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Preface

Orcisaprogramming language designed to make distributed and concurrent programs simple and intuitive
to write. Orc expresses orchestration, atype of structured concurrency. It emphasizes the flow of control
and gives a global view of a concurrent system. Orc is well-suited for task orchestration, a form of
concurrent programming with applications in workflow, business process management, and web service
orchestration. Orc provides constructs to orchestrate the concurrent invocation of serviceswhile managing
time-outs, priorities, and failures of services or communication. To learn more about Orc and run your
own Orc programs, visit the Web site: ht t ps: // orc. csres. ut exas. edu/ .

Unless otherwise noted, all material in this document pertains to the Orc language implementation version
211.

This guide introduces the reader to the Orc programming language. It does not cover every detail of the
language; see the Reference Manual for comprehensive and authoritative documentation of al language
features.

Chapter 1 introduces the essential concepts of Orc, such as communication with external services, and
building complex orchestrations from simpler programs using the four concurrency combinators. Data
structures and function definitions are also discussed.

Chapter 2 discusses some additional features of Orc that extend the basic syntax. These are useful for
creating practical Orc programs, but they are not essential to the understanding of the language.

Chapters 3 through 5 turn our attention to how the language is used in practice, with guidelines on style
and programming methodol ogy, explanations of some common concurrency patterns, and larger example
programs.



https://orc.csres.utexas.edu/
../refmanual/index.html#refmanual

Chapter 1. An Introduction to Orc

An Orc program is an expression. Complex Orc expressions are built up recursively from simpler
expressions. Orc expressions are executed; an execution may interact with external services, and publish
some number of values (possibly zero). Publishing avalueis similar to returning avalue with ar et ur n
statement in an imperative language, or evaluating an expression in a functional language, except that an
execution may publish many times, at different times, or might not publish at al. An expression which
does not publish is called silent.

An execution haltswhen it isfinished; it will not interact with any more services, publish any more values,
or have any other effects.

Different executions of the same expression may have completely different behaviors; they may call
different services, may receive different responses from the same site, and may publish different values.
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1.1. Simple Expressions

1.1.1.

1.1.2.

1.1.3.

This section shows how to write some simple Orc expressions. Simple expressions publish at most one
value, and do not recursively contain other expressions. We will see later how some of these cases may
also be used as complex expressions.

Values

The simplest expression one can write is a literal value. Executing that expression simply publishes the
value.

Orc hasfour kinds of literal values:

* Booleans: true andf al se

* Numbers: 5, -1, 2.71828,

e Strings:"orc","ceci n'est pas une |"

» A special valuesi gnal .

Operators

Orc has a standard set of arithmetic, logical, and comparison operators. As in most other programming
languages, they are written in the usual infix style. They have Java-like operator precedence, which can
be overridden by adding parentheses.

Examples

e 1 + 2 publishes3.
* (98 + 2) * 17 publishes1700.

4 = 20 / 5 publishest r ue.

e 3-5 >= 5-3 publishesf al se.

e true & & (false || true) publishestrue.
 "leap" + "frog" publishes"| eapfrog".

* 3 / 0 halts, publishing nothing.

Sites

An Orc program interacts with the external world by calling sites. Sites are one of the two fundamental
concepts of Orc programming, the other being combinators which we discuss|ater when covering complex
expressions.

A sitecall in Orc looks like amethod, subroutine, or function call in other programming languages. A site
call might publish a useful value, or it might just publish asi gnal , or it might halt, refusing to publish
anything, or it might even wait indefinitely. Here are some examples:

Examples

e PrintIn("hello world") printshel | o wor | d tothe console and publishesasi gnal .
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e Randon{ 10) publishes arandom integer from 0 to 9, uniformly distributed.

 Browse("http://orc.csres. utexas. edu/") opensabrowser window pointing to the Orc
home page and publishesasi gnal .

e Error ("l AM ERROR') reportsan error message on the console, and halts. It publishes nothing.
* Rwai t (420) waitsfor 420 milliseconds, then publishesasi gnal .

* Prompt ("User nane: ") requests someinput from the user, then publishes the user's response as a
string. If the user never responds, the site waits forever.

Even the most basic operations in Orc are sites. For example, all of the operators are actualy sites; 2+3
isjust another way of writing the sitecall (+) (2, 3) .

By convention, all site names begin with a capital letter.
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1.2. Complex Expressions

Complex expressions recursively contain other expressions. They may be formed in a number of ways:
using one of Orc's four combinators, adding a declaration, adding a conditional expression, or using an
expression as an operand or site call argument.

1.2.1. Combinators

The concurrency combinators are one of the two fundamental concepts of Orc programming, the
other being sites. They provide the core orchestration capabilities of Orc: parallel execution, sequential
execution, blocking on future values, terminating a computation, and trying an alternative if some
computation halts.

1.2.1.1. Parallel

Orc'ssimplest combinator is| , the parallel combinator. Execution of the complex expression F| G, where
F and G are Orc expressions, executes F and G concurrently. Whenever a value is published during the
execution of F or G, the execution of F | G publishes that value. Note the publications of F and G are
interleaved arbitrarily.

{- Publish 1 and 2 in parallel -}

1| 1+1

{ -

QUTPUT: PERMUTABLE

1

2

-}

The brackets{- -} enclose comments, which are present only for documentation and are ignored by
the compiler.

1.2.1.2. Sequential

Now that we have expressions which publish multiple values, what can we do with those publications? The
sequential combinator, written F >x> G, combines the expression F, which may publish some values,
with another expression G, which will use the values as they are published; the variable x transmits the
valuesfrom F to G.

The execution of F >x> G starts by executing F. Whenever F publishes a value, a new execution of G
beginsin parallel with F (and with other executions of G). In that instance of G, variable x is bound to the
value published by F. Values published by the executions of G are published by the whole expression, but
the values published by F are not published by the whole expression; they are consumed by the variable
binding.

{- Publish 1 and 2 in parallel -}
(0] 1) >n> n+1

{-
QUTPUT: PERMUTABLE
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N R

{- Publish 3 and 4 in parallel -}
2 >n> (n+l | n+2)

{-
QUTPUT: PERMUTABLE
3
4

-}

{- Publish 5 -}

2 >x> 3 >y> X+y

{-
QUTPUT:
5

-}

The sequential combinator may also be written without a variable, asin F >> G. This has the same
behavior, except that no variable name is given to the values published by F. When F publishes only one
value, thisis similar to a sequential execution in an imperative language. For example, suppose we want
to print three messages in sequence:

{- Print three nessages in sequence -}

PrintIn("Yes") >>
Println("wve") >>
PrintIn("Can") >>
st op

{ -

QUTPUT: PERMUTABLE
Yes

e

Can

-}

The simple expression st op does nothing and haltsimmediately. In conjunction with >> | it can be used
to ignore unneeded publications, such asthe si gnal that would be published by Pri nt | n(" Can").

1.2.1.3. Pruning

The pruning combinator, written F <x< G, allows us to block a computation waiting for a result, or
terminate a computation. The execution of F <x< G starts by executing F and G in parallel. Whenever
F publishes avalue, that valueis published by the entire execution. When G publishesitsfirst value, that
value is bound to x in F, and then the execution of G isimmediately killed. A killed expression cannot
make any more site calls or publish any values.
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During the execution of F, any part of the execution that depends on x will be blocked until x is bound.
If G never publishes avalue, parts of F may be blocked forever.

{- Publish either 5 or 6, but not both -}
X+2 <x< (3| 4)

{-
QUTPUT:

Though aterminated execution may not make any new calls, the callsthat it hasalready madewill continue
normally; their responses are simply ignored. This may have surprising consequences when acall hasside
effects, asin the following example.

{- This exanple might actually print both "uh" and "oh" to the
consol e, regardless of which call responds first. -}

stop <x< PrintIn("uh") | Println("oh")

{ -
OUTPUT: PERMUTABLE
uh
oh

oh

Both of the Pri nt | n calls could be initiated before either one of them publishes a value and terminates
the expression. Once the expression is terminated, no new calls occur, but the other Pri nt | n cal still
proceeds and still has the effect of printing its message to the console.

1.2.1.4. Otherwise

1.2.2.

Orc'sfourth concurrency combinator, the otherwise combinator, iswritten F ;  G. The execution of F ;
G proceeds as follows. First, F is executed. If F halts, and has not published any values, then G executes.
If F did publish one or more values, then G isignored.

val

An expression may be preceded by one or more declarations. Declarations are used to bind values to be
used in that expression (or scope).
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1.2.3.

1.2.4.

The declaration val x = G, followed by expression F, executes G, and binds its first publication to
X,tobeusedinF.

This is actually just a different way of writing the expression F <x< G. Thus, val shares all of the
behavior of the pruning combinator: F executesin parallel with G, uses of x block until G has published,
and when G publishes, it iskilled. In fact, the val form isused much more often thanthe <x< form,
sinceitisusually easier to read.

Conditional Expressions
Orc hasaconditional expression, writteni f Et hen Fel se G. Theel se branchisrequired. Execution

ofif Ethen F el se G first executes E. If E publishest r ue, E is terminated and F executes. If E
publishesf al se, Eisterminated and G executes.

Nested Expressions

The execution of an Orc expression may publish many values. What if we want to use such an expression
in a context where only one value is expected? For example, what does2 + (3 | 4) publish?

Whenever an Orc expression appears in such a context, it executes until it publishes its first value, and
then it is terminated. The published value is then used in the context. This alows any expression to be
used as an operand of an operator expression or an argument to a site call.

{- Publish either 5 or 6 -}
2 + (3] 4

{-
CQUTPUT:

{- Publish exactly one of 0, 1, 2 or 3 -}
(0] 2 + (0] 1)

{-
CQUTPUT:
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To be precise, whenever an Orc expression appearsin such acontext, it istreated asif it were on the right
side of a pruning combinator, using a fresh variable name to fill in the hole. Thisis called deflation.
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1.3. Data Structures

1.3.1.

1.3.2.

Orc supports three basic data structures, tuples, lists, and records. This section describes tuples and lists;
records are described in a subsequent chapter.

Tuples

A tuple expression is a comma-separated sequence of at least two expressions, enclosed by parentheses.
Each expression is executed and its first published value is taken; the value of the whole tuple expression
isatuple containing each of these valuesin order. If any of the expressionsis silent, then the whole tuple
expression is silent.

Examples
e (1+2, 7) evauatesto(3,7).

e ("true" + "false", true || false, true & fal se) evaluatesto("truefal se",
true, false).

* (2/2, 2/1, 2/0) issilent, since2/ 0 isasilent expression.

Lists

A list expression is a comma-separated sequence of expressions enclosed by sguare brackets. It may be
of any length, including zero. Each expression is executed and its first published value is taken; the value
of the whole list expression is alist containing each of these values in order. If any of the expressionsis
silent, then the whole list expression is silent.

Examples
* [1,2+3] publishes[1, 5].

e [true && true] publishes[true].

[] just publishes| ], the empty list.

[5, 5/0, 5] issilent,since5/ 0 isasilent expression.
There is also a concatenation (cons) operation on lists, written F: G, where F and G are expressions. It

publishes anew list whose first element is the value of F and whose remaining elements are the list value
of G.

Examples

e (1+3):[2+5, 6] publishes[ 4, 7, 6] .

2:2:5:[] publishes[ 2, 2, 5].
e Supposet isboundto[ 3, 5] . Then1:t publishes[ 1, 3, 5] .

e 2: 3 issilent, because 3 isnot alist.
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1.3.3. Patterns

The Orc language provides pattern matching capabilitiesto inspect and extract pieces of adatastructure. A
pattern may be used wherever avariable could be bound; for example, inaval declaration, or asequential
combinator.

Thefollowing val declarationshind z to ( 3, 4) , x to 3, and y to 4, using the tuple pattern ( X, y) :
val z = (3,4)

val (X,y) = z

The wildcard pattern _ lets us ignore irrelevant parts of a data structure. Here is an expression which
extractsthe first element of alist:

[1,2,3] >first: > first

Notice that cons (: ) isbeing used as a pattern to separate alist into its head and tail.

A pattern may also be used as afilter. A litera value may be used as a pattern; if the same value is not
present in the data structure being matched, the pattern will fail, and the value will be discarded. Here is
an expression which publishes the second element of pairswith first element 0, and ignores any other pair:

( (0,3) | (1,4 | (2,5 | (0,6) ) >(0,x)> x

10
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1.4. Functions

1.4.1.

Like most other programming languages, Orc provides the capability to define functions, which are
expressions that have a defined name, and have some number of parameters. Functions are declared using
the keyword def , in the following way:

def add(x,y) = x+y

The expression to the right of the = is called the body of the function. x and y are the parameters. By
convention, al function names begin with alowercase | etter.

After defining the function, we can call it. A function call looksjust like a site call. To execute acall, we
treat it like a sequence of val declarations associating the parameters with the arguments, followed by
the body of the function. Every value published by the body expression is published by the call. Thisis
unlike a site call, which publishes at most once.

{- add(1+2, 3+4) is equivalent to: -}

val x = 1+2
val y = 3+4
X+y

{_

QUTPUT:

10

-}

Examples

e add(10, 10*10) publishes110.

+ add(add(5, 3),5) publishes13.

Notice that the execution of afunction call can proceed even if some of the arguments haven't published
avalue yet. The parts of the body that depend on them will simply block.

def demo(x,y) = x| y | x+y

deno(3, Rwait(2000) >> 4)

This call publishes 3 immediately, but blocks for 2 seconds before publishing 4 and 7.

A function definition or call may have zero arguments, in which case we write () for the arguments.

def Zero() =0

Recursion

A function can be recursive; that is, the name of afunction may be used in its own body.

11
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1.4.2.

def sumo(n) =if n <1 then O else n + sunto(n-1)
Thecall sunmt o( 5) publishes 15.

A recursive function may run forever, publishing an infinite number of times. The function net r onone
isaclassic example; acall to met r onone publishesasi gnal once per second, forever:

def netronome() = signal | Rwait(1000) >> netronone()

Mutual recursion is also supported.

def even(n) =
if (n:>0) then odd(n-1)
else if (n < 0) then odd(n+1)
el se true

def odd(n) =
if (n:>0) then even(n-1)
else if (n < 0) then even(n+1)
el se fal se

There is no specia keyword for mutual recursion; any contiguous sequence of function declarations is
assumed to be mutually recursive. Also, note that : > and <: are the Orc symbols for 'greater than' and
'less than' respectively.

Clauses

The combination of functions and pattern matching offers a powerful capability: clausal definition of
functions. We can define expressions which execute different code depending on the structure of their
arguments.

Here's an example.

def sum([]) =0
def sum(h:t) = h + sum(t)

sum(|) publishesthe sum of the numbersinthelist| . It has two clauses: one which matches the empty
list, and one which matches any nonempty list. If itsargument isan empty list, it returns O, the appropriate
sum for an empty list. If the argument is a nonempty list, it adds the first element of that list to the sum of
all of the other elements. In thisway, it recursively finds the sum of the list.

A function may have multiple clauses, each of which has a sequence of patterns to match each argument,
and abody expression. Naturaly, all clauses of afunction must have the same number of arguments. Any
contiguous sequence of definitions with the same name and different argumentsisinterpreted as a clausal
definition, where each individual declaration is a clause of the larger function.

When the function is called, the clauses are tried in the order in which they appear until amatch isfound.
If no clause matches, the call remains silent.

We can use aliteral pattern to define the base case of arecursive function in a straightforward way.

{- Fi bonacci nunbers -}
def fib(0) =1

12
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1.4.3.

1
fib(n-1) + fib(n-2)

def fib(1)
def fib(n)

This definition of the Fibonacci function is straightforward, but slow, dueto the repeated work in recursive
calstof i b. We can define alinear-time version, again with the help of pattern matching:

{- Alternate definition of the Fibonacci function -}

{- A helper function: find the pair (Fibonacci(n), Fibonacci(n+l)) -}
def H(0) (1,1)
def H(n) H(n-1) >(x,y)> (y, Xx+y)

def fib(n) = H(n) >(x,_)> x

Asamore complex example of matching, consider the following function which takes alist argument and
returns a new list containing only the first n elements of the argument list.

def take(O0, )

=[]
def take(n,h:t) =

h: take(n-1, t)

Guards

Each clause of a function definition may also have a guard: a Boolean expression which determines
whether or not the clause applies. If the guard publishes f al se, then the next clause is tried, just as if
some pattern had failed to match.

We can add guards to a previous example to protect against the degenerate case of a negative argument:

{- Fibonacci nunbers -}

def fib(0) =1

def fib(1l) =1

def fib(n) if (n:>1) =fib(n-1) + fib(n-2)

We can also improve the readability of a previous example:

def even(n) if (n :> 0) = odd(n-1)
def even(n) if (n < 0) = odd(n+1)
def even(0) = true

def odd(n) if (n :> 0) = even(n-1)
def odd(n) if (n <: 0) = even(n+l)

def odd(0) = false

13



Chapter 2. Additional Features of Orc

Chapter 1 presented the essential features of the Orc programming language. Here we show a humber of
additional features, which are useful for programming in certain styles, making use of additional services
and resources, and constructing larger programs.

14
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2.1. First-Class Functions

In the Orc programming language, functions are first-class values. This means that a function is treated
like any other value; it may be published, passed asan argument to acall, incorporated into adata structure,
and so on.

Defining a function creates a special value called a closure. The name of the function is a variable and
its bound value is the closure. For example, these function declarations create two closures, bound to the
variables a and b, from which we subsequently create atuple called f uns:

def a(x) = x-3
def b(y) = y*4
val funs = (a, b)

A closure can be passed as an argument to another function. A function which accepts functions as
arguments is called a higher-order function. Here's an example:

def diff(f) =1f(1) - f(0)
def triple(x) =x * 3

diff(triple) {- equivalent to triple(l) - triple(0) -}

The use of higher-order functions is common in functional programming. Here is the Orc version of the
classic 'map’ function:

def map(f, []

[1) =1]
def map(f, h:t f

) =

Sometimes one would like to create a closure directly, without bothering to give it a name. Thereis a
specia keyword | anbda for this purpose. By writing a function definition without the keyword def
and replacing the function name with the keyword | anbda, that definition becomes an expression which
evaluates to a closure.

(h):map(f,t)

def diff(f) = f(1) - f(0)

diff( lambda(x) = x * 3 )
{_

this is identical to:

def triple(x) = x * 3
diff(triple)
-}

15
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2.2. The . notation

In many object-oriented programming languages, one calls amethod or accesses afield of an object using
the dot operator; for example, obj . m() calls the method mof the object obj .

Thereisaspecial kind of site call in Orc which serves a similar purpose. One may write x. nsg, for any
identifiersx and nsg. Thistreats the value bound to x asasite, and callsit with a special message value
nsg. If the site understands the message nsg (for example, if x is bound to a Java object with a field
caled nsQ), the site interprets the message and responds with some appropriate value. If the site does not
understand the message sent to it, it does not respond, and no publication occurs. If x cannot beinterpreted
asasite, no call ismade.

Typically this capability is used so that sites may be syntactically treated like objects, with multiple
methods and fields. For example, achannel ¢ might understand the messagesget and put , to get values
from and put values on that channel, respectively. Such callswould be writtenc. get (), orc. put ( 6) .

A cal such asc. put (6) actually occursin two steps. First c. put sends the message put to the site
c; this publishes a site whose only purpose is to put values on the channel. Next, that site is called on
the argument 6, sending 6 on the channel. Readers familiar with functional programming will recognize
this technique as currying.

16
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2.3. Records

In addition to tuples and lists, the Orc language has a third native data structure, called arecord.

A record expression is acomma-separated sequence of elements of theformk = E, enclosed by record
braces{. and. } ,whereeachkisanidentifier called akey, and each E isan expression. Records may have
any number of fields, including zero. Each expression is executed and its first published value is taken;
the value of the whole record expression is a record containing a pairing of each key with its associated
value. Order isirrelevant. If any of the expressions are silent, then the whole record expression is silent.

Examples
e {. zero =3 - 3, one =0 + 1 .} publishes{. zero = 0, one =1 .}.
o {. .} publishes{. .}, theempty record.

Elements of records are accessed using the dot (. ) syntax described earlier. The expressionr . k publishes
the value paired with key k inrecord r . If k isnot present in r , the expressionis silent.

Supposer = {. x =0, y =1 .}
Examples

* r. X publishesO.

e r.y publishes1.

* r.zisslent.

Like tuples and lists, records can also be matched by a pattern. However, unlike other patterns, a record
pattern does not need to name all of the keysin the record being matched; it only needs to match a subset.

Supposer = {. x =0, y =1, z =2 .}

Examples

1
p
>

1

er >f. vy b .}> (a, b) publishes(1, 0).

er >. y=a w=b .}> (a,b) isdlent.

17
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2.4. Defining Sites in Orc

Orc has a specia declaration, def cl ass, which alows a site to be written in Orc itself. Thisis a
convenient mechanism for writing sites whose internal behavior is best expressed by an orchestration,
which might be an awkward task in Java, Scala, or other similar languages.

A def cl ass resemblesadef initssyntax, but not in its behavior. The site defined by def cl ass
is afactory which creates instances of the class. Each def within the body of thedef cl ass becomes
amethod of an instance. The scope expression of these declarations becomes the internal computation of
theinstance; it beginsto run when theinstanceis created, and cannot be killed by the Orc program, exactly
asif it were acomputation of an external service.

Thefollowing two examplesdemonstrate some of the behavior of def ¢l ass. For amorecomprehensive
explanation of def cl ass and itsfeatures, see the Reference Manual.

2.4.1. Example: Stack

The following code defines asite St ack, which creates stacks with push and pop methods:

def class Stack() =
{- The stack is initially enpty -}
val store = Ref([])

def push(x) =
store? >xs>

store = X! XS

{- Note that popping an enpty stack sinply halts, with no effect -}

def pop() =
store? >h:t>
store :=t >>
h

{- A stack instance has no ongoi ng conmputation -}
stop

{- Test the stack -}
val st = Stack()
st.push(3) >> st.push(5) >> st.pop() >> st.pop()

{-
QUTPUT:
3

-}
2.4.2. Example: Multicast

Here is amore complex example, which creates a multicast. Whenever avalue is available on the source
channdl, it is read, and broadcasted to all current listeners. Listeners may be added with the addListener
method.
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def class Multicast(source) =
val listeners = Ref([])

def addListener(f) =
listeners? >fs>
listeners := f:fs

{- The ongoing conputation of a nulticast -}
repeat (source) >itenr each(listeners?) >sink> sink(item

{- Test the multicast -}

val ¢ = Channel ()

val ntast = Milticast(c.get)
val listener A = Channel ()
val listenerB = Channel ()

{- At n seconds, broadcast n. Stop at 9 seconds. -}
upto(10) >i> Rwait(1000*i) >> c.put(i) >> stop

{- Listener Ajoins at 1.5 seconds, hearing 2..9 -}
| Rwait(1500) >> ntast.addListener(listenerA put) >> stop

{- Listener B joins at 6.5 seconds, hearing 7..9 -}
| Rwait(6500) >> ntast.addListener(listenerB.put) >> stop

{- Publish everything that Listener A hears -}
| repeat(listenerA get) >a> ("A", a)

{- Publish everything that Listener B hears -}
| repeat(listenerB.get) >b> ("B", b)

{- Shortly after 10 seconds, close down the channels -}
| Rwait(10500) >>

listenerA close() >>

i stenerB.close() >>

c.close() >>

st op
{_
QUTPUT: PERMUTABLE
("R, 2)
("R, 3)
("R, 4)
("A", 5)
("A", 6)
("R, 7)
("B, 7)
("A, 8)
("B, 8)
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2.5. Datatypes

We have seen Orc's predefined data structures: tuples, lists, and records. Orc also provides the capability
for programmersto definetheir own datastructures, using afeature adopted from the ML/Haskell language
family called datatypes (also called variants or tagged sums).

Datatypes are defined using the t ype declaration:

type Tree = Node(_, _,_) | Enpty()

This declaration defines two new sites named Node and Enpty. Node takes three arguments, and
publishes atagged value wrapping those arguments. Enpt y takes no arguments and does the same.

Once we have created these tagged values, we use a new pattern called a datatype pattern to match them
and unwrap the arguments:

type Tree = Node(_, ,_) | Enmpty()
{- Build up a small binary tree -}
val | = Node(Enpty(), 0, Enpty())

val r Node( Empty(), 2, Enpty())
val t Node(Il,1,r)

{- And then match it to extract its contents -}
t >Node(l,j,r)>

| >Node(_,i,_)>

r >Node(_, k, )>

Cilil k)

{-
OQUTPUT: PERMUTABLE
0

-}

One pair of datatypesis so commonly used that it is already predefined in the standard library: Sorme( _)
and None() . These are used as return values for calls that need to distinguish between successfully
returning a value (Sone(v) ), and successfully completing but having no meaningful value to return
(None() ). For example, alookup function might return Sorme( r esul t) if it found aresult, or return
None() if it successfully performed the lookup but found no suitable result.
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2.6. Importing Resources

While the Orc language itself is expressive, and the Standard Library offers a number of useful sites and
functions, it is often necessary to extend the capabilities of a program by writing new sites, using existing
Javaor Scala code, or making use of Orc code written by other programmers. Orc has three declarations,
one corresponding to each of these three use cases.

2.6.1. Writing Custom Sites

Thei nport si t e declaration allowsacustom siteto beimported and used in an Orc program. Thereare
specific requirements that must be met by such sites; these are described in detail in the reference manual.

Suppose one had written a custom site, implemented in the Java class
ny. exanpl e. site. Exanpl eSi t e. The following code would make it available as a site named
Exanpl e inan Orc program:

i mport site Exanple = "ny.exanple.site. Exanpl eSite"

2.6.2. Using Java Classes

The i nport cl ass declaration alows a Java class to be used as if it were an Orc site. The class
constructor is imported as a site, and calls to that site return new Java objects whose methods and fields
may be accessed using the dot notation. The specific details of this conversion are documented in the
reference manual .

The following code imports and uses Javas Fi | e, Fi | eReader, and Buf f er edReader classes to
read the first line of atext file.

import class File = "java.io.File"
i mport class Fil eReader = "java.io. Fil eReader™
i mport class BufferedReader = "java.io. BufferedReader"

val f = File("exanmple.txt")
val reader = BufferedReader (Fil eReader(f))
reader. readLi ne()

2.6.3. Including Source Files

Thei ncl ude declaration reads atext file containing Orc declarations and includes those declarationsin
theprogramasif they had occurred at the point wherethei ncl ude declaration occurred. Any declarations
may be included: val , def , i nport, or even other i ncl ude declarations. This provides a primitive
form of modularity, where Orc code shared by many programs may be centralized in one or more include
files.

Ani ncl ude declaration may nameany URL, not just alocal file. Thus, useful includefiles can be shared
over the Internet directly.
{- Retrieve an include file fromthe Orc website and print the exanpl e nessage dec

i nclude "http://orc.csres. utexas. edu/ docunent ati on/ exanpl e. i nc"
Printl| n(exanmpl e_nmessage)
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2.7. Type Checking

2.7.1.

2.7.2.

By default, Orc behaves as an untyped language. However, there is an optional static typechecker built
into Orc, and an accompanying set of typed syntax and type annotations to support static typechecking. It
can be enabled within the Orc Eclipse plugin, or viaa command-line switch. The typechecker assures, up
to the limitations of its algorithm, that no type errors will occur when the program is run. Thisis a useful
sanity check on aprogram, making it easier to catch bugs early, or rule out certain causesfor existing bugs.
In some cases, it also speeds up program devel opment.

A full description of the Orc typechecker is available in the Reference Manual. The reference manual
section for each language feature describes how that feature interacts with the typechecker.

It is beyond the scope of this document to give afull tutorial on static type checking. However, we will
briefly introduce the core concepts and describe the typical approach to using the type checker on an
existing Orc program with no type information.

Type Inference

The Orc typechecker performs type inference, meaning that it can guess and confirm the type of many
expressions without any extra information.

For example, the typechecker will happily check the following untyped program without any assistance:

val pi = 3.141592653
val radius = 7
val area = pi * radius * radius

PrintIn("Area: " + area)

Thisprogram hastype Si gnal , sincethebody expressionisaPr i nt | n call, which publishesasi gnal .
The typechecker verifies that al operations in the program are type-correct.

If we had introduced atype error somewhere, the typechecker would catch it. For example, both of these
programs fail to typecheck:

val pi = 3.141592653
val radius =7
val area = "pi" * radius * radius {- type error -}

PrintIn("Area: " + area)

val pi = 3.141592653
val radius = 7
val area = pi * radius * radius

PrintIn("Area ": area) {- type error -}

Adding Type Information

When we begin adding function definitions to a program, the typechecker will need more information in
order to operate correctly.
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A defined function must have type information for each of its arguments. We add type information using
the symbol : : . Thisis similar to the requirements on methods in languages like Java or Scala:

{- Oc -}
def square(x :: Integer) = x * X

[* Scala */
def circleArea(x: int) = x * X

/* Java */
public int circleArea(int x) { return x * x; }

If the function is recursive, we must also giveits return type:

def metronone() :: Signal = signal | Rwait(1000) >> metronone()

If the function has multiple clauses, or its arguments are complex patterns, this approach can be confusing.
Instead of writing the types inline, we can write a signature, an extra declaration with the argument and
return types:

def sum(List[Nunber]) :: Number {- a signature for 'sum -}
def sunm([]) =0
def sum(h:t) = h + sum(t)

Noticethetype of thelist argument, Li st [ Nunber ] . Li st isapolymorphic (or "generic") type, which
we will discuss further in the next section.

2.7.3. Polymorphism

The Orc type system has polymorphic, or "generic", types, such as Li st. These are the types of
collections or containers whose contents might be of any type, so long as the type is consistent. For
example, thelist [ 3, 4, 5] hastypelLi st[Integer],whereass[[true], [false], []] has
typelLi st [ Bool ean] .

A function may also be polymorphic, if it has polymorphic arguments. This must be made explicit in the
function signature. For example, here isalist append function:

def append[ X] (List[X], List[X]) :: List[X] {- Note the use of a type variable, X
def append([], I) =1
def append(h:t, 1) = h:append(t,1)

The typechecker will allow append to be used on any two lists with the same type of elements; X isthe
name of that type. In a program that uses append, the typechecker is actually guessing a type argument,
which gets bound to X.

When the programmer writes:
val a =[1,2,3]

val b = [4,5]
append(a, b)
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the typechecker fillsin atype argument for append:

val a [1, 2, 3]
val b [ 4, 5]
append[ I nteger] (a, b)

Sometimesthetypechecker can't guessthistypeargument onitsown. For example, theChannel sitetakes
atype argument but no value arguments, so the typechecker doesn't have enough information available to
guess the type argument when it encounters the call. It must be added explicitly:

{- Fails to typecheck -}
val ¢ = Channel ()
c.put(7)

{- Typechecks -}
val ¢ = Channel [Integer]()
c.put(7)

Thisinformation may seem redundant, sincec. put ( 7) obviously indicatesthat the channel will contain
I nt eger values, but the typechecking algorithm does not use that information. It makes up for this
limitation by providing more power in other areas.

Thislimitation is not unusual. Java constructors for generic classes have a similar requirement:

Li nkedLi st <l nteger> | = new Li nkedLi st <l nteger>();
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Chapter 3. Syntactic and Stylistic
Conventions

In this section we suggest some syntactic conventionsfor writing Orc programs. None of these conventions
arerequired by the parser; newlinesare used only to disambiguate certain corner casesin parsing, and other
whitespace is ignored. However, following programming convention helps to improve the readability of
programs, so that the programmer's intent is more readily apparent.
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3.1. Parallel combinator

When the expressions to be combined are small, write them all on oneline.

F| G| H

When the combined expressions are large enough to take up a full line, write one expression per line,
with each subsequent expression aligned with the first and preceded by | . Indent the first expression to
improve readability.

| ong expression
| 1ong expression
| 1ong expression

A sequence of paralldl expressions often form the left hand side of a sequential combinator. Since the
sequential combinator has higher precedence, use parentheses to group the combined parallel expressions
together.

( expression

| expression

) >x>

anot her expression
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3.2. Sequential combinator

When the expressions to be combined are small, write a cascade of sequential combinatorsall on the same
line.

F >x> G >y> H

When the expressions to be combined are individually long enough to take up a full line, write one
expression per line; each line ends with the combinator which binds the publications produced by that line.

| ong expression >x>
| ong expression >y>
| ong expression

For very long expressions, or expressions that span multiple lines, write the combinators on separate lines,
indented, between each expression.

very | ong expression
>X>

very | ong expression
>y >

very | ong expression
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3.3. Pruning combinator

When the expressions to be combined are small, write them on the same line:

F <x< G

When multiple pruning combinators are used to bind multiple variables (especialy when the scoped
expression is long), start each line with a combinator, aligned and indented, and continue with the
expression.

| ong expression
<x< G
<y< H

The pruning combinator is not often written in its explicit form in Orc programs. Instead, the val
declaration is often more convenient, sinceit is semantically equivalent and mentionsthe variablex before
its use in scope, rather than after.

val x = G
val y = H
| ong expression

Additionally, when the variable is used in only one place, and the expression is small, it is often easier to
use a nested expression. For example,

val x = G
val y = H
M X, Y)

is equivalent to

MG H

Sometimes, we use the pruning combinator simply for its capability to terminate expressions and get a
single publication; binding avariableisirrelevant. Thisisaspecial case of nested expressions. We usethe
identity site Let to put the expression in the context of afunction call.

For example,

X <x< F| G| H

isequivalent to

Let(F | G| H

The translation uses a pruning combinator, but we don't need to write the combinator, name an irrelevant
variable, or worry about precedence (since the expression is enclosed in parentheses as part of the call).
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3.4. Declarations

3.4.1.

When the body of a declaration spans multiple lines, start the body on a new line after the = symbol, and
indent the entire body.

def f(x,y) =
decl arati on
decl arati on
body expression

Apply this style recursively; if adef appears within a def, indent its contents even further.

def f(x,y) =

decl arati on
def hel per(z) =
decl aration in hel per
declaration in

body of hel per
decl arati on

body expression

Ambiguous Declarations

The following situation could introduce syntactic ambiguity: the end of a declaration (def or va) is
followed by an expression that starts with a non-alphanumeric symbol. Consider these example programs:

def f() =

def g()
(X,Y)

1
>

def f()
val t

(X,Y)

def f()
val t
-3

(X, y) may beinterpreted asthe parameter list of h, and - 3 as continuation of u, or they may be regarded
as completely separate expressions (in this case, the goal expression of def f ). To avoid this ambiguity,
Orc imposes the following syntactic constraint:

An expression that follows a declaration begins with an alphanumeric symbol

To circumvent this restriction, if (X,y) is an expression that follows a declaration, writeit as# (X, Y).
Similarly, write# - 3, incase - 3 isthe goal expression in the above example. Note that there are many
solutions to this problem; for example using si gnal >> (x,y) orstop | (X,y) isasovalid.
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Chapter 4. Programming ldioms

In this section we give Orc implementations of some standard idioms from concurrent and functional
programming. Despite the austerity of Orc's four combinators, we are able to encode a variety of idioms
straightforwardly.

31



Programming Idioms

4.1. Channels

Orc has no communication primitives like pi-calculus channels® or Erlang mailboxes?. Instead, it makes
use of sitesto create channels of communication.

The most frequently used of these sitesis Channel . When called, it publishes a new asynchronous FIFO
channel. That channel is a site with two methods: get and put . Thecall c. get () takesthefirst value
from channel ¢ and publishesit, or blocks waiting for avalue if none is available. The call c. put (v)

putsv asthelast item of ¢ and publishesasignal.

A channel may be closed to indicate that it will not be sent any more values. If the channel ¢ is closed,
c. put (v) alwayshalts(without modifying the state of the channel), andc. get () hatsoncec becomes
empty. Thechannel ¢ may beclosed by callingeitherc. cl ose() , whichreturnsasigna oncec becomes
empty, or c. ¢l oseD() , which returnsasignal immediately.

1Robin Milner. 1999. Communicating and Mobile Systems: The #-Calculus. Cambridge University Press, New York, NY, USA.
2Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike Williams. 1996. Concurrent programming in ERLANG (2nd ed.). Prentice Hall,
Englewood Cliffs, NJ, USA.
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4.2. Lists

In the introduction to the Orc language, we were introduced to lists: how to construct them, and how to
match them against patterns. Whileit is certainly feasible to write a specific function with an appropriate
pattern match every time we want to access a list, it is helpful to have a handful of common operations
on lists and reuse them.

One of the most common uses for alist isto send each of its elements through a sequential combinator.
Sincethelist itself isasingle value, we want to walk through the list and publish each one of its elements
in parallel asavaue. Thelibrary function each does exactly that.

Suppose we want to send the messagei nvi t e to each email addressinthelisti nvi t eLi st :

each(invitelList) >address> Enumil (address, invite)

Orc also adopts many of the list idioms of functional programming. The Orc library contains definitions
for most of the standard list functions, such as nap and f ol d. Many of the list functions internally
take advantage of concurrency to make use of any available parallelism; for example, the map function
dispatches all of the mapped calls concurrently, and assembles the result list once they all return using
afork-join.
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4.3. Streams

Sometimes a source of datais not explicitly represented by alist or other data structure. Instead, it is made
available through a site, which returnsthe values one at atime, each timeitis called. We call such asitea
stream. It isanalogousto an iterator in alanguage like Java. Functions can also be used as streams, though
typically they will not be pure functions, and should only return one value. A call to a stream may halt, to
indicate that the end of the data has been reached, and no more values will become available. It is often
useful to detect the end of a stream using the otherwise combinator.

Streams are common enough in Orc programming that thereisalibrary functionto take all of the available
publications from astream; itiscalled r epeat , and it isanalogous to each for lists.

def repeat(f) = f() >x> (x | repeat(f))

The r epeat function calls the site or function f with no arguments, publishes its return value, and
recurses to query for more values. r epeat should be used with sites or functions that block until avalue
isavailable. Noticethat if any call tof halts, thenr epeat (f) consequently halts.

For example, it is very easy to treat a channel ¢ as a stream, reading any values put on the channel as
they become available:

repeat (c. get)
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4.4. Mutable References

4.4.1.

4.4.2.

Variablesin Orc are immutable. There is no assignment operator, and there is no way to change the value
of abound variable. However, it is often useful to have mutable state when writing certain algorithms.
The Orc library contains two sites that offer simple mutable storage: Ref and Cel | . It aso provides the
site Ar r ay to create mutable arrays.

A word of caution: References, cells, and other mutable objects may be accessed concurrently by many
different parts of an Orc program, so race conditions may arise.

Rewritable references

The Ref site creates rewritable reference cells.

val r = Ref(0)
PrintIn(r.read()) >>
r-wite(2) >>
PrintIn(r.read()) >>
st op

{-
QUTPUT:
0
2

-}
Thesearevery similartoML'sr ef cells.r. wri t e(v) storesthevaluev inthereferencer , overwriting
any previous value, and publishesasignal. r . r ead() publishesthe current value storedinr .

However, unlikein ML, areference cell can be left initially empty by calling Ref with no arguments. A
read operation on an empty cell blocks until the cell iswritten.

{- Create a cell, and wait 1 second before initializing it.
The read operation blocks until the wite occurs.

-}

val r = Ref()
r.read() | Rwait(1000) >> r.wite(l) >> stop

{-
CQUTPUT:
1

-}
Write-once references

The Orc library also offerswrite-once reference cells, using the Cel | site. A write-once cell hasnoinitial
value. Read operations block until the cell has been written. A write operation succeeds only if the cell is
empty; subsequent write operations simply halt.

{- Create a cell, try to wite to it twice, and read it.
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4.4.3.

4.4.4.

The read will block until a wite occurs
and only one wite will succeed.

-}

val r = Cell ()

Rwai t (1000) >> r.wite(2) >> Println("Wote 2") >> stop
| Rwait(2000) >>r.wite(3) >> Println("Wote 3") >> stop
| r.read()

{_

OUTPUT: PERVUTABLE
2

Wote 2

-}

Write-once cells are very useful for concurrent programming, and they are often safer than rewritable
reference cells, since the value cannot be changed once it has been written. The use of write-once cellsfor
concurrent programming is not a new idea; they have been studied extensively in the context of the Oz
programming language [ https://en.wikipedia.org/wiki/Oz_programming_language].

Syntax for manipulating references

Orc provides syntactic sugar for reading and writing mutable storage:

e X?isequivalenttox. r ead() . Thisoperator isof equal precedence with the dot operator and function
application, so you can write things like x. y?. v?. This operator is very similar to the C languages's
* operator, but is postfix instead of prefix.

e X := yisequivalenttox. wite(y). Thisoperator has higher precedence than the concurrency
combinators and if/then/else, but lower precedence than any of the other operators.

Here is a previous example rewritten using this syntactic sugar:

{- Create a cell, try to wite to it twice, and read it.
The read will block until a wite occurs
and only one wite will succeed.

-}

val r = Cell ()

Rwai t (1000) >>r
| Rwait(2000) >>r
| r?

2 >> Println("Wote 2") >> stop
3 >> Println("Wote 3") >> stop

{ -

OUTPUT: PERVUTABLE
2

Wote 2

-}
Arrays
Whilelists are avery useful data structure, they are not mutable, and they are not indexed. However, these

properties are often needed in practice, so the Orc standard library provides a function Ar r ay to create
mutable arrays.
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Array(n) creates an array of size n whose elements are all initially nul | . The array is used like a
function; the call A(i) returnsthei th element of the array A, which is then treated as a reference, just
like the references created by Ref . A call with an out-of-bounds index halts, possibly reporting an error.

The following program creates an array of size 10, and initializes each index i with the ith power of 2. It
then reads the array values at indices 3, 6, and 10. The read at index 10 halts because it is out of bounds
(arrays are indexed from 0).

{- Create and initialize an array, then halt on out of bounds read -}
val a = Array(10)
def initialize(i) =
if (i < 10)
then a(i) := 2 ** i >> initialize(i+1)
el se signal
initialize(0) >> (a(3)? | a(6)? | a(l1l0)?)

{_

OUTPUT: PERMJTABLE

8

64

Error: java.lang. Arrayl ndexCQut Of BoundsException: 10
-}

The standard library also provides ahelper functionfi | | Ar r ay which makesarray initialization easier.
fill Array(a, f) initializes array a using function f by setting element a(i ) to the first value
published by f (i) . When the array isfully initialized, fi | | Ar r ay returnsthe array a that was passed
(which makesit easier to simultaneously create and initialize an array). Here are afew examples:

{- Create an array of 10 elenments; elenent i is the ith power of 2 -}
fill Array(Array(10), lanbda(i) =2 ** i) >a>
a(4)?

{-
QUTPUT:
16

-}

{- Create an array of 5 elenments; each elenent is a newy created channel -}
fillArray(Array(5), lanbda(_) = Channel ())

{- Create an array of 2 channels -}
val A=fillArray(Array(2), lanmbda(_) = Channel ())

{- Send true on channel O,
listen for a value on channel 0 and forward it to channel 1,
and listen for a value on channel 1 and publish it.

-}

A(0)?. put(true) >> stop
| A(0)?.get() >x> A(1)?.put(x) >> stop
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| A(1)?.get()

{_
QUTPUT:
true

-}

Since arrays are accessed by index, thereis alibrary function specifically designed to make programming
with indices easier. The function upt o( n) publishesall of the numbers from O to n- 1 simultaneously;
thus, it is very easy to access al of the elements of an array simultaneously. Suppose we have an array A
of n email addresses and would like to send the message mto each one.

upto(n) >i> A(i)? >address> Emmil (address, m
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4.5. Tables

Orc programs occasionally require a data structure that supports constant-time indexing but need not also
provide mutable storage. For thispurpose, an Ar r ay istoo powerful. Thestandard library providesanother
structure called a Tabl e tofill thisrole.

Thecall Tabl e(n, f),wheren isanatural number and f atotal function over natural numbers, creates
and returns an immutable array of size n (indexed from 0), whose i th element isinitializedtof (i) . A
table can also be thought of asapartially memoized version of f restricted to therange[0, n). Tabl e does
not return avalue until all callstof have completed, and will haltif any call halts. Given atable T, the call
T(i) returnsthei th element of T. Notice that unlike array access, the ? is not needed to subsequently
dereference the return value, since it is not a mutable reference.

Tables are useful when writing al gorithms which used afixed mapping of indexesto some resources, such
as a shared table of communication channels. Such atable could be constructed using the following code:

val size = 10
val channels = Tabl e(size, lanbda (_) = Channel ())

Notice that the | anbda ignores its argument, since each channdl is identical. Here is another example,
which memoizes the cubes of the first 30 natural numbers:

val cubes = Tabl e(30, lanbda(i) = i*i*i)
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4.6. Loops

Orc does not have any explicit looping constructs. Most of the time, where aloop might be used in other
languages, Orc programs use one of two strategies:

1. When the iterations of the loops can occur in parallel, write an expression that expands the datainto a
sequence of publications, and use a sequential operator to do something for each publication. Thisis
the strategy that uses functionslikeeach, r epeat , and upt o.

2. When theiterations of theloops must occur in sequence, write atail recursive function that iterates over
the data. Any loop can berewritten asatail recursion. Typically the dataof interestisin alist, so one of
the standard list functions, such asf ol dl , applies. The library also defines afunction whi | e, which
handles many of the common use cases of while loops.
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4.7. Parallel Matching

Matching a value against multiple patterns, as we have seen it so far, is alinear process, and requires a
def whose clauses have patterns in their argument lists. Such a match is linear; each pattern istried in
order until one succeeds.

What if we want to match a value against multiple patterns in parallel, executing every clause that
succeeds? Fortunately, thisis very easy to do in Orc. Suppose we have an expression F which publishes
pairs of integers, and we want to publish asignal for each 3 that occurs.

We could write:
F >(x, y)>

( 1ft(x
| 1ft(y

3) >> signal
3) >> signal )

But there is amore general aternative:

F >x>
( x >(3, _)> signal
| x >(_, 3)> signal )

Theinteresting caseisthe pair ( 3, 3) , which is counted twice because both patterns match it in parallel.

This parallel matching technique is sometimes used as an alternative to pattern matching using function
clauses, but only when the patterns are mutually exclusive.

For example,

def helper([]) =0
def helper([_]) =1
def helper(_:_:_) =
hel per([4, 6])

2
isequivalent to

[4, 6] >x>
( x >[]>0
| x >[_]>1
| x > : >2
)

whereas

def helper([]) =0
def hel per([_])

def helper(_) =
hel per ([ 5])

=1
2
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QUTPUT: PERMUTABLE
1
2

-}

because the clauses are not mutually exclusive. Function clauses must attempt to match in linear order,
whereas this expression matches all of the patternsin parallel. Here, it will match [ 5] two different ways,
publishing both 1 and 2.
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4.8. Fork-join

4.8.1.

4.8.2.

4.8.3.

One of the most common concurrent idiomsis afork-join: run two processes concurrently, and wait for a
result from each one. Thisisvery easy to expressin Orc. Whenever wewriteaval declaration, the process
computing that value runs in parallel with the rest of the program. So if we write two val declarations,
and then form atuple of their results, this performs afork-join.

val x = F
val vy = G
# (X,Y)

Fork-joins are a fundamental part of all Orc programs, since they are created by all nested expression
trandations. In fact, the fork-join we wrote above could be expressed even more simply asjust:

(F.Q

Example: Machine initialization

In Orc programs, we often use fork-join and recursion together to dispatch many tasksin parallel and wait
for all of them to complete. Suppose that given a machine m calling m i ni t () initializes mand then
publishes asignal when initialization is complete. The functioni ni t Al | initiaizesalist of machines.

def initAl([]) = signal
def initAll(mmnms) = ( minit() , initAl(nms) ) >> signal

For each machine, wefork-jointheinitialization of that machine(m i ni t () ) withtheinitialization of the
remaining machines(i ni t Al | (ns) ). Thus, all of theinitializations proceed in parallel, and the function
returns asignal only when every machine in the list has completed itsinitialization.

Note that if some machine failsto initialize, and does not return asignal, then the initialization procedure
will never complete.

Example: Simple parallel auction

We can also use a recursive fork-join to obtain a value, rather than just signaling completion. Suppose
we have alist of bidders in a sealed-bid, single-round auction. Calling b. ask() requestsabid from the
bidder b. We want to ask for one bid from each bidder, and then return the highest bid. The function
auct i on performs such an auction for alist of bidders (mex finds the maximum of its arguments):

def auction([]) =0

def auction(b: bs) max(b. ask(), auction(bs))

Note that all bidders are called simultaneously. Also note that if some bidder fails to return a bid, then

the auction will never complete. Later we will see a different solution that addresses the issue of non-
termination.

Example: Barrier synchronization

Consider an expression of the following form, where F and G are expressionsand M and N are sites:
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M) >x> F | N) >> G

Suppose we would like to synchronize F and G, so that both start executing at the same time, after both
M) and N() respond. Thisis easily done using the fork-join idiom. In the following, we assume that x
does not occur freein G, nory inF.

( M), NO) ) >(xy)> (F| G)
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4.9. Sequential Fork-Join

Previous sections illustrate how Orc can use the fork-join idiom to process a fixed set of expressions or a
list of values. Suppose that instead we wish to process al the publications of an expression F, and once
this processing is complete, execute some expression G. For example, F publishes the contents of a text
file, oneline at atime, and we wish to print each line to the console using the site pr i nt | n, then publish
asignal after al lines have been printed.

Sequential composition aloneis not sufficient, because we have no way to detect when all of thellines have
been processed. A recursive fork-join solution would require that the lines be stored in a traversable data
structure like alist, rather than streamed as publications from F. A better solution usesthe ; combinator
to detect when processing is compl ete:

F >x> println(x) >> stop ; signal

Since; only evaluatesitsright side if the left side does not publish, we suppress the publications on the
left side using st op. Here, we assume that we can detect when F halts. If, for example, F is publishing
the lines of the file as it receives them over a socket, and the sending party never closes the socket, then
F never halts and no signal is published.
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4.10. Priority Poll

The otherwise combinator is also useful for trying alternatives in sequence. Consider an expression of the
foomFy ; F1 ; F2 ; ....If Fdoesnot publish and halts, then Fi. is executed. We can think of
the F's as a series of alternatives that are explored until a publication occurs.

Suppose that we would like to poll alist of channels for available data. The list of channelsis ordered by
priority. Thefirst channel in thelist has the highest priority, so it is polled first. If it has no data, then the
next channel is polled, and so on.

Here is a function which polls a prioritized list of channelsin this way. It publishes the first item that it
finds, removing it from the originating channel. If all channels are empty, the function halts. We use the
get nb ("get non-blocking") method of the channel, which retrievesthefirst availableitem if thereisone,
and halts otherwise.

def priorityPoll ([]) = stop
def priorityPoll (b:bs) = b.getD() ; priorityPoll (bs)
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4.11. Parallel Or

“Parallel or" is a classic idiom of parallel programming. The ““paralel or" operation executes two
expressions F and G in paralel, each of which may publish a single boolean, and returns the disjunction
of their publications as soon as possible. If one of the expressions publishest r ue, then the disunction
istrue, soitisnot necessary to wait for the other expression to publish avalue. This holds even if one
of the expressionsis silent.

The ““parallel or" of expressions F and G may be expressed in Orc as follows:

val result =
val a =F
val b = G

Ift(a) >> true | Ift(b) >> true | (a || b)
result

Theexpression(a || b) waitsfor both a and b to become available and then publishestheir disjunction.
However if either a or b istruewe can publisht r ue immediately regardless of whether the other variable
is available. Thereforewerun I ft(a) >> trueandIft(b) >> true in pardle to wait for
either variable to become t r ue and immediately publish the result t r ue. Since more than one of these
expressionsmay publisht r ue, thesurroundingval isnecessary to select and publish only thefirst result.
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4.12. Timeout

Timeout, the ahility to execute an expression for at most a specified amount of time, is an essential
ingredient of fault-tolerant and distributed programming. Orc accomplishes timeout using pruning and the
Rwai t site. The following program runs F for at most one second, publishing its result if available and
the value O otherwise.

Let( F | Rwait(1000) >> 0 )

4.12.1. Auction with timeout

In the auction example given previously, the auction may never complete if one of the bidders does not
respond. We can add atimeout so that a bidder has at most 8 seconds to provide a bid:

def auction([]) =0

def auction(b:bs) =
val bid = b.ask() | Rwait(8000) >> 0
max(bi d, auction(bs))

Thisversion of the auction is guaranteed to compl ete within 8 seconds.

4.12.2. Detecting timeout

Sometimes, rather than just yielding a default value, we would like to determine whether an expression
has timed out, and if so, perform some other computation. To detect the timeout, we pair the result of the
original expression witht r ue and the result of the timer with f al se. Thus, if the expression doestime
out, then we can distinguish that case using the boolean value.

Here, we run expression F with atime limit t . If it publishes within the time limit, we bind its result to
r and execute G. Otherwise, we execute H.
val (r, b) = (F, true) | (Rmait(t), false)
if bthen Gelse H
Instead of using a boolean and conditional, we could use pattern matching:
val s = Sonme(F) | Rwait(t) >> None()
s >Sone(r)> G
| s >None()> H

It is even possible to encapsulate timeout as afunction.

def tinmeout(x, t) = Let(Sone(x) | Rwait(t) >> None())

ti meout (F, t) waitst milliseconds for F to publish avalue. If F publishes v within the time limit,
ti meout returns Sone( v) . Otherwise, it returns None() when thetime limit is reached.

4.12.2.1. Timeout streams

We can also apply timeout to streams. Let's define amodified version of ther epeat function asfollows:
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def repeatWthTimeout (f, t) =
timeout (f(), t)
>Sone( x) >
(x | repeatWthTi meout (f, t))

Wecdll f () asbefore, but apply atimeout of t to the call. If avalue becomes available from f before
the timeout, then the call to t i meout publishes Some( x) , which we match, and then publish x and

recursively wait for further values from the stream.

However, if no value is available from f within the timeout, the call to t i meout publishes None() .
SinceNone() doesnot match the pattern, the entire expression halts, indicating that the end of the stream

has been reached.

It is also possible to achieve this behavior with the existing r epeat function, ssmply by changing the

function passedtor epeat :

def f'() timeout (f(), t) >Sone(x)> x
fr

repeat (

)
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4.13. Priority

We can use a timer to give a window of priority to one computation over another. In this example, we
run expressions F and G concurrently. For one second, F has priority; F'sresult is published immediately,
but G's result is held until the time interval has elapsed. If neither F nor G publishes a result within one
second, then the first result from either is published.

val x F
val vy G
Let( x | Rwmait(1000) >> vy )

50



Programming Idioms

4.14. Metronome

A timer can be used to execute an expression repeatedly at regular intervals, for exampleto poll aservice.
Recall the definition of et r onone from the previous chapter:

def metronone(t) = signal | Rmait(t) >> metronone()
The following example publishes "tick" once per second and "tock™ once per second after an initia half-

second delay. The publications alternate; "tick tock tick tock ...". Note that this program is not defined
recursively; the recursion is entirely contained within met r onone.

nmet ronone(1000) >> "tick"
| Rwait(500) >> netronome(1000) >> "tock"
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4.15. Routing

The Orc combinators restrict the passing of values among their component expressions. However, some
programs will require greater flexibility. For example, F <x< Gprovides F with the first publication of
G, but what if F needs the first n publications of G? In cases like this we use channels or other stateful
sites to redirect or store publications. We call this technique routing because it involves routing values
from one execution to another.

4.15.1. Generalizing Termination

The pruning combinator terminates an expression after it publishesits first value. We have already seen
how to use pruning just for its termination capability, without binding avariable, using thel et site. Now,
we use routing to terminate an expression under different conditions, not just when it publishes a value;
it may publish many values, or none, before being terminated.

Our implementation strategy is to route the publications of the expression through a channel, so that we
can put the expression inside a pruning combinator and still seeits publications without those publications
terminating the expression.

4.15.1.1. Enhanced Timeout

As a simple demonstration of this concept, we construct a more powerful form of timeout: alow an
expression to execute, publishing arbitrarily many values (not just one), until atime limit is reached.

val ¢ = Channel ()
repeat (c.get) <<
F >x> c.put(x) >> stop
| Rwait(1000) >> c.closeD()

This program allows F to execute for one second and then terminates it. Each value published by F is
routed through channel ¢ so that it does not terminate F. After one second, Rwai t ( 1000) responds,
triggering thecall c. cl oseX ). Thecal c. cl oseD() closesc and publishesasignal, terminating F.
Thelibrary functionr epeat isused to repeatedly take and publish values from ¢ until it is closed.

4.15.1.2. Test Pruning

We can a so decide to terminate based on the values published. Thisexpression executesF until it publishes
a negative number, and then terminatesiit:

val ¢ = Channel ()
repeat (c.get) <<
F >x>
(if x>=0
then c.put(x) >> stop
el se c.closelX))

Each value published by F istested. If it is non-negative, it is placed on channel ¢ (silently) and read by
repeat (c. get) . If itisnegative, the channel isclosed, publishing asignal and causing the termination
of F.
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4.15.1.3. Interrupt

We can use routing to interrupt an expression based on a signal from elsewhere in the program. We
set up the expression like a timeout, but instead of waiting for a timer, we wait for the semaphore
done to be released. Any call to done. r el ease will terminate the expression (because it will cause
done. acqui re() to publish), but otherwise F executes as normal and may publish any number of
values.

val ¢ = Channel ()
val done = Senmaphore(0)
repeat (c.get) <<
F >x> c.put(x) >> stop
| done.acquire() >> c.closeD()

4.15.1.4. Publication Limit

We can limit an expression to n publications, rather than just one. Here is an expression which executes
F until it publishes 5 values, and then terminates it.

val ¢ = Channel ()
val done = Senaphore(0)

def allow(0) = done.release() >> stop
def allowm(n) = c.get() >x> (x | allown-1))
all om5) <<

F >x> c.put(x) >> stop
| done.acquire() >> c.closelX)

We use the auxiliary function al | ow to get only the first 5 publications from the channel ¢c. When no
more publications are allowed, al | owuses theinterrupt idiom to halt F and close c.

4.15.2. Non-Terminating Pruning

We can use routing to create a modified version of the pruning combinator. Asin F <x< G well run F
and G in parallel and make the first value published by G available to F. However instead of terminating
G dfter it publishes avalue, we will continue running it, ignoring its remaining publications.

val r = Cell ()
#
(F <x< c.read()) | (G>x>c.wite(x))

4.15.3. Sequencing Otherwise

We can also use routing to create amodified version of the otherwise combinator. We'll run F until it halts,
and then run G, regardless of whether F published any values or not.

val ¢ = Channel ()
repeat (c.get) | (F >x> c.put(x) >> stop ; c.close() > @Q
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Weusec. cl ose() instead of the morecommonc. cl oseD() to ensurethat G does not execute until
all the publications of F have been routed. Recall that ¢. cl ose() doesnot return until ¢ is empty.
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4.16. Fold

We consider various concurrent implementations of the classic "list fold" function from functional
programming:

def fold(_, [X])
def fold(f, x:xs)

X
f(x, fold(xs))

Thisisaseedlessfold (sometimescalled f ol d1) which requiresthat thelist be nonempty and usesitsfirst
element as a seed. Thisimplementation is short-circuiting --- it may finish early if the reduction operator
f does not use its second argument --- but it is not concurrent; no two callsto f can proceed in paralél.
However, if f is associative, we can overcome this restriction and implement fold concurrently. If f is
also commutative, we can further increase concurrency.

4.16.1. Associative Fold

We first consider the case when the reduction operator is associative. We define af ol d(f, xs) where
f isahbinary associative function and xs is anon-empty list. The implementation iteratively reduces xs
to asingle value. Each step of the iteration applies the auxiliary function st ep, which halves the size of
xs by reducing digoint pairs of adjacent items.

def afold(_, [x]) = X
def afold(f, xs) =
def step([]) =[]
def step([x]) = [X]
def step(x:y:xs) = f(x,y):step(xs)
af ol d(f, step(xs))

Notice that f (X, y) : st ep(xs) isan implicit fork-join. Thus, the call f (x, y) executes in parallel
with the recursive call st ep(xs) . Asaresult, al callstof execute concurrently within each iteration
of af ol d.

4.16.2. Associative, Commutative Fold

We can make the implementation even more concurrent when the fold operator is both associative and
commutative. We define cf ol d( f, xs), wheref isaassociative and commutative binary function and
xs isanon-empty list. The implementation initially copies all list itemsinto a channel in arbitrary order
using the auxiliary function xf er , counting the total number of items copied. The auxiliary function
conbi ne repeatedly pulls pairs of itemsfrom the channel, reduces them, and placesthe result back in the
channel. Each pair of itemsis reduced in parallel as they become available. The last item in the channel
istheresult of the overall fold.

def cfold(f, xs) =
val ¢ = Channel ()

def xfer([])
def xfer(x:xs)

0
Cc.put(x) >> stop | xfer(xs)+1

def conbi ne(0)
def conbi ne(1)

stop
c.get()
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def combine(n) = c.get() >x> c.get() >y>
( c.put(f(x,y)) >> stop | conbine(m1l))

xfer(xs) >n> conbi ne(n)
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Chapter 5. Larger Examples

In this section we show a few larger Orc programs to demonstrate programming techniques. There
are many more such examples available at the Orc Web site, on the community wiki [https:/
orc.csres.utexas.edu/wiki/Wiki.jsp?page=WikiLab].
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Larger Examples

5.1. Dining Philosophers

The dining philosophers problem is a well known and intensely studied problem in concurrent
programming. Five philosopherssit around acircular table. Each philosopher hastwo forksthat she shares
with her neighbors (giving five forks in total). Philosophers think until they become hungry. A hungry
philosopher picks up both forks, one at a time, eats, puts down both forks, and then resumes thinking.
Without further refinement, this scenario alows deadlock; if all philosophers become hungry and pick
up their left-hand forks simultaneously, no philosopher will be able to pick up her right-hand fork to eat.
Lehmann and Rabin's solution ¥, which we implement, requires that each philosopher pick up her forksin
arandom order. If the second fork is not immediately available, the philosopher must set down both forks
andtry again. Whilelivelock is still possibleif all philosopherstakeforksin the same order, randomization
makes this possibility vanishingly unlikely.

{- Dining Phil osophers -}

{- Randomy swap order of fork pick-up -}
def shuffle(a,b) = if (Random(2) = 1) then (a,b) else (b, a)

def take((a,b)) =
a.acquire() >> b.acquireD()
a.rel ease() >> take(shuffle(a,b))

def drop(a,b) = (a.release(), b.release()) >> signal

{- Define a phil osopher -}
def phil(n,a,b) =
def thinking() =
PrintIn(n + " thinking") >>
(if (Randon(10) <: 9)
t hen Rwait (Random( 1000))
el se stop)
def hungry() = take((a, b))
def eating() =
PrintIn(n + " eating") >>
Rwai t (Random(1000)) >>
PrintIn(n + " done eating") >>
drop(a, b)
t hi nki ng() >> hungry() >> eating() >> phil(n,a,b)

def phil osophers(1, a,b)
def phil osophers(n, a, b)
val ¢ = Semaphore(1)

phi | osophers(n-1,a,c) | phil(n,c,b)

phi | (1, a, b)

{- Test the definitions -}
val fork = Semaphore(1)
phi | osophers(5, fork, fork)

{_

IDaniel Lehmann and Michael O. Rabin. 1981. Onthe advantages of free choice: asymmetric and fully distributed solution to the dining philosophers
problem. In Proceedings of the 8th ACM SIGPLAN-SIGACT Symposiumon Principles of Programming Languages (POPL ‘81). ACM, New Y ork,
NY, USA, 133-138.
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QUTPUT: EXAMPLE
5 t hi nki ng

4 t hi nki ng

3 thinking

2 thinking

1 thinking

1 eating

4 eating

-}

The phi | function simulates a single philosopher. It takes as arguments two binary semaphores
representing the philosopher's forks, and calls the t hi nki ng, hungry, and eat i ng functions in a
continuous loop. A t hi nki ng philosopher waits for a random amount of time, with a 10% chance of
thinking forever. A hungry philosopher uses the t ake function to acquire two forks. An eat i ng

philosopher waits for a random time interval and then uses the dr op function to relinquish ownership
of her forks.

Cdling t ake( a, b) attemptsto acquire a pair of forks ( a, b) intwo steps: wait for fork a to become
available, then immediately attempt to acquire fork b. The call b. acqui reD() either acquires b and
responds immediately, or halts if b is not available. If b is acquired, signal success; otherwise, release
a, and then try again, randomly changing the order in which the forks are acquired using the auxiliary
functionshuf f I e.

The function call phi | osopher s(n, a, b) recursively creates a chain of n philosophers, bounded by
fork a on theleft and b on theright. The goal expression of the program callsphi | osopher s to create
achain of five philosophers bounded on the left and right by the same fork; hence, aring.

This Orc solution has several nice properties. The overal structure of the program is functional, with
each behavior encapsulated in its own function, making the program easy to understand and modify.
Mutable state is isolated to the "fork" semaphores and associated t ake and get functions, simplifying
the implementation of the philosophers. The program never manipulates threads explicitly, but instead
expresses rel ationships between activities using Orc's combinators.
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5.2. Hygienic Dining Philosophers

Here we implement a different solution to the Dining Philosophers problem, described in "The Drinking
Philosophers Problem”, by K. M. Chandy and J. Misra 2. Briefly, this algorithm efficiently and fairly
solves the dining philosophers problem for philosophers connected in an arbitrary graph (as opposed to a
simplering). The agorithm works by augmenting each fork with a clean/dirty state. Initially, al forks are
dirty. A philosopher is only obliged to relinquish afork to its neighbor if the fork is dirty. On receiving a
fork, the philosopher cleansit. On eating, the philosopher dirtiesall forks. For full details of the algorithm,
consult the original paper.

{- The "hygenic solution to the diners problent,
described in "The Drinking Philosophers Problent, by
K. M Chandy and J. M sra.

-}
{_

Use a Scal a set inplenentation.
Qperations on this set are not synchroni zed.
-}

i mport class Scal aSet = "scal a. col | ection. nut abl e. HashSet "

{_
Make a set initialized to contain
the itens in the given list.

def Set(items) = Scal aSet() >s> joi nMap(s.add, items) >> s

{_

Start a phil osopher process; never publishes.

nane: identify this process in status nessages
nbox: our mail box
m ssing: set of neighboring phil osophers hol ding our fork
-}
def phil osopher(nanme, nbox, nissing) =

val send = nbox. put

val receive = nbox. get

-- deferred requests for forks

val deferred = Channel ()

-- forks we hold which are clean

val clean = Set([])

def sendFork(p) =
m ssi ng. add(p) >>
p(("fork", send))

def requestFork(p) =
cl ean. add(p) >>
p(("request”, send))

K. Mani Chandy and Jayadev Misra. 1984. The drinking philosophers problem. ACM Trans. Program. Lang. Syst. 6, 4 (October 1984), 632-646.
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-- Wiile thinking, start a timer which
-- will tell us when we're hungry
def digesting() =

Println(nane + " thinking") >>

t hi nki ng()

| Rwait(Randon{30)) >>
send(("runble", send)) >>
stop

def thinking() =

def on(("rumble", )) =
Println(nane + " hungry") >>
map(request Fork, mssing.toList()) >>
hungry()

def on(("request", p)) =
sendFor k(p) >>
t hi nki ng()

on(receive())

def hungry() =
def on(("fork™, p)) =
m ssi ng. renove(p) >>

(
if mssing.isEmpty() then
Println(nane + " eating") >>
eating()
el se hungry()
)

def on(("request", p)) =
if clean.contains(p) then
deferred. put(p) >>
hungry()
el se
sendFor k(p) >>
request Fork(p) >>

hungry ()
on(receive())

def eating() =
clean.clear() >>
Rwai t (Random(10)) >>
map(sendFork, deferred.getAll()) >>
di gesting()

di gesting()

{_

Create an NxN 4-connected grid of philosophers. Each phil osopher holds the

fork for the connections below and to the right (so the top |l eft phil osopher

hol ds both its forks).

-}

def philosophers(n) =
{- channels -}
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val c¢s = uncurry(Table(n, lanbda (_) = Table(n, ignore(Channel))))

{- first row -}
phi | osopher ((0,0), c¢s(0,0), Set([]))
| for(1l, n) >>
phi | osopher ((0,j), c¢s(0,j), Set([cs(0,j-1).put]))

{- remaining rows -}
| for(1l, n) >i> (
phi | osopher ((i,0), cs(i,0), Set([cs(i-1,0).put]))
| for(1l, n) >>
phi |l osopher ((i,j), cs(i,j), Set([cs(i-1,j).put, cs(i,j-1).put]))
)

phi | osopher s(2)

{_

QUTPUT: EXAMPLE
(0, 0) thinking
(0, 1) thinking
(1, 0) thinking
(1, 1) thinking
(1, 0) hungry
(0, 0) hungry
(0, 1) hungry
(1, 1) hungry
(1, 1) eating
(1, 1) thinking

-}

Our implementation is based on the actor moded [https://en.wikipedia.org/wiki/Actor_model] of
concurrency. An actor is a state machine which reacts to messages. On receiving a message, an actor can
send asynchronous messages to other actors, change its state, or create new actors. Each actor is single-
threaded and processes messages sequentially, which makes some concurrent programs easier to reason

about and avoids explicit locking. Erlang [http://www.erlang.org/] is one popular language based on the
actor model.

Orc emulates the actor model very naturally. In Orc, an actor is an Orc thread of execution, together with
aChannel which servesasamailbox. To send amessage to an actor, you place it in the actor's mailbox,
and to receive a message, the actor gets the next item from the mailbox. The internal states of the actor
are represented by functions: while an actor's thread of execution is evaluating afunction, it is considered
to be in the corresponding state. Because Orc implements tail-call optimization [https://en.wikipedia.org/
wiki/Tail_call], state transitions can be encoded as function calls without running out of stack space.

Inthisprogram, aphilosopher isimplemented by an actor with three primary states: eat i ng, t hi nki ng,
and hungry. An additional transient state, di gest i ng, is used to start a timer which will trigger the
statechangefromt hi nki ngtohungr y. Each stateisimplemented by afunction which reads amessage
from the mailbox, selects the appropriate action using pattern matching, performs the action, and finally
transitions to the next state (possibly the same as the current state) by calling the corresponding function.

Forks are never represented explicitly. Instead each philosopher identifies a fork with the
"address' (sending end of a mailbox) of the neighbor who shares the fork. Every message sent includes
the sender's address. Therefore when a philosopher receives arequest for afork, it knows who requested
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it and therefore which fork to relinquish. Likewise when a philosopher receives afork, it knows who sent
it and therefore which fork was received.
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5.3. Readers-Writers

Here we present an Orc solution to the readers-writers problem [https://en.wikipedia.org/wiki/Readers-
writers_problem]. Briefly, the readers-writers problem involves concurrent access to a mutable resource.
Multiple readers can access the resource concurrently, but writers must have exclusive access. When
readers and writers conflict, different solutions may resolve the conflict in favor of one or the other, or
fairly. In the following solution, when a writer tries to acquire the lock, current readers are allowed to
finish but new readers are postponed until after the writer finishes. Lock requests are granted in the order
received, guaranteeing fairness. Normally, such a service would be provided to Orc programs by a site,
but it is educational to see how it can be implemented directly in Orc.

{- Asolution to the readers-witers problem-}

{- Queue of lock requests -}

val m = Channel ()

{- Count of active readers/witers -}
val ¢ = Counter()

{- Process requests in sequence -}
def process() =
{- Gant read request -}
def grant((false,s)) = c.inc() >> s.rel ease()
{- Gant wite request -}
def grant((true,s)) =
c.onZero() >> c.inc() >> s.release() >> c.onZero()
{- Goal expression of process() -}
mget () >r> grant(r) >> process()

{- Acquire the lock: argument is "true" if witing -}
def acquire(wite) =

val s = Semaphore(0)

mput ((wite, s)) >> s.acquire()

{- Release the lock -}
def release() = c.dec()

{- These definitions are for testing only -}

def reader(start) = Rmait(start) >>
acquire(false) >> Println("START READ") >>
Rwai t (1000) >> Println("END READ') >>
rel ease() >> stop

def witer(start) = Rmait(start) >>
acquire(true) >> Println("START WRI TE") >>
Rwai t (1000) >> Println("END WRI TE") >>
rel ease() >> stop

Let (
process() {- CQutput: -}
| reader(10) {- START READ -}
| reader(20) {- START READ -}
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{- END READ -}
{- END READ -}
| witer(30) {- START WRITE -}
{- ENDWRITE -}
| reader(40) {- START READ -}
| reader(50) {- START READ -}
{- END READ -}
{- END READ -}

{- halt after the last reader finishes -}
| Rwait(60) >> acquire(true)
)

{ -

QUTPUT: EXAMPLE
END READ
START WRI TE
END WRI TE
START READ
START READ
END READ

END READ

si gnal

-}

The lock receives requests over the channel mand processes them sequentially with the function gr ant .
Each request includes a boolean flag which is true for write requests and false for read requests, and
a Senmaphor e which the requester blocks on. The lock grants access by releasing the semaphore,
unblocking the requester.

The counter ¢ tracks the number of readers or writers currently holding the lock. Whenever the lock is
granted, gr ant increments ¢, and when the lock is released, ¢ is decremented. To ensure that a writer
has exclusive access, gr ant waits for the ¢ to become zero before granting the lock to the writer, and
then waits for ¢ to become zero again before granting any more requests.
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5.4. Quicksort

The original quicksort algorithm 3 was designed for efficient execution on a uniprocessor. Encoding
it as a functional program typically ignores its efficient rearrangement of the elements of an array.
Further, no known implementation highlights its concurrent aspects. The following program attempts to
overcome these two limitations. The program is mostly functional in its structure, though it manipulates
the array elementsin place. We encode parts of the algorithm as concurrent activities where sequentiality
is unneeded.

The following listing gives the implementation of the qui cksort function which sorts the array a in
place. The auxiliary function sor t sorts the subarray given by indices s through t by calling part to
partition the subarray and then recursively sorting the partitions.

{- Perform Quicksort on a list -}

def quicksort(a)

def swap(x, vy) a(x)? >z> a(x) = a(y)? > a(y) :=z

{- Partition the elements based on pivot point
def part(p, s, t) =

p* -}

def lr(i) if i <<t & a(i)? <= p then Ir(i+l) else i
def rl (i) if a(i)? :>p then rl(i-1) else i
#
(Ir(s), rl(t)) >(s', t')>
( Ift (s" +1 < t') > swap(s', t') >> part(p, s'+1, t'-1)
| Ift (s" +1 =1t") >> swap(s', t') >> s’
| Ift (s +1:>t") > t'
)

{- Sort the elenments -}
def sort(s, t) =
if s >=1 then signal
el se part(a(s)?, s+1, t) >np
swap(m s) >>
(sort(s, m1l), sort(mtl, t)) >>
si gnal

sort (0, a.length?-1)

val a = Array(3)
a(0) :=1 >>
a(1) := 3 >>
a(2) := 2 >>

qui cksort(a) >> arrayToList(a)

{-
CQUTPUT:
[1, 2, 3]

5C. A. R. Hoare. 1961. Algorithm 63: Partition, Algorithm 64: Quicksort, and Algorithm 65: Find. Commun. ACM 4, 7 (July 1961), 321-322.
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-}

Thefunction par t partitionsthe subarray given by indicess throught intotwo partitions, one containing
values less than or equal to p and the other containing values > p. The last index of the lower partition is
returned. Thevalueat a( s- 1) isassumed to belessthan or equal top --- thisissatisfied by choosingp =
a(s-1) ?initialy. To create the partitions, par t calstwo auxiliary functions| r and r | concurrently.
These functions scan from the left and right of the subarray respectively, looking for out-of-place elements.
Oncetwo such elements have been found, they are swapped using theauxiliary function swap, andthenthe
unscanned portion of the subarray is partitioned further. Partitioning is complete when the entire subarray
has been scanned.

This program uses the syntactic sugar x? for x. read() andx : = y forx. write(y) .Alsonotethat
theexpressiona(i ) returnsareference to the element of array a at index i , counting from O.
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5.5. Meeting Scheduler

Orc makes very few assumptions about the behaviors of services it uses. Therefore it is straightforward
to write programs which interact with human agents and network services. This makes Orc especially
suitable for encoding workflows, the coordination of multiple activities involving multiple participants.
The following program illustrates a simple workflow for scheduling a business meeting. Given a list of
people and a date range, the program asks each person when they are available for a meeting. It then
combines al the responses, sel ects a meeting time which is acceptable to everyone, and notifies everyone
of the selected time.

{- This programrequires the Orchard environment to run -}
i nclude "forns.inc"
i nclude "mail.inc"

val during = Interval (Local Dat e(2009, 9, 10),
Local Dat (2009, 10, 17))
val invitees = ["]john@xanpl e.coni, "jane@xanpl e.conl']

def invite(invitee) =
Form() >f>
f.addPart (Dat eTi neRangesFi el d("ti nmes",
"When are you avail able for a neeting?", during, 9, 17)) >>
f.addPart (Button("submt", "Submt")) >>
SendFor n(f) >receiver>
SendMai | (invitee, "Meeting Request"”, receiver.getURL()) >>
recei ver.get() >response>
response. get("ti mes")

def notify([]) =
each(invitees) >invitee>
SendMai | (invitee, "Meeting Request Fail ed",
"No neeting tine found.")
def notify(first: ) =
each(invitees) >invitee>
SendMai | (i nvitee, "Meeting Request Succeeded",
first.getStart())

map(invite, invitees) >responses>
afol d(l anbda (a,b) = a.intersect(b), responses) >tines>
notify(times)

This program begins with declarations of duri ng (the date range for the proposed meeting) and
i nvit ees (thelist of people to invite represented by email addresses).

Thei nvi t e function obtains possible meeting times from a given invitee, asfollows. First it useslibrary
sites(For m Dat eTi neRangesFi el d, But t on, and SendFor m) to construct aweb form which may
be used to submit possible meeting times. Then it emails the URL of this form to the invitee and blocks
waiting for aresponse. When the invitee receives the email, he or she will use aweb browser to visit the
URL, complete the form, and submit it. The corresponding execution of i nvi t e receives the response
inthevariabler esponse and extracts the chosen meeting times.
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Thenot i fy function takes alist of possible meeting times, selects the first meeting time in the list, and
emails everyonewith thistime. If the list of possible meeting timesis empty, it emails everyoneindicating
that no meeting time was found.

The goal expression of the program uses the library function map to apply not i f y to each invitee and
collect the responsesin alist. It then usesthe library function af ol d to intersect all of the responses. The
result is a set of meeting times which are acceptable to everyone. Finaly, not i f y iscalled to select one
of these times and notify everyone of the result.

This program may be extended to add more sophisticated features, such as a quorum (to select a meeting
as soon as some subset of invitees responds) or timeouts (to remind invitees if they don't respond in a
timely manner). These modifications are local and do not affect the overall structure of the program. For
complete details, see examples on our Web site [https://orc.csres.utexas.edu/tryorc.shtml].
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