
A TREE SEMANTICS OF AN ORCHESTRATION
LANGUAGE

Tony Hoare, Microsoft Research Labs, Cambridge, U.K.
Galen Menzel, University of Texas, Austin, Texas 78712, USA
Jayadev Misra, University of Texas, Austin, Texas 78712, USA∗
email: thoare@microsoft.com, galen@alumni.utexas.net, misra@cs.utexas.edu

Abstract This paper presents a formal semantics of a language, called Orc, which is de-
scribed in a companion paper[3] in this volume. There are many styles of pre-
sentation of programming language semantics. The more operational styles give
more concrete guidance to the implementer on how a program should be exe-
cuted. The more abstract styles are more helpful in proving the correctness of
particular programs. The style adopted in this paper is neutral between imple-
menter and programmer. Its main achievement is to permit simple proofs of
familiar algebraic identities that hold between programs with different syntactic
forms.

1. Introduction

This paper presents a formal semantics of a language, called Orc, which
is described in a companion paper[3] in this volume. Orc is designed to or-
chestrate executions of independent entities, calledsites. Orchestration means
creating multiple threads of execution where each thread calls a sequence of
sites. Orc permits creating new threads, passing data among threads and se-
lectively pruning threads. A detailed discussion of Orc and its application in
a variety of problem areas appears in the accompanying paper. The semantics
of Orc proposed here represents all possible threads of execution by a labelled
tree. The tree is completely defined by the syntactic structure of the program,
independent of its actual execution. Two programs are considered equivalent
if their representative trees are equal. We show how to use the tree as a basis
for reasoning about program executions.

A semantics for a programming language defines the intended meaning of
all syntactically correct programs in the language. It serves as a contractual

∗Work of this author is partially supported by the National Science Foundation grant CCR–0204323.

2

interface between a language’s implementers and its users. Each implementer
must guarantee that every execution of every program satisfies the definition,
and each programmer may rely on this guarantee when writing programs.

There are many styles of presentation of programming language semantics.
The operational styles give more concrete guidance to the implementer on how
a program should be executed. The abstract styles are more helpful in proving
the correctness of particular programs. The style adopted in this paper is neu-
tral between implementer and programmer. Its main achievement is to permit
simple proofs of familiar algebraic identities that hold between programs with
different syntactic forms. The algebraic laws may help the implementer in de-
signing automatic optimization strategies, and the programmer in developing
efficient algorithms, while preserving correctness by construction.

The presentation of our semantics proceeds in two stages. First, the text
of the program is translated into an abstract tree form. A standard collec-
tion of algebraic laws is proved simply by graph isomorphism. This is done
in section 3. A particular execution of the program can then be recorded by
annotating the nodes of the tree with information about the values of the pro-
gram variables and the times at which they are assigned. Because a program
is non-deterministic, there are many ways to do this: we define the complete
set of valid annotations by healthiness conditions, which can be checked in-
dependently at every node of the tree. This is done in section 4. The paper
concludes with a summary of further research that may prove useful for both
the implementation and use of the language.

2. Syntax and Semantics

We describe the syntax and operational semantics of Orc in this section.
This material is condensed from the companion paper[3] in this volume. We
include it here for completeness. We encourage the reader to consult the com-
panion paper for more details and examples.

2.1 Syntax

A computation is started from a host language program by executing anOrc
statement

z :∈ f ([actual-parameter])

wherez is a variable of the host program, called thegoalvariable,f is the name
of a (defined) expression, called thegoal expression, and [actual-parameter]
is a (possibly empty) comma-separated list of actual parameters. The syntax
of expression definition is

exprDefinition ::= exprName([formal-parameter]) ∆ expr
formal-parameter ::= variable

A Tree Semantics of an Orchestration Language 3

Next, we define the syntactic unitexpr which denotes an Orc expression.
Below, f andg are Orc expressions,F is the name of an expression defined
separately, andx is a variable.

expr ::= term | f À g | f g | f where x :∈ g |
F ([actual-parameter])

term ::= 0 | 1 | site([actual-parameter])
actual-parameter ::= constant | variable | θ

Binding powers of the operators. The binding powers of the operators in
increasing order of precedence are:∆ , where , :∈ , | , À .

Well-formed expressions. The freevariables of an expression are defined
as follows, whereM is a site or an expression name andL is a list of its variable
parameters.

free(0) = {}, free(1) = {}
free(M(L)) = {x| x ∈ L}
free(f op g) = free(f) ∪ free(g), whereop is | or À
free(f where x :∈ g) = (free(f)− {x}) ∪ free(g)

Variablex is boundin f if it is named inf and is not free. The binding rule is:
given ((f where x :∈ g), any free occurrence ofx in f is bound to its binding
occurrence, thex defined just afterwhere . We rename all bound variables in
where expressions so that all variable names in an expression are distinct.

Expressionf is well-formedif all free variables of it are its formal parame-
ters.

Tag elimination. The full syntax of Orc includestags, which are vari-
ables used to pass values of one expression to another. For example, we write
M >x> N(x), wherex is a tag, to assign a name to the value produced byM ,
and to pass this value toN . We do not consider tags in this paper because they
can be eliminated using the following identity.

(f >x> g) = (f À {g where x :∈ 1})

2.2 Operational semantics

In this section, we describe the semantics of Orc in operational terms. Eval-
uation of an expression (for a certain set of global variable values) yields a
stream of values, which may be empty, non-empty but finite, or infinite. Ad-
ditionally, the evaluation may assign values to certain tags and local variables.
We describe the evaluation procedure for expressions based on their syntactic
structures.

4

2.2.1 Site call. The simplest expression is a term representing a site call.
To evaluate the expression, call the site with the appropriate parameter values.
If the site responds, its return value is the (only) value of the expression. In
this paper we do not ascribe any semantics to a site call. Its behavior is taken
as entirely arbitrary, and therefore consistent with any semantics that may be
ascribed later.

2.2.2 Operator À for sequential composition. Operator À allows
sequencing of site calls and passing values between them. To explain the se-
quencing mechanism, we consider firstM À N where both operands are site
calls. Evaluation ofM À N first callsM , and on receiving the response from
M callsN . The value of the expression is the value returned byN . The value
returned byM is referred to asθ; so inM À R(θ), R is called with the value
returned byM as its argument. Each application of sequencing reassigns the
value ofθ; so inM À R(θ) À S(θ), the first occurrence ofθ refers to the value
produced byM and the latter to the value produced byR.

When an expression produces at most one value,À has the same meaning
as the sequencing operator in a conventional sequential language (like “;” in
Java). For expressionf À g, wheref andg are general Orc expressions,f
produces a stream of values, and each value causes a fresh evaluation ofg.
The values produced by all instances ofg in time-order is the stream produced
by f À g. Note that during the evaluation off À g, threads for bothf and
several instances ofg may be executing simultaneously. We elaborate on this
in section 2.2.3.

2.2.3 Operator | for symmetric parallel composition. Using the
sequencing operator, we can only create single-threaded computations. We
introduce | to permit symmetric creations of multiple threads. Evaluation of
(M | N) creates two parallel threads (one forM and one forN), and produces
a stream containing the values returned by both threads in the order in which
they are computed.

In general, evaluation off | g, wheref andg are Orc expressions, creates
two threads to computef and g, which may, in turn, spawn more threads.
The evaluation produces a series of site calls, which are merged in time order.
The result from each thread is a stream of values. The result fromf | g is
the merge of these two streams in time order. If both threads produce values
simultaneously, their merge order is arbitrary. Treatment of this is postponed
to section 4.

It is instructive to consider the expression(M | N) À R. The evaluation
starts by creating two threads to evaluateM andN . SupposeM returns a
value first. ThenR is called. IfN returns a value next,R is called again. That
is, each value from(M | N) spawns a thread for evaluating the remaining part

A Tree Semantics of an Orchestration Language 5

of the expression. In(M | N) À R(θ), the value that spawns the thread for
computingR(θ) is referenced asθ.

ExpressionsM | M andM are different; the former makes two parallel
calls to M , and the latter makes just one. Therefore,M produces at most
one value, whereasM | M may produce two (possibly identical) values. The
expressionM À (N | R) is different fromM À N | M À R. In the first case,
exactly one call is made toM , andN andR are called afterM responds. In
the second case two parallel calls are made toM , andN andR are called only
after the corresponding calls respond. The difference is significant whereM
returns different values on each call, andN andR use those values. The two
computations are depicted pictorially in figure 1.

M M

N R

M

N R

(a) (b)

Figure 1. (a)M À (N | R) and (b)M À N | M À R

2.2.4 Operator where for asymmetric parallel composition. An ex-
pression with awhere clause (henceforth called awhere expression), has the
form {f where x :∈ g}. Expressionf may namex as a parameter in some of
its site calls. Evaluation of thewhere expression proceeds as follows. Evaluate
f andg in parallel. Wheng returns its first result, assign the result tox and
terminate evaluation ofg. During evaluation off , any site call which does not
namex as a parameter may proceed, but site calls in whichx is a parameter are
deferred untilx acquires a value. The stream of values produced byf under
this evaluation strategy is the stream produced by{f where x :∈ g}.

2.2.5 Expression call. An expression call is like a function call; the
body of the expression is substituted at the point of the call after assigning
the appropriate values to the formal parameters. Unlike a function call, an
expression returns a stream of values, not just one value. The values returned
are non-deterministic, because the sites it calls may be non-deterministic.

2.2.6 Constant terms. There are two constant terms in Orc:0 and1.
Treat each as a site. Site0 never responds and1 responds immediately with
the value ofθ.

6

2.2.7 Defining Orc expressions. In Orc, an expression is defined by its
name, a list of parameters which serve as its global variables, and an expression
which serves as its body. For example,

BM (0) ∆ 0
BM (n + 1) ∆ S | R À BM (n)

defines the nameBM , and specifies its formal parameter and body. Calling
BM (2), for instance, starts evaluation of a new instance ofBM with actual
parameter2, which produces a stream of values.

The definition ofBM is well-grounded so that for everyn, n ≥ 0, BM (n)
calls a finite number of sites and returns a finite number of values. Orc has
expression definitions which are not well-grounded to allow for infinite com-
putations. For example, a call toE where

E ∆ S | R À E

may cause an unbounded number of site calls (and produce an unbounded
number of values). However, every call ofE occurs inside some context
x :∈ . . . E . . ., which assigns tox only the first value produced by the ex-
pression. Further computations, i.e., all later site calls byE and the values it
returns, can be truncated. Thus all computations of interest depend only on
finite recursion depth and a finite tree.

2.2.8 Starting and ending a computation. A computation is started
from a host language program by executing anOrc statement

z :∈ f ([actual-parameter])

wherez is a variable of the host program andf is the name of an expression,
followed by a list of actual parameters. All actual parameters have values
beforef ’s evaluation starts. To execute this statement, start the evaluation of
f with actual parameters substituted for the formal ones, assign the first value
produced to variablez, and then terminate the evaluation off . If f produces
no value, the execution of the statement does not terminate.

3. A Semantic Model

We develop a semantic model of Orc which is defined in a manner entirely
independent of the behaviors of the sites and the meanings of the site calls. As
a result, two expressions that are equal in this semantics behave exactly alike
when executed in the same environment, whatever that may be.

The model is denotational. The denotation of an expression is a tree whose
edges are labelled with site calls, and whose nodes are labelled with declara-
tions of local variables (i.e., their names and the associated trees) and a natural

A Tree Semantics of an Orchestration Language 7

number calledsize. Paths denote threads of execution. A path ending at a node
of sizen produces the value associated with the noden times as results of
expression evaluation.

Two expressions are equal if both are well-formed and their denotation trees
are equal. Equal expressions are interchangeable in every context. In this
section, we look at the equality problem; in the next section, we show how to
depict executions using denotation trees.

Informal Description of the Equality Theory. It is customary to regard
two expressions equal if one can be replaced by the other within any expres-
sion. This suggests that equal expressionsf andg produce the sameexternal
effect(i.e., call the same sites in the same order) and the sameinternal effect
(i.e., produce the same values). Therefore,(M | N) and(N | M) are equal.
In evaluating these expressions, we make the same site calls in both cases and
produce the same values, no matter which sites respond. If onlyM responds,
say, both expressions will produce the same value, the response received from
M .

We create the tree from an expression assuming thatevery site responds.
Thus, two expressions are equal if they have the same tree. This notion of
equality, properly refined, is appropriate even when some sites may not respond
during an execution, because then both expressions will behave identically. For
example, consider((M | N) À R) and(M À R | N À R). If N does not
respond andM does during an evaluation, both expressions will produce the
value from the sequenceMR (providedR responds). Moreover, they would
have made identical site calls, toM andN simultaneously and toR afterM
responds.

A value produced by an expression is derived from the response of a site
call. So for the equality off andg, we need only establish thatf andg have
identical tree structures where corresponding nodes have the same size. To
see the need for the latter requirement, consider(M À 0) andM . They both
make the same site call, toM , though only the latter produces a value. And
in M À (1 | 1), the value received fromM is produced twice as the result of
expression evaluation, whereas inM the value is produced only once. The size
of a node (in these cases, the respective terminal nodes) denotes the number of
times the corresponding value is produced.

3.1 The denotation tree

3.1.1 Structure of the denotation tree. The denotation of an expres-
sion is atree. The tree has at least one node (its root), and it may be infinite.
Each edge of the tree is labelled with a site call of the formM(L), whereL is
a list of parameters. Each node has a set ofdeclarations, where a declaration
consists of a variable name and a denotation tree. The set of declarations may

8

be empty; otherwise, the variable names in the declarations at a node are dis-
tinct. Each node has asize, a natural number1. Sizen specifies that during an
execution the value associated with this node (i.e., received from the site call
ending at this node) appearsn times as the result of expression evaluation.

Bound Variable Renaming. Declarations at a node correspond to introduc-
tion of local variables. The reference to variablex in an edge label, sayM(x),
is bound tox which is declared at the closest ancestor of this edge.

We may rename variablex, which appears in a declaration at a node, byy
providedy is not the name of any variable in that declaration. Then, we replace
x by y for all occurrences ofx bound to this declaration. Renaming does not
change any property of the tree.

3.1.2 Operations on denotation trees. We define three operations on
denotation trees:join (∪), graft (++) anddeclare(◦).

To computeP ∪Q for treesP andQ, create a tree whereP andQ share the
root. The declarations at the root is the union of the declarations at the roots of
P andQ; ensure distinct names in the declarations by renaming variables inP
or Q. The size at the root is the sum of the sizes of both roots.

To computeP ++ Q, at each nodeu of P which has sizen, n > 0, attachn
copies ofQ, as follows. First, joinn copies ofQ as described above; call the
resultQn. Letq be the root ofQ andqn of Qn. Nodeqn hasn distinctly named
variables for each variable declared atq and its size ism × n, wherem is the
size ofq. Next: (1) set the declarations atu to the union of the declarations atu
andqn, (2) set the size ofu to that ofqn (i.e.,m×n), and (3) make all children
of qn children ofu. Note that a node ofP whose size is0 is unaffected by
graft.

To compute(x,Q) ◦ P , add the declaration(x,Q) to the declarations at the
root ofP ; renamex if necessary to avoid name clash. In(x,Q) ◦ P , treeQ is
asubordinateof treeP .

Two trees are equal if they are identical in all respects as unordered trees
after possible renamings. Specifically, equal trees have 1-1 correspondence
between their nodes and their edges so that (1) corresponding nodes have the
same declarations (i.e., same variables and equal associated trees) and same
size, and (2) corresponding edges have the same label and they are incident on
nodes which correspond.

Simple facts about join, graft and declare. In the following,P , Q andR
are trees, andc andd are declarations.

1In general, the size is an ordinal; see section 3.3.

A Tree Semantics of an Orchestration Language 9

1 ∪ is commutative and associative.

2 ++ is associative.

3 (P ∪Q) ++ R = (P ++ R) ∪ (Q ++ R)

4 d ◦ (P ++ Q) = (d ◦ P) ++ Q

5 d ◦ (P ∪Q) = (d ◦ P) ∪Q

6 c ◦ (d ◦ P) = d ◦ (c ◦ P)

The commutativity and associativity of∪ follow from its definition. The
associativity ofÀ is also easy to see pictorially, but we sketch a proof.

A copy ofR in (P ++ Q) ++ R is equal to any copy ofR in P ++ (Q ++ R),
because there has been no graft on (i.e., attachments to the nodes of)R in
either tree. Next, we show that any copy ofQ in one tree is equal to any in
the other. The copies are identical because in both casesR has been grafted
to Q, and graftingR to identical trees results in identical trees. To complete
the proof, first note that in(P ++ Q) ++ R andP ++ (Q ++ R) there is exactly
one copy of treeP . We show that copies ofP in both trees are identical; i.e.,
corresponding nodesu andv in both trees have: (1) equal numbers of copies of
Q andR attached to them; so, their declarations are identical, (2) equal sizes,
and (3) identical edges ofP incident on them. The proof of part (3) is trivial,
because the edges ofP are unaffected by graft. To prove (1) and (2), let the
size ofu (andv) in P bem, and the sizes of the roots ofQ andR ben and
r, respectively. The number of copies ofQ attached tou in (P ++ Q) ++ R is
m, because it is the same as in(P ++ Q). The number of copies ofQ attached
to v in P ++ (Q ++ R) is againm because the size ofv in P is m. And the
number of copies ofR attached to either ism× n. The sizes of bothu andv,
in (P ++ Q) ++ R andP ++ (Q ++ R) respectively, arem× n× r.

Proof of (P ∪ Q) ++ R = (P ++ R) ∪ (Q ++ R) is direct from the tree
construction. Note thatP ++ (Q ∪ R) 6= (P ++ Q) ∪ (P ++ R). To see this,
let P , Q andR have single variable edges labelledM , N andR respectively.
The tree forP ++ (Q∪R) is given in figure 1(a) and for(P ++ Q)∪ (P ++ R)
in figure 1(b) (in page 5); they are different.

The proof ofd ◦ (P ++ Q) = (d ◦ P) ++ Q follows from the tree structure;
declarationd appears at the root of treeP in both cases. Andd ◦ (P ∪ Q) =
(d ◦P)∪Q because in both cases declarations at the root are equal;d is added
to the set of declarations of(P ∪Q). We havec◦ (d◦P) = d◦ (c◦P) because
the declarations form a set and “◦” adds a declaration to the set.

3.1.3 Denotations of expressions. Write tree(f) for the denotation
tree of expressionf . For0, the tree has a single node (the root) whose size is
0. For1, the tree has a single node (the root) whose size is1. For a site call

10

[0]

S(x)

[1]

[0] x

S(x) N(y) C

[0]

[1] [1]

[0] y

N(y) C

[0]

[1]

[0] y

[1] [1]

Figure 2. Trees forS(x), {N(y) wherey :∈ c}, (S(x) wherex :∈ {N(y) wherey :∈ c})

of the formM(L), the tree consists of a single edge labelled with the term, the
root has size0 and the terminal node size1. There are no declaration in any of
these cases. The rest of the tree-construction rules follow.

tree(f À g) = tree(f) ++ tree(g)

tree(f | g) = tree(f) ∪ tree(g)

tree(f where x :∈ g) = (x, tree(g)) ◦ tree(f)

For expressionF whereF ∆ f :
tree(F) is the least fixed point of the equationtree(F) = tree(f).

We have described the operations++ , ∪ and◦ earlier. In the definition of
tree(f where x :∈ g), tree(g) is asubordinatetree oftree(f). We treat least
fixed point in more detail in section 3.3.

Example. We construct the denotation of

(S(x) where x :∈ {N(y) where y :∈ c})
À ({(1 | N(x)) À R(y) where x :∈ A À 0} where y :∈ B)

The construction involves all three operations,++ , ∪ and◦.
In the figures, the size of a node is enclosed within square brackets. We

show a declaration by drawing a dashed edge to the root of the subordinate
tree and labeling the edge with the variable name.

ForS(x), {N(y) where y :∈ c} and(S(x) where x :∈ {N(y) where y :∈ c})
the trees are shown in figure 2.

The trees for1, N(x) and(1 | N(x)) are in figure 3.
The trees forR(y) and(1 | N(x)) À R(y) are in figure 4.
The tree for{(1 | N(x)) À R(y) where x :∈ A À 0} is in figure 5.
The tree for({(1 | N(x)) À R(y) where x :∈ A À 0} where y :∈ B) is in

figure 6.
The tree for the whole expression is in figure 7.

A Tree Semantics of an Orchestration Language 11

[0]

[1]

N(x)

[1]

[1]

N(x)

[1]

(b) N(x) (c) (1 | N(x))(a) 1

Figure 3. Trees for1, N(x) and(1 | N(x))

N(x)R(y)

[0]

[1]

[1]

R(y)
[0]

[0]

[1]

R(y)

Figure 4. Trees forR(y) and(1 | N(x)) À R(y)

N(x)R(y)

[1]

[1]

R(y)

A[0]

[0]

[0]

[0] x

Figure 5. Tree for{(1 | N(x)) À R(y) wherex :∈ A À 0}

3.2 Laws obeyed by Orc expressions

Well-formed expressionsf andg are equal if their trees are identical. (See
section 2.1 for definition of well-formed expressions.)

f = g iff tree(f) = tree(g) .

Equal expressions are interchangeable in any context.
We list a number of laws about Orc expressions. The laws in section 3.2.1

are also valid for regular expressions of language theory (which is a Kleene
algebra[1]). Orc expressions withoutwhere clauses can be regarded as regular
expressions. An Orc term corresponds to a symbol in a regular expression:0
and1 correspond to the empty set and the set that contains the empty string,
and | and À correspond to alternation and concatenation. There is no opera-
tor in Orc corresponding to∗ of regular expressions, which we simulate using
recursion. Thewhere operator of Orc has no counterpart in language theory.

12

N(x)R(y)

[1] R(y)

A[0]

[0]

[0]

[0]y x

B

[0]

[1]
[1]

Figure 6. Tree for({(1 | N(x)) À R(y) wherex :∈ A À 0} wherey :∈ B)

S(x)

[0] x

N(y) C

[0]

[1] [1]

[0] y

N(x)R(y)

[1] R(y)

A[0]

[0]

[0]

[0]y x

B

[0]

[1]
[1]

Figure 7. The tree for the whole expression

3.2.1 Kleene laws. All Orc expressions, includingwhere expressions,
obey the laws given in this section. Belowf , g andh are Orc expressions. In
all the identities, one side is well-formed iff the other side is.

(Zero and |) f | 0 = f
(Commutativity of |) f | g = g | f
(Associativity of |) (f | g) | h = f | (g | h)
(Left zero of À) 0 À f = 0
(Left unit of À) 1 À f = f
(Right unit of À) f À 1 = f
(Associativity of À) (f À g) À h = f À (g À h)
(Right Distributivity of À over |) (f | g) À h = (f À h | g À h)

(Zero and |) (f | 0) = f : Join with 0 does not affect the size or the
declarations at the root off .

(Commutativity of |) f | g = g | f : From the commutativity of join.

(Associativity of |) (f | g) | h = f | (g | h): From the associativity of join.

(Left zero of À) 0 À f = 0: The tree for0 has only a node of size zero; so,
grafting has no effect.

A Tree Semantics of an Orchestration Language 13

(Left unit of À) 1 À f = f : The tree for1 has only a root node of size one;
so, graftingf producesf .

(Right unit of À) f À 1 = f : Similar arguments as above.

(Associativity of À) (f À g) À h = f À (g À h): Operation graft is asso-
ciative.

(Right Distributivity of À over |) (f | g) À h = (f À h | g À h): From
the right distributivity of graft over join.

Some of the axioms of Kleene algebra do not hold in Orc. First is theidem-
potenceof | , f | f = f . ExpressionsM | M andM are different because
the corresponding trees have different sizes at the terminal nodes. In Kleene
algebra,0 is both a right and a left zero. In Orc, it is only a left zero; that is,
f À 0 = 0 does not hold: expression(M À 0) differs from0, because the
corresponding trees are different. Another axiom of Kleene algebra is the left
distributivity of À over | : f À (g | h) = (f À g) | (f À h). This does not
hold in Orc because, as we have shown, the++ does not left distribute over∪.

3.2.2 Laws forwhere expressions. The following laws forwhere expressions
have no counterpart in Kleene algebra.

(Distributivity over À)
{f À g where x :∈ h} = {f where x :∈ h} À g

(Distributivity over |)
{f | g where x :∈ h} = {f where x :∈ h} | g

(Distributivity overwhere)
{{f where x :∈ g} where y :∈ h} = {{f where y :∈ h} where x :∈ g}

On the need for well-formedness. For the laws given above, both sides
of an identity must be checked syntactically for well-formedness. Unlike the
laws in section 3.2.1, both sides may not be well-formed if only one side is.
Consider

p = (M | N(x) where x :∈ g)

We show below thattree(p) is identical to bothtree(q) andtree(r), where

q = (M where x :∈ g) | N(x)
r = (N(x) where x :∈ g) | M

Expressionr is well-formed thoughq is not, becausex in the termN(x) is not
bound to any variable. So,p 6= q thoughp = r.

14

Proofs. Use the following abbreviations.

P = tree(f) Q = tree(g) R = tree(h)
Q′ = (x, tree(g)) R′ = (x, tree(h)) R′′ = (y, tree(h))

The required proofs are

R′ ◦ (P ++ Q) = (R′ ◦ P) ++ Q

R′ ◦ (P ∪Q) = (R′ ◦ P) ∪Q

R′′ ◦ (R′ ◦ P) = R′ ◦ (R′′ ◦ P)

These results follow directly from the properties of declaration (◦); see sec-
tion 3.1.2 (page 8).

3.3 Least Fixed point

To construct the tree for an expression call we need to solve an equation. To
handle expression calls with parameters, say,F (s) whereF ∆ (λr.f), find
the least fixed point oftree(F (s)) = tree(F ∆ (λr.f)s). To do this, replace
all formal parameters by the actual parameter values and then construct the
least denotation tree. As an example, consider the definition

BM (0) ∆ 0
BM (n + 1) ∆ S | R À BM (n)

To constructtree(BM (2)), say, we solve the following equations, which
results in the tree shown in figure 8.

tree(BM (2)) = tree(S | R À BM (1))
tree(BM (1)) = tree(S | R À BM (0))
tree(BM (0)) = tree(0)

S R

S R

[0]

[0]
[1]

[1] [0]

Figure 8. Solution of the equations forBM (2)

The solution is more involved for the following definition where the number
of equations is infinite.

E ∆ S | R À E

A Tree Semantics of an Orchestration Language 15

The resulting tree is the least fixed point of this equation. It is obtained by
a chain of approximations forE: start with the approximation0 for E, and
substitute each approximation forE into the equation to obtain a better ap-
proximation. We claim (though we do not prove in this paper) that the limit
of this chain of approximations is the least fixed point of the given equation.
The first few approximations are shown in figure 9. The sequence is same as
BM (0), BM (1) . . ., shown above.

...
S R S R

S R

[0] [0] [0]

[0]
[0]

[0]

[1] [1]

[1]

Figure 9. Approximations for the least fixed point ofE ∆ S | R À E

The reader may show that both(E = E) and(E = E À f) have0 as
their least fixed points. The least fixed point of(E = M À E) is the tree
which is a single infinite chain of edges labelledM in which every node has
size zero. And for(E = 1 | E À M), the least fixed point is a denotation of
the infinite expression1 | M | M À M | M À M À M | . . . (which is not a
valid Orc expression) whose terminals have size one.

The need for ordinal as size. Theoretically, we need ordinals to represent
sizes in denotation trees. Consider the equation(E = 1 | E). Its tree has
a single node (root) with sizeω. And, E À E has a tree whose root has size
ω2. Similarly, E = ({M(x) where x :∈ g} | E) has an infinite number of
declarations at its root. Such expressions are rare in practice, and they are
unimplementable because their executions have to create infinite number of
threads simultaneously.

The least fixed point of(E = M | E) is (M | M | · · ·) which is(!M) of
Pi-calculus [2]. In this case, the tree has infinite degree at the root, but each
terminal node has size one.

4. Healthiness conditions for executions

In this section, we augment the denotation tree with additional information
to record the steps of an execution. An execution is a history of site calls
(the actual parameter values passed to the sites and the times of the calls), the
responses received from the sites (the values received and the times of receipt),
and the assignments of values to the local variables. We record these steps by
attaching a state to each node of the tree, as we explain below.

A nodeu in the tree has an associated stateu.state. A stateis an assignment
of values to variables; we writeu.x for the value ofx in u.state, providedx is

16

defined in that state. A value is a tuple(magnitude, time), wheremagnitude
holds the actual value of the variable andtime denotes the time at which the
magnitude is computed; writeu.x.time for the time component ofx in u.x.
The times associated with different variables in a state may be different, as we
explain in section 4.4. The time at which nodeu is reached in a computation
is u.θ.time.

Notation. For nodeu

u.state: the state ofu
u.def : the set of variables (includingθ) defined inu.state
u.decl: the set of variables declared atu
u.null: is true iff u.def = {}
u.x: the value ofx in u.state
u.x.time: the time component ofx in u.x

For any execution, the states associated with the nodes satisfy certain health-
iness conditions, which we specify in this section. Conversely, any set of states
which satisfy the healthiness conditions is a possible execution. We give the
healthiness conditions in three parts: (1) edge conditions, which specify for
each edge(u, v) the relationship betweenu.state andv.state, (2) root condi-
tions, which specify the states at the roots of the goal tree and all subordinate
trees, and (3) the conditions for subordinate computations, which give the se-
mantics ofwhere expressions.

Convention. Assume that a tree and all its subordinates have been renamed
so that a variable is declared in at most one node.

4.1 Edge conditions

For edge(u, v), whose label isM(L), v.state specifies the effect of site call
M(L) in u.state.

¬v.null ⇒ ¬u.null
∧ θ ∈ v.def
∧ u.def = v.def − v.decl
∧ (∀x : x ∈ u.def ∧ x 6= θ : u.x = v.x)
∧ (∀y : y ∈ L : y ∈ u.def ∧ v.θ.time ≥ u.y.time)
∧ v.θ.time ≥ u.θ.time (edge condition)

We study the conjuncts in turn. The state ofv is non-null only ifu’s state
is non-null (so a null state propagates down the tree). In every non-null state
θ is defined (we will require in section 4.2 thatθ be defined at each root). All
variables defined inu.state are also defined inv.state; the additional variables

A Tree Semantics of an Orchestration Language 17

defined inv.state are declared atv. Values of the variables inu.state (other
thanθ) are the same inv.state. The site call is made only if all parameters of
the call are defined inu.state. Next, we justify the conditions onv.θ.time in
the last two conjuncts.

The site call is made no earlier thanu.y.time for any parametery, for y ∈ L,
because the value ofy is not available beforeu.y.time. And the call is made
no earlier thanu.θ.time. The time of the corresponding response isv.θ.time
which is at least the time of the call.

4.2 Root conditions

We specify the conditions onr.state wherer is a root node of the goal or a
subordinate tree. The only condition for the goal tree is

r.def = {θ} andr.θ.time ≥ 0 (goal root condition)

The first part says that when an expression is called from a main (host lan-
guage) program, all its formal parameters are replaced by actual parameters
values; so they are not part of the root state. Onlyθ is defined and its associ-
ated time is non-negative.

For subordinate trees, consider nodeu of treeP which has a declaration
(x,Q), soQ is subordinate toP . For rootq of Q

q.state = u.state (subordinate root condition)

That is, the computations ofq andu start simultaneously in the same state.
The condition is surprising and, apparently, circular. This is becausex may

be defined inu.state, but it is certainly not available to any node inQ; the
purpose ofQ is to compute the value ofx. Here, we exploit the fact thatQ
represents the denotation of a well-formed expression. Therefore, no edge in
Q accessesq.x. The presence or absence ofx in q.state (and in the states of all
its descendants) is immaterial. Similar remarks apply for multiple declarations
at nodeu; all variables inu.def appear inq.def , only some of which would be
accessed by a well-formed expression.

4.3 Subordinate tree conditions

Let P be a denotation tree in which nodeu has a declaration(x,Q); there-
fore, Q is subordinate toP . The first healthiness condition states that ifx is
defined (atu), then there is a node ofQ of positive size whoseθ value is same
as that ofx. Conversely,x is defined only if there is some such node ofQ.

Subordinate assignment condition.

(x ∈ u.def) ≡ (∃q : q ∈ Q, size ofq is positive, ¬q.null : q.θ = u.x)

18

The next condition states that all computations inQ and its subordinates
cease oncex is assigned value. Define predicatecease(R, t), whereR is a tree
andt a time, which holds iff (1)r.θ.time at any noder of R is at mostt, and
(2) the condition applies recursively to all subordinate trees ofR.

Subordinate termination condition.

cease(R, t) ∆ (∀r : r ∈ R : r.θ.time ≤ t)
∧ (∀S : S subordinate ofR : cease(S, t))

(x ∈ u.def) ⇒ cease(Q, u.x.time)

The subordinate tree conditions apply to the goal tree as well; its computa-
tion may assign theθ value of a node of positive size to the goal variable, and
then cease.

A small identity. Call expressiong silent if all nodes in its tree have size
zero. That is,g = g À 0. We use the healthiness conditions to argue that
(f where x :∈ g) has the same execution as(f | g) if g is silent (note thatf | g
may not be well-formed iff referencesx).

In (f where x :∈ g) variablex is declared at the rootu of tree(f). From the
first condition for subordinate tree,x 6∈ u.def . Therefore,x plays no role in
the computation. The condition for ceasing the computation holds vacuously
for tree(g). So, the execution of(f where x :∈ g) is identical to startingf and
g simultaneously without any constraints on termination (i.e, as(f | g)).

4.4 Discussion

We show that variables defined in a state may have different associated
times, which may also be different from the time associated withθ. To see
this, consider(f where x :∈ g). In the operational semantics, the computations
of f andg start in the same state, says. If g returns a value,x is assigned the
value and portions off which are waiting forx may be resumed. This opera-
tional notion is captured within our semantics by creating a states′, which iss
augmented with the(magnitude, time) of x, and startingbothf andg in s′.
We consider the ramifications of this rule for bothf andg.

We have explained in section 4.2 (undersubordinate root condition), that the
apparent circularity of usings′ in place ofs causes no semantic difficulty for
g. A well-formedg does not accessx; therefore, state assignments to its nodes
are the same withs ands′ except that in the latter case each state includesx as
a defined variable.

We argue thats′ is the appropriate state for starting the computation off , as
well. Consider, for example,f = (M | N(x)). The evaluation ofM proceeds
without waiting forx, whereasN(x) has to wait forx. Therefore,M starts in

A Tree Semantics of an Orchestration Language 19

states andN(x) in states′. So, it may seem that the root oftree(f) should
have two associated states,s ands′. Fortunately, it is sufficient to associate just
s′ with the root, because sinceM does not accessx its execution is identical
in boths ands′, much like the way we argued forg, in the previous paragraph.
This argument applies for arbitraryf , as well.

5. Conclusion

The most serious omission from the semantics presented here has been a
treatment of site calls and their interactions with the Orc program. A semantics
for sites should ideally enable each independent site to be treated separately
so that its combination with an Orc program yields the semantics of a more
restricted Orc program: interactions with the site are entirely hidden, so that
the result can be simply interfaced with the remaining sites.

A second extension to the semantics presented could give a more step-by-
step guidance to the implementer on how to execute programs without risking
deadlock or making unnecessary site calls.

A third extension would provide more guidance to the programmer on how
to establish correctness of programs and of sites. It is particularly important to
help the designer of a site to discharge responsibility for nullifying the effect
of all site calls except those involved in computing the final result delivered by
the Orc program.

Related work. The proposed semantics is greatly influenced by denota-
tions of regular expressions (i.e., Kleene algebra[1]). A regular expression is
denoted by a tree labelled by symbols on its edges. Each path in the tree rep-
resents a string (the sequence of symbols along its edges) and two trees are
identical if they have the same set of paths. Therefore, a regular expression
can be denoted by a set of strings only. Orc expressions are also denoted by
trees though there are several differences: (1) left distributivity ofÀ over | ,
i.e.,f À (g | h) = (f À g) | (f À h) does not hold in Orc; so, a tree can not
be represented by the labels on its paths only (see figure 1 in page 5), (2) the
where clause has no counterpart in Kleene algebra; its introduction requires us
to attach subordinate trees to the nodes of a tree, and (3) lack of idempotence
in Orc forces us to distinguish between1 and(1 | 1), say, by associating a size
with each node.

References

[1] Dexter Kozen. On Kleene algebras and closed semirings. InProceedings, Math. Found. of
Comput. Sci., volume 452 ofLecture Notes in Computer Science, pages 26–47. Springer-
Verlag, 1990.

[2] Robin Milner. Communicating and Mobile Systems: theπ-Calculus. Cambridge Univer-
sity Press, May 1999.

[3] Jayadev Misra. Computation orchestration: A basis for wide-area computing. In Man-
fred Broy, editor,Proc. of the NATO Advanced Study Institute, Engineering Theories of
Software Intensive Systems, NATO ASI Series, Marktoberdorf, Germany, 2004.

