
Simulation using Orchestration

(Extended Abstract)

David Kitchin, Evan Powell, and Jayadev Misra

The University of Texas at Austin

Abstract. The real world is inherently concurrent and temporal. For
simulating physical phenomena of the real world, one prefers frameworks
which easily express concurrency and account for the passage of time. We
propose Orc, a structured concurrent calculus, as a framework for writ-
ing simulations. Orc provides constructs to orchestrate the concurrent
invocation of services while managing time-outs, priorities, and failures
of services or communication. Orc’s treatment of time is of particular
interest in simulation. We propose an abstract notion of time and show
its utility in coding simulations. We also show how Orc’s structure allows
us to compute statistics from a simulation.

1 Introduction

Orc[3, 4] is a language for structured concurrent programming. It is based on
the premise that structured concurrent programs should be developed much
like structured sequential programs, by decomposing a problem and combining
the solutions with the combinators of the language. Naturally, Orc combinators
support concurrency: parallel subcomputations, spawning of computations and
blocking or termination of subcomputations. Orc has a number of algebraic
properties which make it amenable to formal analysis.

Physical phenomena in the real world are inherently concurrent and tempo-
ral. Simulations of physical phenomena typically involve describing concurrent
entities, their interactions and passage of real time. The structure of Orc makes
such descriptions extremely modular. This paper presents a preliminary report
of our experience with coding simulations in Orc.

In Section 2, we give a brief overview of Orc, followed by example Orc pro-
grams in Section 3. Portions of Sections 2 and 3 have appeared previously in [3,
4]. Section 4 presents an abstraction of time, in which we treat both physical
(Newtonian) time and logical time analogously. In Section 5, we describe the
implementation of simulations in Orc using logical timers. Section 6 describes
how to compute statistics from a simulation. Section 7 includes plans for future
research.

2 Overview of Orc

An Orc program consists of a goal expression and a set of definitions. The goal
expression is evaluated in order to run the program. The definitions are used in
the goal and in other definitions.

An expression is either primitive or a combination of two expressions. A
primitive expression is a call to an existing service, a site, to perform its compu-
tations and return a result; we describe sites in Section 2.1. Two expressions can
be combined to form a composite expression using Orc combinators; we describe
the combinators in Section 2.2. We allow expressions to be named in a defini-
tion, and these names may then be used in other expressions. Naming permits
us to define an expression recursively by using its own name in the definition.
Definitions and recursion are treated in Section 2.3. We give a complete formal
syntax in Figure 2 of Section 2.4. Practical Orc examples use a modest set of
syntactic extensions, discussed in Section 2.5. Orc examples appear in Section 3.

During its evaluation, an Orc expression calls sites and publishes values.
Below, we describe the details of calls and publications.

2.1 Sites

A primitive Orc expression is a site call M(p̄), where M is a site name and p̄ a
list of actual parameters. A site is an external program, like a web service. The
site may be implemented on the client’s machine or a remote machine. A site
call elicits at most one response; it is possible that a site never responds to a
call. For example, evaluation of CNN (d), where CNN is a news service site and
d is a date, calls CNN with parameter value d; if CNN responds (with the news
page for the specified date), the response is published.

Site calls are strict, i.e., a site is called only if all its parameters have values.
We list a few sites in Figure 1 that are fundamental to effective programming

in Orc (in the figure, a signal represents a unit value and has no additional
information).

Site if is used for conditional evaluation. Site Rtimer is used to introduce
delays and impose time-outs, and is essential for time-based computations. Site
Signal() is a special case of if .

if (b): Returns a signal if b is true, and otherwise does not respond.
Rtimer(t): Returns a signal after exactly t, t ≥ 0, time units.
Signal(): Returns a signal immediately. Same as if (true).
0: Blocks forever. Same as if (false).

Fig. 1. Fundamental Sites

2.2 Combinators

There are three combinators in Orc for combining expressions. Given expressions
f and g, they are: symmetric parallel composition, written as f | g; sequential
composition with respect to variable x, written as f >x> g; and asymmetric
parallel composition with respect to variable x, written as f <x< g.

To evaluate f | g, we evaluate f and g independently. The sites called by
f and g are the ones called by f | g and any value published by either f or g
is published by f | g. There is no direct communication or interaction between
these two computations. For example, evaluation of CNN (d) | BBC (d) initiates
two independent computations; up to two values will be published depending on
which sites respond.

In f >x> g, expression f is evaluated and each value published by it initiates
a fresh instance of g as a separate computation. The value published by f is
bound to x in g’s computation. Evaluation of f continues while (possibly several)
instances of g are run. If f publishes no value, g is never instantiated. The values
published by f >x> g are the ones published by all the instances of g (values
published by f are consumed within f >x> g). This is the only mechanism in
Orc similar to spawning threads.

As an example, the following expression calls sites CNN and BBC in parallel
to get the news for date d. Responses from either of these calls are bound to x
and then site email is called to send the information to address a. Thus, email
may be called 0, 1 or 2 times.

(CNN (d) | BBC (d)) >x> email(a, x)

Expression f À g is short-hand for f >x> g, where x is not free in g.
As a short example of time-based computation, Rtimer(2) À M() delays call-

ing site M for two time units, and M() | (Rtimer(1) À M()) | (Rtimer(2) À M())
makes three calls to M at unit time intervals.

To evaluate (f <x< g), start by evaluating both f and g in parallel. Evalua-
tion of parts of f which do not depend on x can proceed, but site calls in which
x is a parameter are suspended until x has a value. If g publishes a value, then
x is assigned the (first such) value, g’s evaluation is then terminated and the
suspended parts of f can proceed. The values published by (f <x< g) are the
ones published by f . Any response received for g after its termination is ignored.
This is the only mechanism in Orc to block or terminate parts of a computation.

As an example, in ((M() | N(x)) <x< R()) sites M and R are called imme-
diately (thus, M is called immediately, even before x may have a value). Once
R responds with a value, x is bound to that value and N(x) is then called. Con-
trast the following two expressions; in the first one email is called at most once,
whereas the second one (shown earlier) may call email twice.

email(a, x) <x< (CNN (d) | BBC (d))
(CNN (d) | BBC (d)) >x> email(a, x)

2.3 Definitions and Recursion

Declaration E(x̄) ∆ f defines expression E whose formal parameter list is x̄ and
body is expression f . We assume that only the variables x̄ are free in f . A call
E(p̄) is evaluated by replacing the formal parameters x̄ by the actual parameters
p̄ in the body of the definition f . Sites are called by value, while definitions are
called by name.

A definition may be recursive (or mutually recursive): a call to E may occur
in f , the body of the expression, yielding a recursively defined expression. Such
expressions are used for encoding bounded as well as unbounded computations.
Below, Metronome publishes a signal every time unit starting immediately.

Metronome() ∆ Signal() | (Rtimer(1) À Metronome())

2.4 Formal Syntax

The formal syntax of Orc is given in Figure 2.1 Here M is the name of a site and
E a defined expression. An actual parameter p may be a variable x or a value
m, and p̄ denotes a list of actual parameters.

The syntax also allows actual parameters (variables x and values m) to ap-
pear alone as primitive expressions. The primitive expression m simply publishes
m. The primitive expression x waits for the variable x to become bound, and
then publishes the value bound to x.2

f, g, h ∈ Expression ::= M(p̄) E(p̄) p f >x> g f | g f <x< g

p ∈ Actual ::= x m
Definition ::= E(x̄) ∆ f

Fig. 2. Syntax of Orc

Notation The combinators are listed Figure 2 in decreasing order of precedence,
so f <x< g | h means f <x< (g | h), and f >x> g | h means (f >x> g) | h.
Expression f >x> g >y> h means f >x> (g >y> h), i.e., >x> is right-
associative, and f <x< g <y< h means (f <x< g) <y< h, i.e., <x< is left-
associative.

2.5 Syntax extensions

In practice, Orc programs often incorporate syntactic sugar, to simplify and con-
dense expressions. These constructs do not fundamentally extend the calculus;
they are simply more compact representations.
1 Previous presentations of Orc have used the notation f where x :∈ g instead of

f <x< g.
2 Previous presentations of Orc used let(x) to publish the value of x.

Tuples In additional to the fundamental sites shown earlier, it is also helpful
to have site support for constructing and examining data structures. We allow
the syntax (p̄), as a shorthand for tuple(p̄), where tuple is a site which creates a
single tuple value out of its argument values and publishes it. In order to examine
these tuples, we extend the syntax of the combinators >x> and <x< with
pattern matching; instead of binding a value to a variable, a combinator may
bind a tuple of values to a tuple of variables.

For example, the following expression publishes the values 6 and 7:

((3, 6) | (4, 7)) >(x, y)> y

Dot notation In some cases, especially when writing code in an object-oriented
style, it is helpful to have a special notation for calls. We write M.name as
syntactic sugar for M(name), where name is a message, and M maps mes-
sages to values. We use this notation to express both field accesses, written
as x.field , and method calls, written as x.method(p̄), which is a shorthand for
x.method >m> m(p̄).

Arithmetic and Logical Expressions Orc does not include any operators for
data manipulation; so, 3+4 is an illegal expression in Orc. We get the same effect
by calling a predefined site Sum(3, 4). To simplify coding, we write arithmetic
and logical expressions in the standard way, like 3 + 4, which are compiled into
appropriate site calls.

3 Examples

We give a number of small examples in this section to familiarize the reader with
the Orc style of programming. Most of these examples have appeared earlier, in
[3] and [4].

Time-out The following expression publishes the first value published by f
if it is available before time t; otherwise it publishes 3. It evaluates f and
Rtimer(t) À 3 in parallel and takes the first value published by either:

z <z< (f | Rtimer(t) À 3)

A typical programming paradigm is to call site M and publish a pair (x, b)
as the value, where b is true if M publishes x before the time-out, and false if
there is a time-out. In the latter case, the value of x is irrelevant. Below, z is the
pair (x, b).

z <z< (M() >x> (x, true)
| Rtimer(t) >x> (x, false))

Fork-join Parallelism In concurrent programming, one often needs to spawn
two independent threads at a point in the computation, and resume the com-
putation after both threads complete. Such an execution style is called fork-join
parallelism. There is no special construct for fork-join in Orc, but it is easy
to code such computations. Below, we define forkjoin to call sites M and N
in parallel and publish their values as a tuple after they both complete their
executions.

forkjoin() ∆ (x, y) <x< M()
<y< N()

Synchronization There is no special machinery for synchronization in Orc; the
<x< combinator provides the necessary ingredients for programming synchro-
nizations. Consider M À f and N À g; we wish to execute them independently,
but synchronize f and g by starting them only after both M and N have com-
pleted. We evaluate forkjoin (as described above), and start f | g after forkjoin
publishes.

forkjoin() À (f | g)

Delay The following expression publishes N ’s response as soon as possible, but
after at least one time unit. This is similar to a fork-join on Rtimer(1) and N .

Delay() ∆ (Rtimer(1) À y) <y< N()

Priority Call sites M and N simultaneously. If M responds within one time
unit, take its response, otherwise pick the first response. Using Delay defined
above,

x <x< (M() | Delay())

Iterative Process and Process Networks A process in a typical network-
based computation repeatedly reads a value from a channel, computes with it and
writes the result to another channel. Below, c and e are channels, and c.get and
e.put are the methods to read from c and write to e. Below, P (c, e) repeatedly
reads from c and writes to e, and Net(c, d, e) is a network of two such processes
which share the output channel.

P (c, e) ∆ c.get() >x> Compute(x)
>y> e.put(y)
À P (c, e)

Net(c, d, e) ∆ P (c, e) | P (d, e)

Parallel-or A classic problem in non-strict evaluation is parallel-or. Suppose
sites M and N publish booleans. We desire an expression that publishes true as
soon as either site returns true, and false only if both return false. Otherwise,
the expression never publishes. In the following solution, site or(x, y) returns
x ∨ y.

z <z< if (x) À true | if (y) À true | or(x, y)
<x< M()
<y< N()

4 Timers

The site Rtimer is a powerful tool for orchestration. It is used mainly for or-
chestrating events that happen in real time, including interruptions (time-outs).
However, the actual value of real time is never used in a computation. In this
section, we consider a small combinatorial problem —computing the shortest
path between two designated nodes in a weighted directed graph— for which
we present a simple algorithm based on actual time values. Next, we introduce
a more abstract version of timer, which is logical (or virtual) that mimics the
(physical) real-time timer. We show that the shortest path problem can be solved
using logical timers.

4.1 Shortest path algorithm using real time

Given is a directed graph each edge of which has a non-negative weight denoting
the distance between the two nodes. There are two special nodes, designated
source and sink. It is required to find a shortest path from the source to sink,
i.e., one with the least total distance. Henceforth, we simply calculate the length
of the shortest path; the actual shortest path can be computed by an easy
extension.

The traditional algorithm for solving this problem, due to Dijkstra [1], in-
volves inherently sequential computation. Consider, instead, the following real-
time, concurrent algorithm. From the source node, transmit a ray of light to each
of its neighbors. Rays propagate along each edge at constant speed in real time;
the weight of each edge is the time taken by the ray to traverse the edge. When
a node receives its first ray, it transmits a ray to each of its own neighbors.3

Subsequent rays received by that node are ignored. The length of the shortest
path is the total elapsed time from the start of the computation to the point
where the sink node receives its first ray.

We code three different versions of this algorithm, with varying levels of
refinement. First, we abstract the structure of the graph using expression succ:

succ(u): Publish all pairs (v, d) where (u, v) is an edge with weight d.

The graph structure is completely characterized by the identities of the source
and the sink, and expression succ.
3 Assume that the amount of time to receive and rebroadcast a ray is inconsequential.

First Solution We must note when a node first receives a ray, and be sure to
ignore subsequent rays. To implement this behavior, we associate a “write-once”
variable with each node in the graph, and use two sites to manipulate these
variables: For every node u in the graph, write(u, t) writes t into u. Writing is
once-only for each u; all subsequent writes block. And, read(u) blocks until u is
written; it never blocks subsequently, and returns the written value.

In the following algorithm, the first time eval1(u, t) is called for any u, (1)
the relative time in the evaluation is t, and (2) t is the length of the shortest
path to u from the source. Note that eval1 does not publish.

eval1(u, t) ∆ write(u, t) À Succ(u) >(v, d)> Rtimer(d) À eval1(v, t + d)

eval1(source, 0) | read(sink)

Here, we write the value for the source at time 0. For any other node v,
whose predecessor along the shortest path (from the source) is u, we write the
value d time units after writing the value for u, where d is the weight of edge
(u, v). And, we read the value written for the sink as soon as possible. We have
assumed that executions of Succ, read and write do not consume any real time.

Second Solution The previous solution does not quite implement the real-time
algorithm described for the problem. In particular, the path lengths are explicitly
passed as parameter values; a node does not consult the elapsed time to record
the length of the shortest path to it.

To this end, we associate real-time timers with computations. In the current
implementation of Orc, calling RealT imer site generates a new real-time timer
and initializes its value to 0. Every generated timer runs in real time. Therefore,
Rtimer measures the progress of every real-time timer. To evaluate f with timer
rt, write RealT imer >rt> f . Also, for each such timer rt, there is a site rt.C
that returns the current time of rt. The current time of rt is 0 when rt is created.

The following version of the shortest path algorithm is a more faithful ren-
dering of the initial description. We have replaced eval1(u, t) with eval2(u, rt),
where t can be computed from timer rt.

eval2(u, rt) ∆ rt.C() >t> write(u, t) À
Succ(u) >(v, d)> Rtimer(d) À eval2(v, rt)

RealT imer >rt> (eval2(source, rt) | read(sink))

Third Solution The previous solution records a time value for each node, whereas
our interest is only in the shortest path to the sink. Therefore, we may simplify
the recording for the nodes. Instead of write(u, t), we use mark(u) which merely
notes that a node has been reached by a ray of light. Similarly, instead of read(u),
we employ scan(u) which responds with a signal if u has been marked. The length
of the shortest path is the value of rt.C() when the sink is marked.

eval3(u, rt) ∆ mark(u) À Succ(u) >(v, d)> Rtimer(d) À eval3(v, rt)

RealT imer >rt> (eval3(source, rt) | scan(sink) À rt.C())

4.2 Logical or Virtual timers

Each of the shortest path algorithms given in the previous section waits for
real time intervals. The running time of each algorithm is proportional to the
actual length of the shortest path. This is quite inefficient. Additionally, We have
assumed that executions of Succ, read and write do not consume any real time,
which is unrealistic. To overcome these problem, we explore the use of logical
(virtual) timers to replace real-time timers.

There are three essential properties of real-time timers that we have used in
the previous section. Let rt be a real-time timer, and, as before, rt.C() returns
the current value of this timer.

1. (Monotonicity) The values returned by successive calls to rt.C() are non-
decreasing.

2. (Relativity) Using a notation similar to Hoare-triples, where rt.C() denotes
the value returned by a call to rt.C(),

{rt.C() = n} Rtimer(t) {rt.C() = n + t}
3. (Weak Progress) Some call to Rtimer(.) responds eventually.

Monotonicity guarantees that s ≤ t in rt.C() >s> · · · rt.C() >t> · · · . Rela-
tivity says that if Rtimer(t) is called when a timer value is n, the response to the
call is received at time n + t. This property establishes the essential relationship
between rt.C and Rtimer. The progress property is a weak one, merely postu-
lating the passage of time. Typically, we need a Strong Progress property: every
call to Rtimer(t) responds eventually. However, it can not be met in arbitrary
Orc programs where infinite number of events may take place within bounded
time, as in the following examples.

Met() ∆ Signal | Rtimer(0) À Met()
M() ∆ N() | M()

It is the obligation of the programmer to ensure that only a finite number of
events occur during any finite time interval. A sufficient condition is that every
recursive call is preceded by a call Rtimer(t), where t is a positive integer. Then
we can guarantee the Strong Progress property.

A logical (or virtual) timer is generated by a call to site V irtT imer(). There
are two site calls associated with a logical timer lt: lt.C() and lt.R(t). These
calls are analogous to rt.C() and Rtimer(t) for real-time timers. Further, logical
timers obey the requirements of Monotonicity, Relativity and Weak Progress,
as for the real-time timers. They also obey the Strong Progress property un-
der analogous assumptions. We show in Section 4.3 how logical timers may be
implemented.

There is one key difference between real-time and virtual-time timers. For
site M other than a timer site, no logical time is consumed between calling the
site and receiving its response, whereas real time may be consumed. Conversely,
no real time is consumed in any interval where logical time is consumed.

We can rewrite the solutions to the shortest path problem using logical
timers. Below, we do so for the third solution in Section 4.1, using V irtT imer()
to generate a virtual timer.

eval4(u, lt) ∆ mark(u) À Succ(u) >(v, d)> lt.R(d) À eval4(v, lt)

V irtT imer() >lt> (eval4(source, lt) | scan(sink) À lt.C())

Observe that mark, scan and Succ may consume real time, though they
do not consume any logical time. Further, the actual computation time is now
decoupled from the length of the shortest path. Dijkstra’s shortest path algo-
rithm [1] is a sequential simulation of this algorithm that includes an efficient
implementation of the logical timer.

4.3 Implementing logical timer

Let lt be a logical timer. Associate a value n with lt. Initially (when lt is created)
n = 0. A call to lt.C() responds with n. Call lt.R(t) is assigned a rank n + t
and queued (in a priority queue). Eventually, the timer responds with a signal
for the item of the lowest rank r in the queue, if an item exists, and removes it
from the queue. Simultaneously, it sets n to r.

It is easy to see that Monotonicity holds, that n never decreases: we have
the invariant n ≤ s, for any rank s in the queue, and that the latest response
to lt.C() is n. Similarly, Relativity is also easy to see. The requirement of Weak
Progress is met by eventually removing an item from the queue. Further, if only
a finite number of events occur in any bounded logical time interval, the Strong
Progress property is also met.

Note that the specification of a timer only ensures that the timer’s responses
are properly ordered with respect to each other. The relationship between a
timer’s responses and the behavior of other sites (or timers) is unspecified. This
gives us a great deal of flexibility in implementing timers.

4.4 Stopwatch

A stopwatch is a site that is aligned with some timer, real or virtual. We will see
some of its uses in simulation in Section 5.

A stopwatch is in one of two states, running or stopped, at any moment. It
supports 4 methods: (1) reset : is applicable when the stopwatch is stopped, and
then its value is set to 0; (2) read : returns the current value of the stopwatch;
(3) start : changes the state from stopped to running; and (4) stop: changes the
state from running to stopped.

A stopwatch can be implemented by having the variables running (boolean)
and m, n (integer). The current state is given by running. If ¬running holds
(i.e., the state is stopped), then m is the value of the stopwatch and n’s value
is irrelevant. If running holds, then m is the value of the stopwatch when it
was last started, and n is the value of lt, the timer with which the stopwatch

is aligned, when the stopwatch was last started. Initially, running is false and
both m and n are zero. The methods are implemented (in imperative-style) as
follows.

reset : m := 0
read : if running then return(m + lt.C()− n) else return(m)
start : running := true; n := lt.C()
stop: running := false; m := m + lt.C()− n

Note: Only the read method responds to its caller. The other methods do not
respond, though they update the internal state of the stopwatch.

5 Simulation

The work reported in this section is at a preliminary stage.
A simulation is an abstraction of real-world processes. The goal of simulation

is to observe the behaviors of the abstract processes, and compute statistics. A
faithful simulation can predict the behavior of the real-world processes being
simulated. A simulation language supports descriptions of the real-world pro-
cesses, their interactions and the passage of real time. We contend that Orc is
an effective tool for writing simulations. We can describe the individual processes
as expressions in Orc. As we have demonstrated with the shortest path example
in Section 4, replacing real-time timer with a logical timer can efficiently sim-
ulate the passage of time while maintaining the expected causal order among
events.

Orc also simplifies data collection and statistics computation of the simulated
processes because of its structured approach to concurrency. Since the lexical
structure of the program reflects the dynamic structure of the computation,
it is easy to identify points in the program at which to add observations and
measurements. In an unstructured model of concurrency, this can be a more
challenging task.

We show two small examples of simulation in Orc in this section. The exam-
ples, though small, are typical of realistic simulations. We consider data collection
in the following section.

5.1 Example: Serving Customers in a Bank

Consider a bank that has two tellers to serve customers. A stream of customers
arrive at the bank according to some arrival distribution. Each customer joins
a queue on entering the bank. A teller asks the next customer to step forward
whenever she is free. The service time for a customer is determined by the type
of transaction. It is required to determine the average wait time for a customer,
the queue length distribution, and the percentage of time that a teller is idle. In
this section, we merely represent the system using Orc; computation of statistics
is covered in the following section.

We represent the bank as consisting of three concurrent activities, customers
and two tellers. We define each of these activities by an expression. Customers are
generated as a stream by expression Source according to some given distribution.
This expression also specifies the service time of each customer. We do not code
Source though a complete simulation would have to include it.

The goal expression, given at the top of Figure 3, starts a logical timer lt, runs
expression Bank for simtime logical time units (using the time-out paradigm),
and then publishes the statistics by calling Stats(). Observe that expression
Bank() does not publish, which is ensured by sequential composition with 0,
permitting us to use the time-out paradigm.

V irtT imer() >lt>
(z <z< Bank(lt) | lt.R(simtime)) À
Stats()

Bank(lt) ∆ (Customers() | Teller(lt) | Teller(lt)) À 0
Customers() ∆ Source() >c> enter(c)

Teller(lt) ∆ next() >c>

lt.R(c.ServT ime) À
Teller(lt)

enter(c) ∆ q.put(c)
next() ∆ q.get()

Fig. 3. Bank simulation

The Orc definitions have mostly described a physical system; therefore it is
extremely succinct. The description is modular, which allows for experimentation
with a variety of policies (e.g., assigning one teller to handle short jobs, for
instance) and different mixes of system parameters (e.g., hiring more tellers).
Further, there is no explicit mention of simulation in the definitions, only in the
goal expression. Advancing of the logical timer will be automatically handled by
the implementation.

5.2 Example: Serving Customers in a Fast food restaurant

The next example, serving customers in a fast food restaurant, is similar to that
of the bank, though there are key differences. As in the bank example, we have
a steady stream of customers entering a queue, and we have a single cashier
in place of tellers. Rather than servicing customers’ orders directly, the cashier
processes the orders and puts them in another queue to be handled by one of the
two cooking stations. Cooking stations prepare the main entree, side dish and the
drink parts of an order in parallel, where each part takes some amount of time
to complete. An order is complete only after all its parts have been completed.
Unlike the bank example where each customer carried its service time with it,
we let the restaurant decide the service time for each customer c, by calling
ringupT ime(c) to determine the cashier’s time, and prepT ime(c.drink) for the

time required to prepare the drink order for c (and, similarly, for the other parts
of the order).

Figure 4 describes the simulation of the restaurant for simtime logical time
units. Note that Cook uses the fork-join strategy discussed in Section 3 (we have
abbreviated a cooking station by Cook). Both q and orders are FIFO channels
which we use for our queues. Analogous to enter(c) and next(), we could have
entered and removed orders indirectly in queue orders rather than directly as
we do in Figure 4.

V irtT imer() >lt>
(z <z< Restaurant(lt) | lt.R(simtime)) À
Stats()

Restaurant(lt) ∆ (Customers() | Cashier(lt) | Cook(lt) | Cook(lt)) À 0
Customers() ∆ Source() >c> enter(c)
Cashier(lt) ∆ next() >c>

lt.R(c.ringupT ime) À
orders.put(c.order) À
Cashier(lt)

Cook(lt) ∆ orders.get() >order>

(
(e, s, d)

<e< prepTime(order .entree) >t> lt.R(t)
<s< prepTime(order .side) >t> lt.R(t)
<d< prepTime(order .drink) >t> lt.R(t)

) À
Cook(lt)

enter(c) ∆ q.put(c)
next() ∆ q.get()

Fig. 4. Fast food restaurant simulation

6 Measurement

The typical purpose of simulation is to measure the behaviors exhibited by the
simulated processes. These measurements are especially useful when they incor-
porate information about the passage of time in the simulation, such as the total
amount of time that a participant remained idle or the average delay experienced
by some process waiting on another process.

The current time associated with logical timer lt is lt.C. We use this value
to report the times at which certain events occur in the simulation. We also use
differences between observed times to determine the duration of some activity.

Consider a fragment of the bank example, where we are adding customers to
the queue and later removing them:

enter(c) ∆ q.put(c)
next() ∆ q.get()

We augment this part of the simulation with measurements to determine the
amount of time each customer spends waiting in line. We report the waiting time
with the site reportWait.

enter(c) ∆ lt.C >s> q.put(c, s)
next() ∆ q.get() >(c, t)>

lt.C >s>

reportWait(s− t) À
c

Histogram We can also compute histograms or queue length distribution, as
follows. Let ti, where 0 ≤ i < N , be the duration during simulation for which the
length of q has been i. We create N + 1 stopwatches, sw[0..N], at the beginning
of simulation. The final value of sw[i], 0 ≤ i < N , is ti. And, sw[N] is the
duration for which the queue length is at least N .

Now, modify enter(c) and next() to ensure that whenever the queue length
is i, 0 ≤ i < N , sw[i] is running and all other stopwatches are stopped (similarly
for sw[N]). Therefore, initially, only sw[0] is running. Whenever a new item is
added to a queue of length i, 0 ≤ i < N , we stop sw[i] and start sw[i + 1]; for
i = N , nothing needs to be done. Similarly, after removing an item if the queue
length is i, 0 ≤ i < N , we start sw[i] and stop sw[i + 1].

The modifications to enter(c) and next() are shown below. Assume q.length
returns the current length of q. Note that the code fragment
q.length >i> if (i < N) À (sw[i].stop | sw[i + 1].start)
does not publish.

enter(c) ∆ lt.C >s> q.put(c, s) À
q.length >i> if (i < N) À (sw[i].stop | sw[i + 1].start)

next() ∆ q.get() >(c, s)>

(lt.C >t> reportWait(s− t) À c
| q.length >i> if (i < N) À (sw[i].start | sw[i + 1].stop)

)

7 Summary and Conclusions

This paper reports some preliminary work on coding simulations in Orc. Orc
supports descriptions of concurrent activities and real time, which make it pos-
sible to describe many physical systems. We have introduced logical timers in
this paper to facilitate computations that do not need to synchronize with the
wall clock. We have described some of the properties of logical timers and shown
their use in solving a combinatorial problem (shortest path) as well as in coding
simulations.

Orc cannot succinctly express certain simulations because it does not have
the fundamental notion of guarded choice, as found in the π-calculus [2] and
other concurrent calculi. For example, a Teller that watches two queues and
takes a customer whenever either queue becomes non-empty is difficult to code
without such a choice combinator. The addition of guarded choice to Orc is a
topic of ongoing research.

References

1. E. Dijkstra. A note on two problems in connection with graphs. Numerische Math-
ematik, 1:83–89, 1959.

2. R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, May 1999.

3. J. Misra and W. R. Cook. Computation orchestration: A basis for wide-area comput-
ing. Journal of Software and Systems Modeling, May, 2006. Available for download
at http://dx.doi.org/10.1007/s10270-006-0012-1.

4. I. Wehrman, D. Kitchin, W. R. Cook, and J. Misra. A timed semantics of orc.
Theoretical Computer Science, 2008. To appear.

