal.

channel[A].closeD() :: Signal

Definite Idempotent

Close the channel and return a signal immediately. This has the effect of immediately causing any blocked
calls to get to halt silently. In addition, any subsequent calls to put will halt silently, and once the channel
becomes empty, any subsequent calls to get will halt silently.

channel[A].isClosed() :: Boolean

Definite

If the channel is currently closed, return true, otherwise return false.

channel[A].getAll() :: List[A]

Definite

Get all of the items currently in the channel, emptying the channel and returning a list of the items in the
order they were added. If there are no items in the channel, return an empty list.

11.6.11. BoundedChannel

Standard Library

192

site BoundedChannel[A](Integer) :: BoundedChannel[A]

Create a new asynchronous FIFO channel with the given number of slots. Putting an item into the channel
fills a slot, and getting an item opens a slot. A channel with zero slots is equivalent to a synchronous
channel.

A bounded channel may be empty, partly filled, or full, and either open or closed. When empty and open,
calls to get block. When empty and closed, calls to get halt silently. When full and open, calls to put
block. When closed, calls to put halt silently. In all other cases, calls return normally.

Example:

-- Publishes: "Put 1" "Got 1" "Put 2" "Got 2"
val c = BoundedChannel(1)
 c.put(1) >> "Put " + 1
| c.put(2) >> "Put " + 2
| Rwait(1000) >> (
 c.get() >n> "Got " + n
 | c.get() >n> "Got " + n
)

boundedChannel[A].get() :: A

Indefinite

Get an item from the channel. If the channel is open and no items are available, block until one becomes
available. If the channel is closed and no items are available, halt silently. If a call to get blocks, it becomes
quiescent.

boundedChannel[A].getD() :: A

Definite

Get an item from the channel. If no items are available, halt silently.

boundedChannel[A].put(A) :: Signal

Indefinite

Put an item in the channel. If no slots are open, block until one becomes open. If the channel is closed,
halt silently. If a call to put blocks, it becomes quiescent.

boundedChannel[A].putD(A) :: Signal

Definite

Put an item in the channel. If no slots are open, halt silently. If the channel is closed, halt silently.

boundedChannel[A].close() :: Signal

Indefinite Idempotent

Close the channel and block until it is empty. This has the effect of immediately causing any blocked calls
to get to halt silently. In addition, any subsequent calls to put will halt silently, and once the channel
becomes empty, any subsequent calls to get will halt silently. Note that any blocked calls to put initiated
prior to closing the channel may still be allowed to return as usual. If a call to close blocks, it becomes
quiescent.

Standard Library

193

boundedChannel[A].closeD() :: Signal

Definite Idempotent

Close the channel and return a signal immediately. This has the effect of immediately causing any blocked
calls to get to halt silently. In addition, any subsequent calls to put will halt silently, and once the channel
becomes empty, any subsequent calls to get will halt silently. Note that any blocked calls to put initiated
prior to closing the channel may still be allowed to return as usual.

boundedChannel[A].isClosed() :: Boolean

Definite

If the channel is currently closed, return true, otherwise return false.

boundedChannel[A].getOpen() :: Integer

Definite

Return the number of open slots in the channel. Because of concurrency this value may become out-of-
date so it should only be used for debugging or statistical measurements.

boundedChannel[A].getBound() :: Integer

Definite Pure

Return the total number of slots (open or filled) in the channel.

boundedChannel[A].getAll() :: List[A]

Definite

Get all of the items currently in the channel or waiting to be added, emptying the channel and returning a
list of the items in the order they were added. If there are no items in the channel or waiting to be added,
return an empty list.

11.6.12. Array

site Array[A](Integer) :: Array[A]

Create a new native array of the given nonnegative size. The array is initialized to contain nulls.

The resulting array can be called directly with an index, as if its type were lambda (Integer) ::
Ref[A]. In this case, it returns a Ref [188] pointing to the element of the array specified by an index,
counting from 0. Changes to the array are reflected immediately in the ref and visa versa.

Simple example:

-- Publishes: 3
val a = Array(1)
a(0) := 3 >>
a(0)?

More complex example:

Standard Library

194

-- Publishes: 0 1 2
val a = Array(3)
for(0, a.length?) >i>
a(i) := i >>
stop
; a(0)? | a(1)? | a(2)?

Array[A](Integer, String) :: Array[A]

Create a new primitive array of the given size with the given primitive type. The initial values in the array
depend on the primitive type: for numeric types, it is 0; for booleans, false; for chars, the character
with codepoint 0.

The element type of the array should be the appropriate wrapper type for the given primitive type, although
a typechecker may not be able to verify this. This constructor is only necessary when interfacing with
certain Java libraries; most programs will just use the Array(Integer) constructor.

array[A].length? :: Integer

Definite Pure

Return the size of the array.

11.6.13. ObservationSubject

site ObservationSubject[E]() :: ObservationSubject[E]

Returns a "subject" where notifications are sent to all observers. An ObservationSubject can be viewed as
a multi-reader channel. Observers register for notifications by calling observe(). Each time put() is called,
the value is enqueued at each current observer. Observers fetch enqueued values by calling get().

observationSubject.observe() :: {. get :: lambda[]() :: Integer,
stream :: lambda[]() :: Integer, close :: lambda[]() :: Signal,
isClosed :: lambda[]() :: Boolean .}

Indefinite

Create an observer. TODO: Write more OrcDoc for ref manual entry

observer.get() :: Integer

Indefinite

TODO: Write more OrcDoc for ref manual entry

observer.stream() :: Integer

Indefinite

TODO: Write more OrcDoc for ref manual entry

observer.close() :: Signal

Indefinite Idempotent

Standard Library

195

TODO: Write more OrcDoc for ref manual entry

observer.isClosed() :: Boolean

Definite

TODO: Write more OrcDoc for ref manual entry

observationSubject.put(Integer) :: Signal

Definite

TODO: Write OrcDoc for ref manual entry

observationSubject.close() :: Signal

Indefinite Idempotent

TODO: Write OrcDoc for ref manual entry

observationSubject.closeD() :: Signal

Definite Idempotent

TODO: Write OrcDoc for ref manual entry

observationSubject.isClosed() :: Boolean

Definite

TODO: Write OrcDoc for ref manual entry

Implementation.

11.6.14. Table

def Table[A](Integer, lambda (Integer) :: A)(Integer) :: A

The call Table(n,f), where n is a natural number and f a total function over natural numbers, creates
and returns a partial, pre-computed version of f restricted to the range (0, n-1). Table does not return a
value until all calls to f have completed. Consequently, if f halts silently on any call, the call to Table
will halt silently.

The user may also think of the call as returning an immutable array whose ith element is accessed by
calling f(i).

This function provides a simple form of memoisation; we avoid recomputing the value of f(i) by
internally storing the result in an array.

Example:

val a = Table(5, fib)

Standard Library

196

-- Publishes the 4th number of the fibonnaci sequence: 5
a(3)

Implementation.

def Table[A](Integer, lambda (Integer) :: A) :: (lambda(Integer) :: A)
def Table(n, f) =
 val a = Array[A](n) :: Array[A]
 def fill(Integer, lambda (Integer) :: A) :: Signal
 def fill(i, f) =
 if i <: 0 then signal
 else ((a(i) := f(i)), fill(i-1, f)) >> signal
 fill(n-1, f) >> (lambda (i :: Integer) = a(i)?)

11.6.15. Counter

site Counter(Integer) :: Counter

Create a new counter initialized to the given value.

11.6.16. Counter

site Counter() :: Counter

Create a new counter initialized to zero.

counter.inc() :: Signal

Definite

Increment the counter.

counter.dec() :: Signal

Definite

If the counter is already at zero, halt silently. Otherwise, decrement the counter and return a signal.

counter.onZero() :: Signal

Indefinite

If the counter is at zero, return a signal. Otherwise, block until the counter reaches zero. If a call to onZero
blocks, it becomes quiescent.

counter.value() :: Integer

Definite

Standard Library

197

Return the current value of the counter.

Example:

-- Publishes five signals
val c = Counter(5)
repeat(c.dec)

11.6.17. Dictionary

site Dictionary() :: Dictionary

Create a new dictionary (a mutable map from field names to values), initially empty. The first time a field of
the dictionary is accessed (using a dot access), the dictionary creates and returns a new empty Ref [188]
which will also be returned on subsequent accesses of the same field. A dictionary differs from a record
in that it is both mutable and dynamically extensible.

Example:

-- Prints: 1 2
val d = Dictionary()
 Println(d.one.read()) >>
 Println(d.two.read()) >>
 stop
| d.one.write(1) >>
 d.two.write(2) >>
 stop

Here is the same example rewritten using Orc's reference syntax to improve clarity:

-- Prints: 1 2
val d = Dictionary()
 Println(d.one?) >>
 Println(d.two?) >>
 stop
| d.one := 1 >>
 d.two := 2 >>
 stop

To create a multi-level dictionary, one must explicitly create sub-dictionaries for each field. For example:

-- Prints: 2
val d = Dictionary()
d.one := Dictionary() >>
d.one?.two := 2 >>
Println(d.one?.two?) >>
stop

Note that d.one.two is not valid: because d.one is a reference to a dictionary, and not simply a
dictionary, a dereference step is needed before accessing a field, as in d.one? >x> x.two. For readers

Standard Library

198

familiar with the C language, this is the same reason one must write s->field instead of s.field
when s is a pointer to a struct.

11.6.18. fst

def fst[A,B]((A,B)) :: A

Return the first element of a pair.

Implementation.

def fst[A,B]((A,B)) :: A
def fst((x,_)) = x

11.6.19. snd

def snd[A,B]((A,B)) :: B

Return the second element of a pair.

Implementation.

def snd[A,B]((A,B)) :: B
def snd((_,y)) = y

11.6.20. Interval

site Interval[A](A, A) :: Interval[A]

Interval(a,b) returns an object representing the half-open interval [a,b).

interval[A].isEmpty() :: Boolean

Return true if this interval is empty.

interval[A].spans(A) :: Boolean

Return true if the interval spans the given point, false otherwise.

interval[A].intersects(Interval[A]) :: Boolean

Return true if the given interval has a non-empty intersection with this one, and false otherwise.

Standard Library

199

interval[A].intersect(Interval[A]) :: Interval[A]

Return the intersection of this interval with another. If the two intervals do not intersect, returns an empty
interval.

interval[A].contiguous(Interval[A]) :: Boolean

Return true if the given interval is contiguous with this one (overlaps or abuts), and false otherwise.

interval[A].union(Interval[A]) :: Interval[A]

Return the union of this interval with another. Halts with an error if the two intervals are not contiguous.

11.6.21. Intervals

site Intervals[A]() :: Intervals[A]

Return an empty set of intervals. An Intervals object is iterable; iterating over the set returns disjoint
intervals in increasing order.

intervals[A].isEmpty() :: Boolean

Return true if this set of intervals is empty.

intervals[A].spans(A) :: Boolean

Return true if this set of intervals spans the given point, and false otherwise.

intervals[A].intersect(Intervals[A]) :: Intervals[A]

Return the intersection of this set of intervals with another.

intervals[A].union(Interval[A]) :: Intervals[A]

Return the union of this set of intervals with the given interval. This method is most efficient when the
given interval is before most of the intervals in the set.

Standard Library

200

11.7. text: Operations on strings.
Operations on strings.

11.7.1. String

site String

Strings themselves have a set of methods associated with them. These methods can be invoked on any
string literal or any variable bound to a string.

The methods documented here are only a subset of those available in the Java implementation. In practice,
strings in the Java implementation support all methods provided by Java's String class.

string.length() :: Integer

Return the length of the string.

Example:

-- Publishes: 4
"four".length()

string.substring(Integer, Integer) :: String

Return the substring of this string covered by the given half-open range.

Example:

-- Publishes: "orc"
val s = "apple orchard"
s.substring(6,9)

string.indexOf(String) :: Integer

Return the starting index of the first occurrence of the given string.

Example:

-- Publishes: 6
"apple orchard".indexOf("orc")

11.7.2. Print

site Print(Top) :: Signal

Definite

Print a value as a string to standard output. For Java objects, this will call toString() to convert the
object to a String.

Standard Library

201

11.7.3. Println

site Println(Top) :: Signal

Definite

Same as Print, appending a newline.

11.7.4. Read

site Read[A](String) :: A

Definite Pure

Given a string representing an Orc value (using standard Orc literal syntax), return the corresponding value.
If the argument does not conform to Orc literal syntax, halt with an error.

Example:

 Read("true") -- publishes the boolean true
| Read("1") -- publishes the integer 1
| Read("(3.0, [])") -- publishes the tuple (3.0, [])
| Read("\"hi\"") -- publishes the string "hi"

11.7.5. Write

site Write(Top) :: String

Definite Pure

Given an Orc value, return its string representation using standard Orc literal syntax. If the value is of
a type with no literal syntax, (for example, it is a site), return an arbitrary string representation which is
intended to be human-readable.

Example:

 Write(true) -- publishes "true"
| Write(1) -- publishes "1"
| Write((3.0, [])) -- publishes "(3.0, [])"
| Write("hi") -- publishes "\"hi\""

11.7.6. lines

def lines(String) :: List[String]

Split a string into lines, which are substrings terminated by an endline or the end of the string. DOS, Mac,
and Unix endline conventions are all accepted. Endline characters are not included in the result.

Implementation.

Standard Library

202

def lines(String) :: List[String]
def lines(text) = arrayToList(text.split("\n|\r\n|\r"))

11.7.7. unlines

def unlines(List[String]) :: String

Append a linefeed, "\n", to each string in the sequence and concatenate the results.

Implementation.

def unlines(List[String]) :: String
def unlines(line:lines) = line + "\n" + unlines(lines)
def unlines([]) = ""

11.7.8. words

def words(String) :: List[String]

Split a string into words, which are sequences of non-whitespace characters separated by whitespace.

Implementation.

def words(String) :: List[String]
def words(text) = arrayToList(text.trim().split("\\s+"))

11.7.9. unwords

def unwords(List[String]) :: String

Concatenate a sequence of strings with a single space between each string.

Implementation.

Standard Library

203

def unwords(List[String]) :: String
def unwords([]) = ""
def unwords([word]) = word
def unwords(word:words) = word + " " + unwords(words)

11.7.10. characters

def characters(String) :: List[String]

Convert a string to a list of strings of length 1, where the list items are the characters of the given string.

Example: characters("Hello") = ["H", "e", "l", "l", "o"]

Implementation.

def characters(String) :: List[String]
def characters(s) =
 def rest(Integer) :: List[String]
 def rest(i) =
 Ift (i >= s.length()) >> []
 | Ift (i <: s.length()) >> s.substring(i,i+1):rest(i+1)
 rest(0)

Standard Library

204

11.8. time: Real and virtual time.
Real and virtual time.

11.8.1. Rclock

site Rclock() :: {. time :: (lambda () :: Integer), wait :: (lambda
(Integer) :: Signal) .}

Create a new realtime clock instance.

rclock.wait(Integer) :: Signal

Return a signal after the given number of milliseconds.

rclock.time() :: Integer

Return the total number of milliseconds that have passed since this clock was created. Ranges from 0 to
Long.MAX_VALUE.

11.8.2. Rwait

site Rwait(Integer) :: Signal

Return a signal after the given number of milliseconds.

11.8.3. Rtime

site Rtime() :: Integer

Return the total number of milliseconds that have passed since this program began executing. Ranges from
0 to Long.MAX_VALUE.

11.8.4. metronome

def metronome(Integer) :: Signal

Publish a signal at regular intervals, indefinitely. The period is given by the argument, in milliseconds.

11.8.5. Vclock

site Vclock(TotalSite) :: Signal

Create a new virtual clock instance, using the supplied site as a time value comparator.

The time value comparator site's type should be (A, A) :: Integer, where A is the type of time
values. The returned integer should be -1, 0, or 1, depending on whether argument one is less then, equal
to, or greater than argument two, respectively.

Standard Library

205

11.8.6. Vawait

site VawaitA :: Boolean

Wait until the current virtual time is equal to the given value. If the current time is presently the given
value, return false immediately. If the given value is in the future, wait for it, and return true. If the
given value is in the past, halt silently. If no virtual time has been established, treat the given value as a
future time.

If a call to Vawait blocks, it becomes quiescent.

The type A of the parameter is determined by the type accepted by the time value comparator supplied to
the Vclock call that created the current virtual clock.

11.8.7. Vtime

site Vtime[A]() :: A

Return the current virtual time. If none has been established or if called outside the scope of any clock,
then halt silently.

The type A of the return value is determined by the type accepted by the time value comparator supplied
to the Vclock call that created the current virtual clock.

11.8.8. IntegerTimeOrder

site IntegerTimeOrder(Integer, Integer) :: Integer

A time value comparator for integer time values. Pass this site to Vclock to create an integer virtual
time scale.

Standard Library

206

11.9. util: Miscellaneous utility functions.
Miscellaneous utility functions.

11.9.1. Random

site Random() :: Integer

Return a random integer chosen from the range of all possible 32-bit integers.

11.9.2. Random

site Random(Integer) :: Integer

Return a pseudorandom, uniformly distributed integer between 0 (inclusive) and the specified value
(exclusive). If the argument is 0, halt silently.

11.9.3. URandom

site URandom() :: Number

Return a pseudorandom, uniformly distributed number between 0.0 (inclusive) and 1.0 (exclusive).

11.9.4. UUID

site UUID() :: String

Return a random (type 4) UUID represented as a string.

11.9.5. Prompt

site Prompt(String) :: String

Indefinite

Prompt the user for some input. The user may cancel the prompt, in which case the site fails silently.
Otherwise their response is returned as soon as it is received.

Example:

-- Publishes the user's name
Prompt("What is your name?")

The user response is always taken to be a string. Thus, integer 3 as a response will be treated as "3". To
convert the response to its appropriate data type, use the library function Read [201]:

Standard Library

207

-- Prompts the user to enter an integer, then parses the response.
Prompt("Enter an integer:") >r> Read(r)

11.9.6. signals

def signals(Integer) :: Signal

Publish the given number of signals, simultaneously.

Example:

-- Publishes five signals
signals(5)

Implementation.

def signals(Integer) :: Signal
def signals(n) = if n :> 0 then (signal | signals(n-1)) else stop

11.9.7. for

def for(Integer, Integer) :: Integer

Publish all values in the given half-open range, simultaneously.

Example:

-- Publishes: 1 2 3 4 5
for(1,6)

Implementation.

def for(Integer, Integer) :: Integer
def for(low, high) =
 if low >= high then stop
 else (low | for(low+1, high))

11.9.8. upto

def upto(Integer) :: Integer

Standard Library

208

upto(n) publishes all values in the range (0..n-1) simultaneously.

Example:

-- Publishes: 0 1 2 3 4
upto(5)

Implementation.

def upto(Integer) :: Integer
def upto(high) = for(0, high)

import class Iterable = "java.lang.Iterable"

11.9.9. IterableToStream

site IterableToStream[A](Iterable[A]) :: lambda () :: A

Converts a Java object implementing the Iterable interface into an Orc stream backed by the object's
iterator. When the site is called, if the iterator has items remaining, the next item is returned. If the iterator
has no items remaining, the call halts.

11.9.10. iterableToList

def iterableToList[A](Iterable[A]) :: List[A]

Given a Java object implementing the Iterable interface, create an Orc list whose elements are the values
produced by the object's iterator, in the same order.

Implementation.

def iterableToList[A](Iterable[A]) :: List[A]
def iterableToList(iterable) =
 val s = IterableToStream[A](iterable)
 def walk(List[A]) :: List[A]
 def walk(l) = s():l >m> walk(m) ; reverse(l)
 walk([])

11.9.11. arrayToList

Standard Library

209

def arrayToList[A](Array[A]) :: List[A]

Given an array, create an Orc list whose elements are exactly the contents of the array, in the same order.

Implementation.

def arrayToList[A](Array[A]) :: List[A]
def arrayToList(a) =
 def walk(Integer, List[A]) :: List[A]
 def walk(0,acc) = acc
 def walk(i,acc) = walk(i-1, a(i-1)? : acc)
 walk(a.length?, [])

import class JavaList = "java.util.List"
import class JavaLinkedList = "java.util.LinkedList"

11.9.12. listToJavaList

def listToJavaList[A](List[A]) :: JavaList[A]

Given an Orc list, create a java.util.List with the same elements.

Implementation.

def listToJavaList[A](List[A]) :: JavaList[A]
def listToJavaList(list) =
 val javalist = JavaLinkedList[A]()
 def copy(List[A]) :: Bot
 def copy(x:xs) = javalist.add(x) >> copy(xs)
 copy(list) ; javalist

11.9.13. listToArray

def listToArray[A](List[A]) :: Array[A]

Given an Orc list, create an array whose elements are exactly the contents of the list, in the same order.
The size of the array is exactly the list length.

Implementation.

def listToArray[A](List[A]) :: Array[A]

Standard Library

210

def listToArray(list) =
 val array = Array[A](length(list))
 def copy(List[A], Integer) :: Bot
 def copy(x:xs, i) = (array(i) := x) >> copy(xs, i+1)
 copy(list, 0) ; array

11.9.14. fillArray

def fillArray[A](Array[A], lambda (Integer) :: A) :: Array[A]

Given an array and a function from indices to values, populate the array by calling the function for each
index in the array. Publish the array once it has been populated.

For example, to set all elements of an array to zero:

-- Publishes: 0 0 0
val a = fillArray(Array(3), lambda (_) = 0)
a(0)? | a(1)? | a(2)?

Implementation.

def fillArray[A](Array[A], lambda (Integer) :: A) :: Array[A]
def fillArray(a, f) =
 val n = a.length?
 def fill(Integer, lambda(Integer) :: A) :: Bot
 def fill(i, f) =
 if i = n then stop
 else (a(i) := f(i) >> stop
 | fill(i+1, f))
 fill(0, f) ; a

11.9.15. sliceArray

def sliceArray[A](Array[A], Integer, Integer) :: Array[A]

Given an array and a half-open index range, create a new array which contains the elements of the original
array in that index range.

Implementation.

def sliceArray[A](Array[A], Integer, Integer) :: Array[A]
def sliceArray(orig, from, until) =

Standard Library

211

 val size = until - from
 val a = Array[A](size)
 def copy(i :: Integer) :: Bot =
 Ift(i <: size) >>
 a(i) := orig(from + i)? >>
 copy(i+1)
 copy(0) ; a

11.9.16. takePubs

def takePubs[A](Integer, lambda () :: A) :: A

takePubs(n, f) calls f(), publishes the first n values published by f() (as they are published),
and then halts.

Implementation.

def takePubs[A](Integer, lambda () :: A) :: A
def takePubs(n, f) =
 val out = Channel[A]()
 val c = Counter(n)
 Let(
 f() >x>
 Ift(c.dec() >> out.put(x) >> false
 ; out.closeD() >> true)
) >> stop | repeat(out.get)

11.9.17. withLock

def withLock[A](Semaphore, lambda () :: A) :: A

Acquire the semaphore and run a thunk which is expected to publish no more than one value. Publishes
the value published by the thunk and releases the semaphore.

Implementation.

def withLock[A](Semaphore, lambda () :: A) :: A
def withLock(s, f) =
 s.acquire() >> (
 Let(f()) >x>

Standard Library

212

 s.release() >>
 x
 ; s.release() >> stop
)

11.9.18. synchronized

def synchronized[A](Semaphore, lambda () :: A)() :: A

Given a lock and thunk, return a new thunk which is serialized on the lock. Similar to Java's synchronized
keyword.

Implementation.

def synchronized[A](Semaphore, lambda () :: A) :: lambda() :: A
def synchronized(s,f) = lambda() = withLock(s, f)

11.9.19. InvokeExecutable

site InvokeExecutable(command :: List[String])

Run an executable file in the host OS, with input/output addressable from Orc.

The executable file is invoked in a new OS process, and is passed the command arguments given to
InvokeExecutable. The process is created with an input character stream, to which the Orc program
can send strings. The process is also created with two output character strings, one for conventional output
and one for error/diagnostic output, from which the Orc program can read. Upon process termination, the
Orc program can read the exit status value.

Output streams from the process can be read while the process is running. The "chunk" of the stream that
is returned from any one read operation is of an unspecified length, because of buffer sizes and operation
granularity between the sender and receiver. Callers may need to reassemble output segments prior to
further processing. If this is inconvenient, there are "read all" methods that wait for process termination,
and then return the output as a single character string.

Assumptions:

The supplied "command" string refers to an executable file that is understandable by the OS hosting
the Orc runtime engine.
Input and output to the executable program are character strings encoded in the host OS's default
character encoding.

Standard Library

213

invokeexecutable.writeIn(String) :: Signal

Definite

Send the given string to the process's standard input stream. If the process has completed, halt silently.

invokeexecutable.closeIn(String) :: Signal

Definite Idempotent

Close the process's standard input stream.

invokeexecutable.readOut() :: String

Receive a "chunk" of available characters from the process's standard output stream. The chunk size is not
specified. If there is no output available from the process, wait for some. If there is no output available
and the process has closed its output stream, halt silently.

Indefinite

invokeexecutable.readOutD() :: String

Receive a "chunk" of available characters from the process's standard output stream. The chunk size is not
specified. If there is no output available from the process, halt silently.

Definite

invokeexecutable.readOutAll() :: String

Indefinite

If the process is running, wait for it to complete; then, receive all remaining standard output stream contents
from the process as a single string. If there is no further output, halt silently.

invokeexecutable.readErr() :: String

Indefinite

Receive a "chunk" of available characters from the process's standard error (diagnostic) stream. The chunk
size is not specified. If there is no output available from the process, wait for some. If there is no output
available and the process has closed its output stream, halt silently.

invokeexecutable.readErrD() :: String

Definite

Receive a "chunk" of available characters from the process's standard error (diagnostic) stream. The chunk
size is not specified. If there is no output available from the process, halt silently.

invokeexecutable.readErrAll() :: String

Indefinite

If the process is running, wait for it to complete; then, in any case, receive all remaining standard error
(diagnostic) output from the process as a single string. If there is no further output, halt silently.

invokeexecutable.exitValue() :: Integer

Definite

Standard Library

214

Returns the exit status byte from the process running the executable. If the process has not completed, halt
silently. Conventionally, a zero exit status value indicates a successful termination.

invokeexecutable.terminate() :: Signal

Indefinite

Send a termination signal (for example, SIGTERM) to the process running the executable. If the process
has completed, then this method has no effect.

11.9.20. OrcVersion

site OrcVersion() :: String

Return a name, version, URL, and copyright string for Orc.

Standard Library

215

11.10. web: Web browsing, HTTP, and JSON
capabilities.

Web browsing, HTTP, and JSON capabilities.

11.10.1. Browse

site Browse(String) :: Signal

Attempts to open a browser window in whatever user context is available, pointing to the URL given by
the string argument. The URL must be absolute and well-formed. If the URL is malformed or unreachable,
the call halts silently.

Example:

-- Open a browser window to the Google home page
Browse("http://www.google.com")

The HTTP site provides a simple mechanism to send GET and POST requests to a URL.

11.10.2. HTTP

site HTTP(java.net.URL) :: HTTP

Publishes an HTTP site which accepts HTTP requests on the given URL.

http.get() :: String

Performs a GET request on the URL used to create this HTTP site. The payload is empty. The response
is published as a single string.

http.post(String, String) :: String

Performs a POST request on the URL used to create this HTTP site. The first string argument is used as
the payload of the POST request. The second string argument is used as the request's Content-Type header
value. The response is published as a single string.

http.url :: String

Publishes the URL used to create this HTTP site. If query parameters were used, they will be displayed in
the query part of the URL, with the appropriate encoding.

11.10.3. HTTP

site HTTP(String) :: HTTP

Converts the given string to a URL U and then behaves as HTTP(U).

11.10.4. HTTP

Standard Library

216

site HTTP(String, {..}) :: HTTP

Takes a string S and a query record Q. Maps Q to a URL query string QS by translating each record binding
to a query pair, escaping characters if necessary, and then behaves as HTTP(S+QS).

11.10.5. ReadJSON

site ReadJSON(String) :: Top

Parses a string representation of a JSON value, producing an Orc representation of that JSON value.

An Orc representation of a JSON value, called an OrcJSON value, is either a record of OrcJSON values
(representing a JSON object), a list of OrcJSON values (representing a JSON array), or a literal value
(representing a JSON primitive value).

ReadJSON and WriteJSON are mutual inverses. If S is a string representation of a JSON value, then
WriteJSON(ReadJSON(S)) = S, modulo whitespace and object member ordering.

11.10.6. WriteJSON

site WriteJSON(Top) :: String

Serializes an Orc representation of a JSON value, producing a string representation of that JSON value.

An Orc representation of a JSON value, called an OrcJSON value, is either a record of OrcJSON values
(representing a JSON object), a list of OrcJSON values (representing a JSON array), or a literal value
(representing a JSON primitive value).

WriteJSON and ReadJSON are mutual inverses. If V is an Orc representation of a JSON value, then
ReadJSON(WriteJSON(V)) = V.

Standard Library

217

11.11. xml: XML manipulation.
XML manipulation.

11.11.1. ReadXML

site ReadXML(String) :: XML

Parses a string representation of XML into a structured form that Orc can manipulate.

11.11.2. WriteXML

site WriteXML(XML) :: String

Serializes Orc's representation of XML to a string.

11.11.3. XMLElement

site XMLElement(String, {. .}, List[XML]) :: XML

Creates an XML element node with the given tag, attributes, and children. This site may also be used for
matching.

11.11.4. XMLText

site XMLText(String) :: XML

Creates an XML text node with the given contents. Encoding may occur. This site may also be used for
matching.

11.11.5. XMLCData

site XMLCData(String) :: XML

Creates an XML text node with the given contents. Contents will not be encoded. This site may also be
used for matching.

11.11.6. IsXML

site IsXML(Top) :: XML

Acts as the identity function for any XML node, and halts silently for any non-XML argument.

11.11.7. xml

Standard Library

218

def xml(String, List[XML]) :: XML

Creates an XML element with the given tag and children, and no attributes. May also be used for matching.
When matching, the second argument is a multimatch on each child, rather than a match on the list of
children.

Implementation.

val xml =
 def toxml(String, List[Top]) :: XML
 def toxml(tag, children) =
 def liftChild(Top) :: XML
 def liftChild(x) = IsXML(x) ; XMLText("" + x)
 XMLElement(tag, {. .}, map(liftChild, children))
 def fromxml(XML) :: Top
 def fromxml(XMLElement(tag,attr,children)) =
 each(children) >c>
 (c >XMLElement(_,_,_)> (tag,c)
 | c >XMLText(s)> (tag,s)
 | c >XMLCData(s)> (tag,s))
 def fromxml(XMLText(s)) = s
 def fromxml(XMLCData(s)) = s
 {. apply = toxml, unapply = fromxml .}

11.11.8. xattr

def xattr(XML, {. .}) :: XML

Creates a copy of the XML element, adding new attributes as given by the record argument. If there is a
conflict, the new attributes override the old ones. May also be used for matching.

Implementation.

val xattr =
 def toattr(XML, {. .}) :: XML
 def toattr(XMLElement(tag, attr, children), moreattr) =
 XMLElement(tag, attr + moreattr, children)

 def fromattr(XML) :: (XML, {. .})
 def fromattr(XMLElement(tag, attr, children)) =
 (XMLElement(tag, {. .}, children), attr)
 {. apply = toattr, unapply = fromattr .}

219

Index of Key Terms
This index is meant to direct the reader to key terms
and concepts in this reference manual. It is not a
comprehensive index that lists every occurrence of every
term.

Symbols
(:) (site), 156
(:=) (function), 189
(:>) (site), 154
(?) (function), 188
(/) (site), 154
(/=) (site), 155
(~) (site), 155
(-) (site), 153
(*) (site), 153
(**) (site), 154
(&&) (site), 155
(%) (site), 154
(+) (site), 153
(<:) (site), 154
(<=) (site), 154
(=) (site), 155
(>=) (site), 155
(||) (site), 155
(0-) (site), 153
≤, 135

A
abs (function), 156
ad-hoc polymorphism, 132
afold (function), 173
algebraic data type, 19, 82
all (function), 182
alt (function), 165
altMap (function), 166
and (function), 184
any (function), 182
append (function), 171
apply, 17, 33
argument, 33
argument type, 33, 63, 137
Array (site), 193
arrayToList (function), 208
as, 98
associativity, 40, 41, 148

B
block, 124
blocked externally, 124
blocked internally, 124

body, 63
Boolean, 2
Bot, 135
BoundedChannel (site), 191
Browse (site), 215

C
call, 33
call pattern, 19, 93
Ceil (site), 157
Cell, 24, 71
Cell (site), 187
cfold (function), 173
Channel, 72
Channel (site), 190
characters (function), 203
character string (see string)
class, 79, 101, 103
clause, 65
clause failure, 65
closure, 22, 70
collect (function), 167
combinator, 48
comment, 146
common subtype, 135
common supertype, 135
compose (function), 162
concat (function), 175
cons pattern, 97
constant (function), 160
constructor, 19, 79
contravariant, 136
Counter (site), 196, 196
covariant, 136
curry (function), 159
curry3 (function), 159

D
datatype (see algebraic data type)
def, 46, 63
defer (function), 161
defer2 (function), 161
deflate, 33, 63, 127
Dictionary (site), 197
divide, 4
division, 5
dot, 17, 37, 103
drop (function), 176

E
each (function), 168
empty (function), 170
erasure, 132

Index of Key Terms

220

Error (site), 153
exponent, 4
expression, 27

F
field, 103
fillArray (function), 210
filter (function), 169
fixity, 148
flip (function), 160
floating point, 4
Floor (site), 157
foldl (function), 171
foldl1 (function), 172
foldr (function), 172
foldr1 (function), 173
for (function), 207
fork (function), 163
forkMap (function), 163
fst (function), 198
function call, 33, 33
function type, 22

G
goal expression, 69
group (function), 180
groupBy (function), 181

H
halt, 31, 56, 124, 127, 129
head (function), 169
helpful site, 129
HTTP, 107
HTTP (site), 215, 215, 215

I
Iff (site), 152
Ift (site), 152
if then else, 44
ignore (function), 161
ignore2 (function), 161
import site, 77
import type, 82, 82
include, 85
index (function), 171
init (function), 170
instance, 69
Integer, 4
IntegerTimeOrder (site), 205
Interval (site), 198
Intervals (site), 199
invariant, 136
InvokeExecutable (site), 212

IsXML (site), 217
iterableToList (function), 208
IterableToStream (site), 208

J
Java, 79, 79, 103
join, 135
join (function), 165
joinMap (function), 165
JSON, 107

K
key, 17, 37
keyword, 145
kill, 53, 70, 125

L
lambda, 19, 22, 33, 46
last (function), 170
length (function), 175
lenient, 33, 63
lenient pattern, 64
Let (site), 152, 152, 152
linear pattern, 86
lines (function), 201
list, 11
list pattern, 91
listToArray (function), 209
listToJavaList (function), 209
literal pattern, 87
logical and, 41
logical negation, 41
logical or, 41

M
MakeSite (site), 186
map (function), 168
max (function), 157
maximum (function), 185
meet, 135
member, 37
member (function), 176
merge (function), 177
mergeBy (function), 177
mergeUnique (function), 178
mergeUniqueBy (function), 179
method, 69, 70, 103
metronome (function), 204
min (function), 156
minimum (function), 184
multimatch, 93
mutual recursion, 64

Index of Key Terms

221

N
None (site), 187
Number, 4, 41

O
ObservationSubject (site), 194
operator, 40, 148
or (function), 184
OrcVersion (site), 214
otherwise combinator, 56, 129
override, 139

P
pand (function), 167
parallel combinator, 49
parameter, 63
parametric polymorphism, 133
pattern, 86
polymorphism, 132
por (function), 166
precedence, 148
prelude, 102
Print (site), 200
Println (site), 201
product (function), 183
Prompt (site), 206
pruning, 60, 127
pruning combinator, 53
publish, 33, 49, 51, 53, 56, 120, 129

Q
quiescence, 115

R
Random (site), 206, 206
range (function), 182
rangeBy (function), 181
Rclock (site), 204
Read (site), 201
ReadJSON (site), 216
ReadXML (site), 217
ready, 124
record, 17
record application, 33
record extension, 17
record pattern, 92
recursion, 64
recursive type, 19
Ref, 24, 42, 71
Ref (site), 188, 188
repeat (function), 163
REST, 107

reverse (function), 168
Rtime (site), 204
Rwait (site), 204

S
semaphore, 71, 73
Semaphore (site), 189
seq (function), 164
seqMap (function), 164
sequential combinator, 51
signal, 10
signals (function), 207
signature, 137
signum (function), 156
silent, 56, 122
site, 101
site call, 33, 33, 37, 40
site resolution, 77
sliceArray (function), 210
snd (function), 198
SOAP, 109
Some (site), 187
sort (function), 178
sortBy (function), 178
sortUnique (function), 179
sortUniqueBy (function), 180
sqrt (function), 157
stop, 31
strict, 33
strict pattern, 64
string, 8
String (site), 200
subtype, 135
sum (function), 183
sum type, 19, 82
supertype, 135
swap (function), 189
synchronized (function), 212

T
Table (function), 195
tag, 19
tail (function), 169
take (function), 176
takePubs (function), 211
target, 33, 37
Top, 135, 135
tuple, 15
tuple pattern, 90
type alias, 82
type application, 133
type import, 82
type inference, 132

Index of Key Terms

222

type information, 137
typing context, 86, 140

U
unapply, 17
uncurry (function), 159
uncurry3 (function), 160
unlines (function), 202
unwords (function), 202
unzip (function), 175
upto (function), 207
URandom (site), 206
UUID (site), 206

V
val, 60, 60
value, 1, 120
variable, 88
variable pattern, 88
variance, 136
Vawait (site), 205
Vclock (site), 204
Vtime (site), 205

W
Web service, 107
while (function), 162
wildcard pattern, 99
withLock (function), 211
words (function), 202
Write (site), 201
WriteJSON (site), 216
WriteXML (site), 217

X
xattr (function), 218
XML, 107
xml (function), 217
XMLCData (site), 217
XMLElement (site), 217
XMLText (site), 217

Z
zip (function), 174
zipWith (function), 174

