
Operational and Denotational Semantics of the

Otherwise Combinator

David Kitchin

December 9, 2012

1 The Otherwise Combinator

The otherwise combinator, written f ; g, is a fourth concurrency combinator
that was not present in the original formulation of the Orc calculus. It is
used to detect when an expression halts; a halted expression can undergo no
more transitions. We allow site calls to halt rather than returning a value
or waiting forever; this communicates to the orchestration that the site call
will never return a value. Then, we can determine when an entire expression
halts based on whether its subexpressions have halted and whether its free
variables will ever be bound.

The otherwise combinator was introduced to take advantage of addi-
tional information that sites can convey about whether they will ever return
a value. This is especially relevant when operating over finite data streams,
and allows Orc to express certain manipulations of lists, channels, and other
structures much more naturally and with greater modularity than could be
achieved with the original three combinators.

1



f
a−→ f ′ a 6=!v

f ; g
a−→ f ′ ; g

(StepOW)

f
!v−→ f ′

f ; g
!v−→ f ′

(Discard)

stop ; g
τ−→ g

(Otherwise)

?k
k?⊥−→ stop

(SiteHalts)

Figure 1: Simple Conservative Semantics of ;

2 Operational Semantics

To support the otherwise combinator, we add new rules to the original op-
erational semantics. No rules are removed; the new semantics is a superset
of the old semantics. See Figure 1.

These four rules alone implement a conservative approximation of the
otherwise combinator. We apply the Otherwise rule only when it is certain
that the left expression will undergo no more transitions. However, these
rules only allow us to conclude that a site call halts; if the left expression is
more complex than just a site call, the Otherwise rule will never apply. For
example, the expression (stop | stop) ; g has no transitions.

This is too conservative. What we want is a set of rules which will
determine when an entire expression is equivalent to stop; effectively, we
wish to extend the notion of halting to entire expressions, rather than just
site calls.

2



f ≡ stop

f ; g
τ−→ g

(Otherwise)

f ≡ stop g ≡ stop

f | g ≡ stop
(Par0)

f ≡ stop

f >x> g ≡ stop
(Seq0)

f ≡ stop g ≡ stop

f <x< g ≡ stop
(Prune0)

Figure 2: Attempted Semantics of ; using Structural Equivalence

The standard technique in this case is to use a structural equivalence
relation. We provide a set of rules which inductively define the equivalence,
and revise the Otherwise rule to make use of this structural equivalence. See
Figure 2.

This approach is still slightly too conservative. The Prune0 rule waits
for both sides to be equivalent to stop, but we can do better than this. If
the right expression has halted, then we know that the variable x will never
be bound; thus, all calls in the left expression which use x are blocked on it
forever and should be considered equivalent to stop.

But now a problem arises with our use of structural equivalence. Con-
sider the expression M(x) ; N(0) <x< stop. It is clear that M(x) is equiv-
alent to stop, so N(0) should proceed, but we cannot derive this fact using
the current structural equivalence rules: the premise f ≡ stop depends only
on f and does not take into account those combinators outside of f which
bind variables that it mentions.

3



f
a−→ f ′ a 6=!v

f ; g
a−→ f ′ ; g

(StepOW)

f
!v−→ f ′

f ; g
!v−→ f ′

(Discard)

stop ; g
τ−→ g

(Otherwise)

?k
k?⊥−→ stop

(SiteHalts)

f | stop τ−→ f
(Left0)

stop | f τ−→ f
(Right0)

stop >x> g
τ−→ stop

(Seq0)

f <x< stop
τ−→ [⊥/x]f

(Prune0)

v 6= λ... ⊥ ∈ p
v(p)

τ−→ stop
(Call0)

Figure 3: Final Operational Semantics of ;

In order to resolve this problem, we instead give rules that convert an
expression to stop by steps, rather than inductively determining an expres-
sion’s equivalence to stop. The Otherwise rule returns to its original form;
in order for the right expression to proceed, the left expression must be
reduced to stop. The structural equivalence rules become transition rules
instead.

To handle the pruning combinator, we add a new formal parameter ⊥,
which is neither a value nor a variable; it is a placeholder for a variable which
will never be bound. When the right expression in a pruning combinator is
reduced to stop, we then substitute ⊥ for every occurrence of the variable x
in the left expression. If ⊥ occurs as a parameter to a call, and the callee is
not a lambda (i.e. the call is strict), then that call is reduced to stop, since
a strict call with an unbound parameter will never make progress. Making
⊥ a formal parameter correctly preserves the semantics of non-strict calls,
since the substitution used in those cases (i.e. [p/x]) simply substitutes ⊥
for the appropriate occurrences of the argument variable that will never be
bound.

The final set of rules is given in Figure 3.

4



3 Algebraic Laws

The ; combinator obeys some basic algebraic laws. Interestingly, its unit
and zero are actually the reverse of the � combinator. Its left and right
unit is stop (just like | ), but its left zero is actually signal.

(Left zero of ; ) signal ; f = signal
(Left unit of ; ) stop ; f = f
(Right unit of ; ) f ; stop = f

(Associativity of ; ) (f ; g) ; h = f ; (g ; h)

(Distributivity of ; over � ) (f ; g) >x> h = (f >x> h) ; (g >x> h)
if f is not silent1

(Commutativity of ; with � ) (f ; g) <x< h = (f <x< h) ; g,
if g is x-free

(Conditional conversion) (if (x) � true) ; false = let(x)

1Thanks go to Gerard Nicolas for pointing out this necessary side condition.

5



4 Denotational Semantics

Using sets of executions as denotations, the denotational semantics of the
otherwise combinator is straightforward.

Let S.T be the concatenation of two sets of traces, defined by s ∈ S∧ t ∈
T ⇒ st ∈ S.T .

Given a set of traces T , let silent(T ) be the greatest subset of T whose
traces contain no publication events.

Given a set of traces T , let terminal(T ) be the greatest subset of T
whose traces are not prefixes of any other trace in T . More precisely, t ∈
terminal(T )⇒ ¬∃u :: (u 6= ε ∧ tu ∈ T ).

Then the denotation of the otherwise combinator is defined as follows:

[[f ; g]] = ([[f ]]−H) ∪H.[[g]] where H = silent(terminal([[f ]]))

6


