Transactional Orc

Katherine E. Coons

May 7, 2008

Abstract

Transactions provide a language construct that programmers can use to specify
that operations execute atomically, in isolation from all computation outside
the transaction. Transactions permit optimistic concurrency for accesses to
shared data, which may improve performance over locking mechanisms. Trans-
actions also allow programmers to specify atomic regions in a composable way,
which locks do not permit. Although transactions are theoretically capable of
these performance and programmability improvements, researchers have found
it difficult to exploit these benefits in practice via transactional memory. Most
transactional memory implementations provide a single transaction manage-
ment policy. Which policy is desirable, however, often differs with the mem-
ory location. Some objects are highly contended and may benefit from deferred
updates, while others seldom suffer from contention and may benefit from in-
place update, for instance. By implementing transactions in Orc, a language
that separates computation from concurrency, we allow different transaction
management policies to be used in a single program, and even within a single
transaction. Although composability is one of the key programmability goals of
transactions, most nesting solutions also suffer from high overheads, unneces-
sary restrictions, unintuitive nesting policies, or excessive aborts at runtime
that may limit gains in programmability. Orc provides nested parallel transac-
tions, and allows computations and data structures to decide how, and whether,
they will support nested transactions.

1 Introduction

Transactions provide a simple mechanism for programmers to express that opera-
tions should be atomic and isolated from other computation. One way to ensure
atomicity and isolation of operations within a transaction is to use transactional
memory. In a transactional memory system, transactional accesses to shared mem-
ory are systematically modified to record any state modifications such that they can
be rolled back if the transaction fails to execute in isolation.

Speculatively executing transactions concurrently can provide performance im-
provements over locks, yet the policies that a transactional memory system chooses
affect the ability of the transactional memory system to exploit this concurrency
effectively. A transactional memory system usually dictates a single policy that all
memory accesses use when modifying memory. This policy dictates where modi-
fied state is stored, when conflicts are detected, how transactions are nested, and

how conflicting non-transactional accesses are handled. Highly contended data may
prefer a deferred update system that allows fast aborts at the expense of slower
commits, whereas infrequently contended data may prefer an in-place update sys-
tem that makes commits fast at the expense of slower aborts.

Rather than supplying a single transaction manager that handles all transac-
tional data, we propose a system in which the transaction manager’s characteristics
may vary with the data being manipulated. We use Orc, a language that separates
computation and concurrency, to separate the management of transactional data
from the orchestration of the transaction. This separation allows each computation,
object, or data structure to choose its own transaction management policy. As a
result, different data structures, or different instances of the same data structure,
can select the transaction management policy that best suits their expected usage
scenarios. By allowing each data structure to specify its own transaction manage-
ment policy for its data, transactions in Orc also provide the opportunity for data
structures, if desired, to abstract away from transactional memory in favor of actions
and compensating actions.

In addition to allowing concurrent execution of atomic regions, transactions pro-
vide the programmer with the ability to compose atomic regions. This composition
is difficult with locks, particularly when libraries make the details of nested code
invisible. Nested transactions in transactional memory implementations often suf-
fer from various problems, however, such as high overhead, unintuitive semantics,
unnecessary restritions, or excessive aborted transactions. Nested transactions in
Orec differ from nested transactions in traditional transactional memory systems be-
cause a nested child transaction may conflict with other, concurrent nested child
transactions, and it may also conflict with its parent transaction.

Orc provides nested parallel transactions, similar to those provided in [2], and
parallel threads within a single transaction. Unlike the Cilk implementation of par-
allel nested transactions in [2], however, Orc provides a setting in which parallelism
within a transaction, and among nested transactions, is relatively simple to imple-
ment. Also, because Orc is a language that only orchestrates other computations
and does not perform any computations itself, an Orc program can leverage legacy
code. An Orc program simply provides a mechanism to specify concurrency in that
code at any desired granularity. By adding transactions to Orc, an Orc program can
specify not only the concurrency among those operations, but also any atomicity
and isolation requirements among those operations.

2 Background

This section provides background information necessary to understand how Orc
compiles and executes transactions, as well as how transactions in Orc relate to
traditional transactional memory systems.

(a) Sequential (b) Sequential assignment (c) Parallel symmetric (d) Parallel asymmetric

Figure 1: DAG for each Orc operator.

2.1 Orc

Orc provides a structured way to express concurrent and distributed programming
[12]. Orc cleanly separates concurrency from computation by handling concurrency
within Orc, but relying on primitive sites to perform all sequential computation and
data manipulation. A site may receive parameters as input, and it will provide at
most one response. A site may be a function, a method call for an object, a monitor
procedure, or a webservice, and it can be implemented in any language.

Orc provides three operators to orchestrate computation between sites. In the
following descriptions f and g represent expressions, which can be any combination
of the three operators and site calls. The simplest expression is a single site call.
The three operators that Orc provides are:

e Symmetric parallel composition: f | g
Initiate f and ¢ in parallel, and publish all values published by f or g.

e Sequential: f >x> ¢
Execute f. For all values x published by f, do g.

e Asymmetric parallel composition: ¢ <z< f
Initiate f and ¢ in parallel. When f publishes its first value, bind that value
to x for use by g, and terminate evaluation of f.

For further discussion of the Orc operators, see [12]. The most important con-
cept for this discussion is that Orc operators explicitly expression concurrency. In
addition, all computation and data manipulation is performed not via Orc instruc-
tions, but via site calls, and the code implemented at a site can be implemented in
any language.

The Orc compiler builds a DAG to represent each Orc expression. Figure 1
shows the DAG representing each Orc operator, where f and g are Orc expressions.
To evaluate the result of an expression, the Orc runtime places a token at the
expression’s root node. Each node in the graph executes instructions that may

include calling a site, creating duplicate tokens to initiate concurrent operations, or
moving the token to a different node.

The Orc language is extremely simple, and provides a powerful mechanism to
express concurrency in a structured way. It does not, however, provide any mecha-
nism for atomicity. For example, consider a work queue that contains an ordered list
of work items that must be distributed to workers in priority order. Many workers
monitor the work queue, but only some subset of the workers are qualified to handle
each work item. Workers monitor the queue waiting for a task to appear that they
are qualified to handle, and when such a task appears at the head of teh queue, a
qualified worker removes that task and begins to work on it.

Without atomicity, it is impossible for a worker to ensure that the task observed
at the head of the work queue is the same task removed from the head of the work
queue, as some other worker may have removed it. If a different task is removed
from the queue, the worker may not be qualified to handle it, and the work queue
can no longer guarantee that the work items will be distributed to workers in their
priority order.

If the work queue handles transactions, however, then workers can perform
atomic operations that observe the item at the head of the queue and remove that
item only if it is one on which they are qualified to work. Becacuse the read of the
head of the work queue and the removal of the head of the work queue are performed
atomically, the worker can guarantee that no other workers will interfere before the
transaction is complete.

2.2 Transactional Memory

Transactional memory allows programmers to specify regions of code that should
execute atomically, in isolation from all other code. Typically, a transactional mem-
ory system tracks the memory addresses accessed within transactions and detects
conflicting accesses. Two accesses conflict if they access the same memory address
and at least one of the two accesses is a write.

Transactional memory support can be implemented in hardware with mini-
mal software support, e.g. [13, 9, 17], in software without hardware support,
e.g. [1, 21, 19], or using a combination of hardware and software techniques, e.g.
[11, 22, 20]. A transactional memory system can be characterized by which choices it
makes with respect to several policies including version management, conflict detec-
tion, isolation, and nesting. Version management describes the system’s mechanism
for storing multiple copies of the memory modified by a transaction. Conflict detec-
tion determines when the system detects that a conflict between transactions has
occurred. The isolation policy dictates to what extent transactions are isolated from
non-transactional accesses. Finally, the nesting policy determines when and whether
the state modified by a nested transaction is made visible to the parent transaction,
and when the nested transaction’s modified state is committed to globally visible
state.

Although existing transactional memory systems make a variety of choices with

respect to version management, conflict detection, isolation, and nesting, almost all
transactional memory systems use a single policy for the entire memory system.
Some systems allow the user to vary the policy from one execution to the next, but
for a given execution the entire memory system uses a single policy. In contrast,
transactions in Orc allow each site to choose the policies it will use. Because tasks
like contention management and conflict detection are distributed and implemented
separately by each site, a single Orc program may call sites with a variety of different
policies, and multiple policies may even be invoked within a single transaction.

The next section discusses the semantics for transactions in Orc and describes
the interface that the Orc engine uses to communicate with sites. Section 4 describes
how Orc was modified to handle transactions, and Section 5 describes a transactional
implementation for one particular site, a channel. As each transactional policy is
discussed in Section 5, additional background information regarding that policy will
be provided.

3 Transactional Semantics for Orc

A transaction in Orc could be described by many possible semantics. We chose a
semantics that focuses on the intuitive meaning of atomic, built upon the assumption
that an expression that is within an atomic region should execute exactly as it would
if it were not atomic, except that all computation performed must be isolated. In
particular, if f is an Orc expression,

atomic(f) publishes whatever f would have published if it were executed in isolation

o If f is silent, atomic(f) is also silent

e If atomic(f) publishes, all values published were computed in isolation from
anything outside of f

e If any computation in f conflicts with an access outside of f, atomic(f) aborts
and retries

Because Orc separates computation from the orchestration of concurrency, trans-
actions in Orc can similarly be divided into computation and orchestration. Sites
are responsible for managing the data modified by the transaction, while the Orc
engine is responsible for orchestrating the transaction. This separation of concerns
means that the Orc engine is not responsible for any policies with respect to con-
tention management, version management, nesting, or concurrent non-transactional
accesses.

FEach site can select its own policies for managing any data that it stores. The
Orc engine and transactional sites communicate with one another via an interface
that each site must implement. The Orc engine uses the methods in this interface
to orchestrate transactions, and the sites implement the methods in this interface to
handle transactions for any data that they manage. Every site in Orc implements
the following methods:

e void callSite(args, token)

e void callSiteTx(args, token)
e void validateTx(tx)

e void commitTx(tx)

e void rollbackTx(tx)

e boolean handlesTx()

e boolean handlesNestedTx()

The callSite method must be implemented by all sites to implement the site’s
behavior, even if the site does not support transactions. The default behavior for
the callSiteTx, validateTx, commitTx, and rollbackTx methods is to throw an
error indicating that the site does not handle transactions. The handlesTx and the
handlesNestedTx methods both return false by default. The Orc engine will throw
an error if a callSiteTx call occurs within a transactional context for a site that
does not handle transactions. The engine will also throw an error if a callSiteTx
call occurs in a nested transactional context for a site that does not handle nested
transactions.

A transactional site overrides these default behaviors with behaviors that support
transactions for the site. The specific behavior of each method will depend on the
site’s version management, conflict detection, isolation, and nesting policies. If a
site does not maintain any state, then it may not need to do anything when these
methods are called. For instance, the sites that perform arithmetic operations,
comparisons, and conditional operations do not need to commit, rollback, or validate
anything. Their callSiteTx method simply calls the callSite method.

A site that maintains state, however, must keep track of state changes made
by transactions, detect conflicts, and mediate conflicts between transactional and
non-transactional site calls. The next section describes the Orc engine’s role in im-
plementing these transactional semantics in greater detail, and the following section
describes the site’s role, using transactional channels as an example.

4 Transactions in Orc

This section describes how the compiler constructs the DAG for an Orc program
that contains transactions. In addition, it describes ways in which normal graph
traversal is modified for tokens involved in a transaction, and the process the Orc
engine uses to validate, commit, and abort all transactions that complete.

4.1 DAG Construction

The Orc compiler builds a directed acyclic graph (DAG) with a single root node
and a single sink node for every expression in an Orc program. Each expression’s

DAG is constructed recursively, preserving a single root node and a single sink node
for the DAG at each step. We modified the compiler to insert the construct shown
in Figure 2(a) when an atomic expression is encountered.

The nodes in Figure 2 marked enterTx and leaveTx provide an opportunity
for the Orc engine to manage transactions. Each token that passes through the
enterTx node will cause the Orc engine to generate a new transaction. Thus, the
following Orc expression will produce two transactions:

(f lg) >> atomic (h)

The Orc engine will create two tokens to execute f and g concurrently, and each
token will pass through the enterTx node for the atomic expression h, generating
a new transaction. Thus, two instances of the atomic expression h will execute at
runtime.

The circular node f in Figure 2(a) represents an atomic expression, which can
consist of any Orc expression including both parallel expressions and other atomic
expressions. For example, Figure 2(b) shows a DAG in which f is a parallel ex-
pression containing concurrent expressions g and h. In this program, operations
performed in expressions g and h can execute concurrently, yet they must be atomic
and isolated with respect to any computations outside of the atomic expression f.

Figure 2(c) shows that the expressions within f may be nested atomic operations.
In Figure 2(c) the atomic expression f consists of two parallel expressions, g and
h, just as in Figure 2(b). In this case, g and h are atomic expressions 7, and j,
respectively. The operations in ¢ must be atomic with respect to the operations in
j, and all computation within f must be atomic with respect to everything outside

7.

Figure 2(c) shows that nested transactions in Orc have a tree-like structure
in which a parent transaction can have any number of child transactions. These
child transactions must all be atomic with respect to one another, yet they can
execute concurrently provided that isolation is maintained. In contrast, traditional
nested transactional memory regions that share a common parent cannot execute
concurrently, except those in transactional Cilk [2].

Each Orc expression may be arbitrarily large and consist of any combinations of
parallel expressions, sequential expressions, and where expressions. Every expression
is guaranteed to have a single root node and a single sink node, making it easy
to place the enterTx node and the leaveTx node that initiate and complete the
transaction. The Orc compiler places the enterTx node immediately before the
root node of the atomic expression, and it places the leaveTx node immediately
after the expression’s sink node.

4.2 The enterTx node

When processing the enterTx node, the Orc engine immediately creates a copy of
the token exactly as it was at entry. This copy of the entry token allows the engine
to initiate an identical retry transaction if the current attempt fails. Each token

atomic (f) atomic (f)

/’C'L] enterTx /’d] enterTx

atomic (f)

(a) Atomic DAG (b) Atomic Parallel DAG (c) Nested Atomic DAG

Figure 2: Atomic expression DAGs created by the Orc compiler.

contains a small amount of state that may change as the transaction executes, so
this copy is necessary to ensure the correct state for retry.

In addition to creating a copy of the entry token, the enterTx node generates a
new transaction object. The transaction object contains the following information
about the transaction:

e A pointer to the entry node copy, described above

e A token set containing all tokens involved in the transaction
e A site set containing all sites called by tokens in the token set
e A unique identifier for the transaction

e A copy of the leaveTx node, so a transaction may be aborted at any time

e The state of the transaction, which is currently an enumeration consisting
of active, doomed, validating, rollingback, aborted, committing, and
committed

e The enclosing parent transaction, or null for an outermost transaction

When a token is processing the enterTx node, it is the only token in the trans-
action’s token set. The site set is empty, as no sites have been called yet. The
transaction’s state is initialized to active.

To handle nested transactions, the enterTx node sets the new transaction ob-
ject’s parent field to the token’s transaction object at the time it enters the transac-
tion. The transaction object for a non-transactional token is null, thus the outermost
transaction will always have a null parent. If a token arrives at the enterTx node

with a non-null transaction object, then it is entering a nested transaction. The
new transaction’s parent field is set to the transaction object at the time it began
processing the enterTx node. If multiple tokens from the same transaction enter
nested transactions, as in Figure 2(c), then both nested transactions have the same
parent transaction, forming a tree of transaction objects.

4.3 Graph Traversal

As a token leaves the enterTx node and traverses the graph for the atomic expres-
sion, it may create copies of itself to enable concurrent execution. Anytime a token
is copied, its pointer to the transaction object is propogated to the copy, and the
new copy token is added to the transaction object’s token set. Thus, the token list
in the transaction object will always be up-to-date, and every token involved in the
transaction is guaranteed to contain a pointer to the transaction object.

When a token involved in a transaction makes a site call, it calls the site’s
callSiteTx method, rather than the normal callSite method. Prior to making
this call, the engine checks the handlesTx method for the site to ensure that the site
is prepared to handle transactions. If this call returns false, the Orc engine throws
an error and does not call the site. If handlesTx returns true, the engine makes the
site call and adds the site to the transaction’s site set.

Section 5 provides details about the transaction’s execution at the site. From
the Orc engine’s point of view, the site is entirely responsible for managing the
atomicity and isolation of any data accessed within the site call. The site has the
option to doom a transaction at any time if its atomicity or isolation is violated.
To doom a transaction, the site calls the transaction object’s doom method, which
iterates through all tokens in the token set, killing each one. Then, the doom method
sets the transaction’s state to doomed.

Tokens die for various reasons while traversing the graph. For instance, a token
that enters a silent node dies. A token involved in an unsatisfied if node will die,
as well. If a transaction is doomed by the transaction object’s doom method, all
tokens involved in the transaction die. For the leaveTx node to work correctly, the
engine must guarantee that a token from the transaction’s token set will pass through
the leaveTx node at a point when all tokens are finished with the transaction. To
guarantee this behavior, each token contains a boolean called txFinished that is
initialized to false, and that is set to true when either of the following two events
occurs:

e The token enters the leaveTx node

e The token dies

If the last unfinished token in a transaction dies without passing through the
leaveTx node, the Orc engine may hang because live tokens waiting to escape
the leaveTx node upon commit will never be released. Thus, prior to killing a
transactional token, the die method iterates through all tokens involved in the

transaction searching for unfinished tokens. If no unfinished tokens exist, the die
routine does not Kkill the token, but instead activates the token at the leaveTx node
so that it can initiate validation. In addition, the die routine marks that token by
setting a doomed boolean, embedded within the token, to true. This doomed value
indicates that the leaveTx node should not activate the token upon commit, but
kill it. The specific actions performed at the leaveTx node will be discussed further
in Section 4.4.

Nested transactions do not require any special treatment as tokens traverse the
graph. The tokens involved in nested transactions are not included in the parent
transaction’s token set until the nested transaction is committed. The only to-
ken associated with an uncommitted nested transaction that is part of the parent
transaction’s token set is the entry token copy. Because this token is alive and its
trxFinished value is false, the parent transaction will not be allowed to commit until
the nested child transaction has committed.

4.4 The leaveTx node

When a token processes the leaveTx node, the Orc engine immediately sets the
token’s tx Finished value to true. After marking the token finished with the trans-
action, the leaveTx node iterates through the transaction’s token set searching for
tokens whose txFinished values are false. If any such token is found, nothing fur-
ther occurs and the token does not proceed beyond the leaveTx node, remaining
inactive.

If the tx Finished value is true for every token in the transaction’s token set, then
the transaction is finished, and the leaveTx node begins validating the transaction,
settings its state to validating. To validate the transaction, the leaveTx node first
checks whether the transaction is in the doomed state. If the transaction is doomed,
it fails without further validation. Sections 5.2 and 5.4 describe the circumstances
under which a transaction will enter the doomed state. If the transaction is still in
the active state, the node iterates through the transaction’s site set, calling each
site’s validateTx method. If any site returns false, validation fails.

If validation fails, the transaction enters the rollingback state, and the leaveTx
node calls every site’s rollbackTx method. After every site has been rolled back,
the leaveTx node kills all tokens in the token set, then activates the entry token
copy at the enterTx node, retrying the transaction.

If all sites return true, the transaction enters the committing state and the
leaveTx node calls every site’s commitTx method. After all sites have committed,
the leaveTx node iterates through all tokens in the token set. If a token is doomed,
it is killed. If a token is alive and is not doomed, then it is activated at the leaveTx
node’s successor. Thus, the atomic section guarantees that all values published by
the transaction were computed in an atomic, isolated fashion at the transaction’s
commit point, which was the point at which the transaction entered the validating
state. No guarantees exist about the order in which the values published by the
transaction are published, however.

10

To handle nested transactions, the leaveTx node checks the state of the parent
transaction prior to retrying an aborted nested transaction. If the parent transac-
tion is in the active state, the nested transaction retries as usual. If the parent
transaction is in the doomed state, however, the nested transaction does not retry.
Instead, the leaveTx node kills all tokens involved in the nested transaction, then
kills the nested transaction’s entry token copy. By killing the entry token copy, the
nested transaction notifies the parent transaction that it is finished attempting to
execute the transaction. The entry token copy is part of the parent transaction, and
if it is the last token in the parent transaction to die, it will become doomed and
intitiate validation for the parent transaction, as described in Section 4.3.

While the Orc engine is responsible for orchestrating transactions by initiating
validation, commit, and rollback, and keeping track of the tokens and sites involved,
the sites in Orc are responsible for enforcing atomicity and isolation for any data
managed by the site. The next section discusses the implementation of transactions
for one particular site, a channel.

5 Transactional Channels

If an Orc site supports transactions, it must guarantee that any site calls performed
by a given transaction are atomic and isolated with respect to any calls to that site
made by other transactions. The site must have a mechanism to undo any state
changes performed by a transaction that has not yet committed. The site can choose
whether to handle concurrent non-transactional accesses to shared data, and it must
either implement a nesting policy or allow the handlesNestedTx method to return
false. This section describes an implementation of transactions for one particular
site, a transactional channel.

Because the site is responsible for managing transactional data, different sites
may choose to manage their data in different ways. If a site does not maintain any
state, it may not need to implement any additional code to support transactions
at all. The site that performs integer addition, for instance, does not need to do
anything special for a transactional operation.

Sites that do require special treatment of transactions can use any mechanism
desired to achieve this goal - transactional memory is not a requirement, and may be
unnecessary if the actions peformed by the site are limited or do not lend themselves
to such a model. The transactional channel described here could be supported by
mechanisms from transactional memory, with a modified JVM. Instead, we chose to
implement a more abstract form of transactions that uses compensating actions to
demonstrate the feasibility of this approach.

5.1 Channel Types
We implemented three types of channels that interact differently in a transactional

system. The non-blocking channel maintains a senderQueue of sent values and
resumes both senders and receivers immediately. If a receiver arrives and finds

11

the senderQueue empty, the receiver returns with a special Orc value called NIL,
indicating that no value was present.

The second channel implementation, the receiver-blocking channel, treats senders
in exactly the same way as the non-blocking channel does. If a receiver arrives at
the queue and finds that the queue is empty, however, the receiver will add itself to
a receiverQueue and block. The receiver will only be released after a sender arrives
and finds it at the head of the receiverQueue, at which point the sender and receiver
both resume.

The final channel implementation, the blocking channel, blocks both senders
and receivers until a matching operation arrives. This channel maintains both a
senderQueue and a receiverQueue, and maintains the invariant that at least one of
the two queues will be empty at all times. If a sender arrives and the receiverQueue
is empty, it will add itself to the senderQueue and block. If it finds receivers waiting
on the receiverQueue, it will pop the head of the receiverQueue and both the
sender and the receiver will resume. A receiver will behave in a similar manner,
either blocking until a sender arrives, or popping the head of the senderQueue and
resuming both sender and receiver. This channel is particularly interesting because
neither thread in a sender/receiver pair can resume without either observing another
thread’s state, or its state being observed by another thread.

In addition to the get and put operations provided by Orc’s built-in channel
class, we added a peek method for each type of channel that peeks at the value
that a get operation would get, but does not actually remove the value from the
head of the senderQueue, or resume the sender for the blocking channel. The peek
operation was useful because it provided a read operation that observes but does not
actually modify shared state, unlike the put and get operations, which both modify
shared state. The remainder of this section describes the policies we chose for the
transactional channel, as well as interesting observations about blocking channels
when used in transactions.

5.2 Conflict Detection

A conflict detection policy is eager if conflicts are detected immediately, and lazy
if conflicts are not detected until validation [13]. The Orc engine can support both
policies. If a single transaction includes multiple site calls, those calls can use dif-
ferent conflict detection policies. The Orc engine supports eager conflict detection
by providing sites with a doom method in the transaction object that allows the site
to immediately terminate the transaction if a conflict is detected eagerly. The Orc
engine also supports lazy conflict detection because it does not commit a transac-
tion until it calls the validateTx method for every site called by the transaction.
Thus, sites that detect conflicts lazily will detect the conflict when their validateTx
method is called.

We used an eager conflict detection scheme for the transactional channel to pre-
vent a doomed transaction from performing useless work. We implemented three
conflict detection managers each using a different degree of optimism. The least
optimistic channel monitors ownership at the channel granularity and does not dif-

12

ferentiate between read and write operations. Thus, only a single transaction can
have ownership of the entire channel at any time. A slightly more optimistic conflict
detection manager differentiates between different data items within the channel,
rather than treating the entire channel as a single piece of data. Thus, put and get
operations from different transactions can execute concurrently, provided that the
get operation does not observe the value provided by the put operation. Finally,
the most optimistic conflict detection policy differentiates between read and write
operations, and allows multiple transactions to peek at the channel’s head simul-
taneously, yet only a single transaction can perform a put or get operation at a
time.

When the conflict detection manager determines that a conflict is about to occur,
it eagerly aborts one of the transactions involved. Which transaction is aborted and
when a conflict is detected varies with the management policy discussed above. To
eagerly abort the transaction the channel first calls the transaction object’s doom
method, which kills all tokens involved in the transaction, sending the last one to
the leaveTx node. Then, the channel changes the transaction’s state to doomed.

5.3 Version Management

A version management policy describes how a transactional system handles both
new and old versions of data that has been modified [13]. The new version of the
data is the version that should be visible if the transaction commits, and the old
version is the version that should be visible if the transaction rolls back. Only one
of these two versions of the data can be stored in visible state, the other must be
maintained ”"on the side”. If a system stores speculative transactional updates in
visible state and reverts them to their original values on rollback, then it uses in-
place update. If a system stores speculative values on the side and only updates
visible state upon commit, then it uses deferred update.

Because a channel has a very simple set of operations that occur at very lim-
ited locations - at either end of a queue - we chose to implement a more abstract
mechanism for version management than a traditional transactional memory sys-
tem would provide. A transactional put or get operation will record the action it
performed in an undo log that is used during rollback to revert the channel to its
state prior to the beginning of the transaction. Rather than recording the address
of the memory it modified, the put or get operation records an abstract notion of
what it did - removing or adding a value to either the sender or the receiver queue
- and the channel provides a compensating action to execute during rollback.

On rollback, the channel performs a compensating action for each operation in
the undo log. One potential disadvantage to this approach is that, if the channel
operates on only a single memory location, by performing alternating get and put
operations, for instance, then rather than reverting a single memory location, the
system must undo each operation individually. To account for this scenario, however,
it is relativley simple to modify the undo log to eliminate operations that undo each
other. This abstract transactional memory implementation is simple to implement,
and does not require any changes to the compiler or JVM.

13

A channel is an example of a data structure that could benefit from various
combinations of version management and conflict detection policies depending on
the scenarios in which the channel will be used. For instance, a channel that is
not very highly contended, but whose quick response is imperative, may choose an
in-place update scheme with eager conflict detection. In-place updates ensure that
commits will be fast - the committed values are already in visible state - which is
desirable if speed matters and conflicts are rare.

In contrast, a channel that is highly contended may perform better with a de-
ferred update system because abort is much faster with deferred update - the modi-
fied values can simply be thrown away. If a channel could be used in either context,
it might be desireable to create channels of different types, and even use them within
the same transaction if desired. Orc provides a mechanism with which each instan-
tiation of a channel can choose its own version management and conflict detection
policies.

5.4 Isolation Policy

An isolation policy dictates how the transaction system responds when a concurrent
non-transactional access to transactional data occurs. Blundell et al. deconstruct
the subtleties of the interaction between transactional and non-transactional code
[5], and their notions of ”strong atomicity” and ”weak atomicity” will be referred
to here as strong isolation and weak isolation as others have done [11], as they refer
more closely to a transaction’s isolation than to its atomicity. Because most software
transactional memory systems do not instrument non-transactional accesses, it is
impossible for them to detect conflicts between transactional and non-transactional
accesses.

A system that provides strong isolation guarantees that a transaction will al-
ways be atomic with respect to non-transactional accesses. Unfortunately, strong
atomicity can be very costly in terms of performance for non-transactional code,
requiring read barriers and a write barrier that contains an atomic operation [21].
Weak isolation, however, may lead to unintuitive results when transactional and
non-transactional accesses conflict, as demonstrated in [21]. As a result, it may be
desirable to choose a different isolation policy for different sites depending on their
expected usage.

For the transactional channel we implemented strong isolation because we expect
transactional and non-transactional accesses to conflict frequently. Section 5.6 may
provide justification for this expectation. A non-transactional access always aborts
a conflicting uncommitted transactional access because Orc does not currently sup-
port any mechanism for the non-transactional access to wait until the transaction
completes. A non-transactional access requests permission to perform an operation
prior to performing the operation, and if permission is denied then it aborts the
transaction preventing it from performing the action.

To abort the transaction, the channel first calls the transaction object’s doom
method, which kills all tokens involved in the transaction, sending the last one to
the leaveTx node to initiate validation and rollback. The transaction also pre-

14

f fffffffffff e

Iz

en‘:;eri/l‘x .
atomic ((j >> k) | atomic(/) | atomic(m)) o P
. 3 3 . leé:xvéTx
g h i N ST 3

Figure 3: A small Orc program that uses nested parallelism. Atomic expression [
must be atomic with respect to sibling atomic expression m, and also with respect
to expressions j and k, which belong to I’s parent transaction, atomic expression f.

emptively rolls back the transaction at the channel. The non-transactional access
cannot wait for the Orc engine to rollback the transaction because it must complete
successfully. Because the transaction has already been doomed and is thus guar-
anteed not to validate, this pre-emptive rollback is acceptable. The compensating
actions are destroyed after rollback such that, when the Orc engine asks the channel
to rollback the transaction again after validation, no further compensating actions
will be performed.

5.5 Nesting Policy

Various semantics for nesting transactions have been proposed in the transactional
memory literature. Flat-nested transactions essentially inline the child transaction
directly into the parent transaction [3, 23, 8, 18, 7, 17]. Flat nesting does not work
correctly with transactions in Orc because nested transactions may be concurrent,
and must thus be isolated from each other. As a result, merging the transactions
into the read and write set of the parent transaction will eliminate isolation between
multiple concurrent nested transactions.

Closed nested transactions allow a nested transaction’s read and write set to
be tracked separately from its ancestors [3, 10, 15, 20, 24, 1, 19, 6]. The nested
transaction can access state generated by its ancestors, but it can be independently
rolled back and retried. When a closed-nested transaction commits, its modified
state merges with that of its parent transaction, but no speculative state becomes
visible outside the parent transaction. Most closed nested transactional memory
implementations use a stack of logs. To support closed-nested transactions in Orc,
a tree, rather than a stack, is required to handle concurrent child transactions.

In an open nested transaction, the speculative state inside the nested transac-

15

atomic(c.get()) atomic(c.put(5)) ‘ c.get() atomic(c.put(5))
enterTx enterTx Call c.get()
Call c.get() Call c.put(5) Block on receiverQueue
enterTx
Block on receiverQueue — | * Remove receiverQueue head \Call c.put(5)
Remove recTiverQueue head
Resume with value Resume Resume
l \ gResume receiver
leaveTx Resume receiver leaveTx
Resume with value
leaveTx
(a) Dependences between transactions (b) Transaction/non-transaction dependences

Figure 4: Comparison of dependences between two transactions, and between a
transaction and a non-transaction performing matching get and put operations on
a blocking channel.

tion commits directly to shared state, and the parent transaction may execute a
compensating action upon abort to undo changes made by the child transaction
[10, 23, 16, 25, 11, 14, 21, 15]. Although open nested transactions are often viewed
as dangerous because they can have unintuitive effects, they may be useful in cases
where a highly contended value is updated in a way that can be undone even af-
ter having been modified by other threads. For example, if a nested transaction
increments a highly contended counter that is used only after all transactions fin-
ish their computation, an open-nested implementation will be correct as long as a
compensating decrement occurs when the transaction aborts [15].

Although implementing open nesting in a manner similar to [16] should be pos-
sible in Orc, we suspect that the feasibility of nested parallelism and concurrently
executing nested transactions may alleviate the most common problem with closed
nesting: a long-running parent transaction that cannot commit due to a child trans-
action that accesses highly-contested data. By allowing concurrency within a trans-
action, we hope that long-running transactions may become less frequent.

To support closed nested transactions, the channel site allows a transaction to
obtain permission to perform a get or a put operation if the current owner of
get/put permission is its ancestor. The ancestor’s log of state changes is set aside
and a new log is created for the child transaction so that it can be rolled back and
retried independently of its parent.

Unlike a traditional transactional memory system, the parent may be executing
actions concurrently with the child transaction, so the child transaction must ensure
isolation from all transactions including both siblings and ancestors. Figure 3 shows
an example of a small Orc program, with its corresponding DAG, in which parallel
nested transactions h and 7 execute concurrently both with each other, and with
expressions j and k that belong to the parent transaction, f.

5.6 Blocking Channels in Transactions
The blocking channel was particularly interesting when used in transactions because

it fundamentally requires an exchange of intermediate state. We quickly observed
that two transactions cannot communicate with one another via a blocking channel.

16

Figure 4 shows the operations required for two transactions to communicate with
one another via a blocking channel (Figure 4(a)), and for a transaction and a non-
transactional access to communicate with one another (Figure 4(b)).

In Figure 4(a), a cyclic dependence exists between the put and the get operation
that makes it impossible for the two transactions to be serialized with respect to one
another without violating a dependence. Figure 4(b) shows that a non-transactional
access can exchange information with a transactional access because the transaction
can be serialized with respect to the non-transactional accesses without violating any
dependences.

To make the scenario in Figure 4(b) possible, a non-transactional access that
communicates via a blocking channel with a transactional access cannot be resumed
until the transaction has been committed. Thus, the commitTx method for the
blocking and receiver-blocking channels releases all non-transactional accesses that
must be released by the transaction. This same strategy does not work when two
transactions communicate with one another because the transaction waiting to be
released cannot commit until the other transaction has released it, thus the circular
dependence remains.

One interesting side effect of delaying the release of non-transactional accesses
until commit occurs is that sequential accesses cannot ever exchange values with ac-
cesses that are in the same transaction. For instance, if a non-transactional access
performs two sequential get operations, and a transaction performs two parallel,
atomic put operations, it is impossible for both get operations and both put oper-
ations to match up:

tz : atomic(c.put(l) | c.put(2)) non — tz : c.get() >> c.get()

The first get operation cannot return until the transaction commits, thus the
second get operation will not be initiated until the transaction is finished, and
cannot get the other value put by the transaction.

Another interesting result of the dependences on the blocking channel is that,
if both a get and a put operation occur within the same transaction, they must
communicate with one another, and they will do so only on an empty channel. Thus,
the following code would essentially privatize the shared channel for the explicit use
of the transaction:

tz : atomic(c.put(l) | c.get())

The transaction does not have any active power to privatize the channel, however;
it simply waits for the channel to become empty. If the channel never becomes
empty, the transaction will never commit or abort. The reason that the transactional
get and put must communicate with one another is that the operations within a
transaction, in order to communicate with non-transactional accesses, must operate
on non-transactional accesses that could have already been initiated prior to the
start of the transaction, as shown in Figure 4(b). With a blocking channel, however,
it is impossible for both a get and a put operation to be initiated prior to the start
of a transaction and yet neither to have completed, because this would break the
invariant that either the senderQueue or the receiverQueue must be empty at all

17

times. At least one of the two operations must have exchanged information with
another access, or the two operations may have exchanged information with each
other, but they cannot both be waiting when the transaction initiates.

Because atomic regions in Orc can contain concurrent operations within them,
it is possible for communication to occur across a blocking channel within an atomic
region. This same scenario, in which the atomic operations gain private access to
the channel and communicate with one another, would be impossible in a traditional
transactional memory system.

6 Related work

Transactions in Orc bear the most similarity to transactions in Cilk [4], as described
in [2]. Much like Ore, Cilk provides simple language constructs to express paral-
lelism. Cilk targets fork/join parallelism, and includes a runtime system that uses
a work-stealing scheduler to run multi-threaded programs. Adding transactions to
Cilk leads to nested parallelism within transactions as well as nested parallel trans-
actions, much like in Orec.

Unlike Orc, however, Cilk does not separate computation from concurrency, and
the XCilk transactional system provides a single transaction management policy
that uses eager conflict detection, in-place updates, strong isolation, and closed
nesting for all data. Agrawal et al. provide one solution to the problems that arise
when conflict detection is generalized to concurrent nested transactions. The XCilk
runtime creates an online computation tree that models nested parallel transactions.
We show that other solutions to this problem are possible, and that separating
computation from concurrency orchestration allows different sites to use different
policies if desired.

Most other transactional memory systems operate under the assumption that
the code within a transaction will be serial, and only a single nested transaction
may execute at a time. Section 5 provides the appropriate related work at the start
of each policy section.

7 Conclusions

By separating computation and concurrency, Orc provides an interesting context to
explore the possibility of specifying transactional policies that vary with the data be-
ing modified. Orc separates the orchestration of transactions from the management
of transactional data, and allows primitive sites to ensure atomicity and isolation
for their data as they see fit. Orc does not include a single monolithic transaction
manager that handles conflict detection and version management for all memory
accesses. Instead, each site determines whether it wishes to support transactions
at all, whether it wishes to allow nested transactions, to what extent it prioritizes
non-transactional code, and which conflict detection and version management poli-
cies are most appropriate for the computations it performs. Because transactions

18

in Orc are not directly tied to transactional memory, it is also possible for sites to
specify their rollback actions in more abstract ways, such as providing compensating
actions.

Although Orc is a programming language that is unfamiliar to most, it does
allow the programmer to make use of legacy code, as there are no restrictions on
how sites are implemented. Orc is particularly useful for distributed computation,
where both sites and communication may fail. To fully support transactions in
this context, future work will include defining a semantics with which timers can
be incorporated into transactions to allow timeout, and other strategies to handle
unreliable resources.

References

[1] ADL-TABATABAI, A.-R., LEwis, B. T., MENON, V., MURPHY, B. R., SAHA,
B., AND SHPEISMAN, T. Compiler and runtime support for efficient software
transactional memory. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN
conference on Programming language design and implementation (New York,
2006), Association of Computing Machinery, pp. 26-37.

[2] AGrawAL, K., FINEMAN, J. T., AND SUKHA, J. Nested parallelism in trans-
actional memory. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and practice of parallel programming (New York, 2008),
Association of Computing Machinery, pp. 163-174.

[3] AGRAwAL, K., LEISERSON, C. E., AND SUKHA, J. Memory models for open-
nested transactions. In MSPC ’06: Proceedings of the 2006 workshop on Mem-
ory system performance and correctness (New York, 2006), Association of Com-
puting Machinery, pp. 70-81.

[4] BLumorg, R. D., JoeErg, C. F., KuszmauL, B. C., LEISERsON, C. E.,
RanpaLL, K. H., aAND ZHou, Y. Cilk: an efficient multithreaded runtime
system. In PPOPP ’95: Proceedings of the fifth ACM SIGPLAN symposium on
Principles and practice of parallel programming (New York, 1995), Association
of Computing Machinery, pp. 207-216.

[5] BLunDELL, C., LEwis, E. C., AND MARTIN, M. M. K. Deconstructing
transactional semantics: The subtleties of atomicity. In Proceedings of the
Annual Workshop on Duplicating, Deconstructing, and Debunking (WDDD)
(2005).

[6] BREVNOV, E., DoLcov, Y., KuzNETsov, B., YERSHOV, D., SHAKIN, V.,
CHEN, D.-Y., MENON, V., AND SRINIVAS, S. Practical experiences with java
software transactional memory. In PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming (New
York, 2008), Association of Computing Machinery, pp. 287-288.

[7] CHUANG, W., NARAYANASAMY, S., VENKATESH, G., SAMPSON, J., BIES-
BROUCK, M. V., PokaMm, G., CALDER, B., AND CoLAVIN, O. Unbounded

19

[10]

[11]

[12]

[13]

page-based transactional memory. In ASPLOS-XII: Proceedings of the 12th
international conference on Architectural support for programming languages
and operating systems (New York, 2006), Association of Computing Machin-
ery, pp. 347-358.

DaMRrON, P., FEDOROVA, A., LEV, Y., LUCHANGCO, V., MOIR, M., AND
NussBAaUM, D. Hybrid transactional memory. In ASPLOS-XII: Proceedings
of the 12th international conference on Architectural support for programming
languages and operating systems (New York, 2006), Association of Computing
Machinery, pp. 336-346.

HamMmoND, L., WONG, V., CHEN, M., CARLSTROM, B. D.; Davis, J. D.,
HERTZBERG, B., PraBHU, M. K., Wuayva, H., Kozvyrakis, C., AND
OrukoTuN, K. Transactional memory coherence and consistency. In ISCA
'04: Proceedings of the 31st annual international symposium on Computer ar-
chitecture (Washington, DC, 2004), IEEE Computer Society, p. 102.

McDoNALD, A., CHUNG, J., CARLSTROM, B. D., MINH, C. C., CHAFI, H.,
Kozyrakis, C., AND OLUKOTUN, K. Architectural semantics for practical
transactional memory. In ISCA ’06: Proceedings of the 33rd annual interna-
tional symposium on Computer Architecture (Washington, DC, 2006), IEEE
Computer Society, pp. 53—65.

MinH, C. C., TRAUTMANN, M., CHUNG, J., McDoONALD, A., BRONSON,
N., CASPER, J., KozyrAKIS, C., AND OLUKOTUN, K. An effective hybrid
transactional memory system with strong isolation guarantees. In ISCA ’07:
Proceedings of the 34th annual international symposium on Computer architec-
ture (New York, 2007), Association of Computing Machinery, pp. 69-80.

MisrA, J., AND CooK, W. R. Computation orchestration: A basis for wide
area computing. Journal of Software and Systems Modeling (2006).

Mooreg, K. E., BoBBA, J., Moravan, M. J., HiLL, M. D., AND WOOD,
D. A. LogTM: Log-based transactional memory. In Proceedings of the Inter-
national Symposium on High-Performance Computer Architecture (HPCA ’06)
(2006).

MoravaNn, M. J., BoBBA, J., MOORE, K. E., YEN, L., HiLr, M. D., LiBLIT,
B., SwirT, M. M., aAND WooD, D. A. Supporting nested transactional
memory in logTM. SIGOPS Operating Systems Review 40, 5 (2006), 359-370.

Moss, J. E. B., AND HOSKING, A. L. Nested transactional memory: Model
and architecture sketches. Science of Computer Programming 63, 2 (2006),
186-201.

N1, Y., MENON, V. S., ADL-TABATABAI, A.-R., HOSKING, A. L., HUDSON,
R. L., Moss, J. E. B., SAHA, B., AND SHPEISMAN, T. Open nesting in
software transactional memory. In PPoPP ’07: Proceedings of the 12th ACM
SIGPLAN symposium on Principles and practice of parallel programming (New
York, 2007), Association of Computing Machinery, pp. 68-78.

20

[17]

[20]

21]

23]

[24]

Raswar, R., HErRLiHY, M., AND LA1, K. Virtualizing transactional mem-
ory. In ISCA ’05: Proceedings of the 32nd annual international symposium
on Computer Architecture (Washington, DC, 2005), IEEE Computer Society,
pp. 494-505.

Ramapan, H. E., RossBacH, C. J., PORTER, D. E., HorMANN, O. S.,
BHANDARI, A., AND WITCHEL, E. MetaTM/TxLinux: transactional memory
for an operating system. In ISCA ’07: Proceedings of the 34th annual interna-
tional symposium on Computer architecture (New York, 2007), Association of
Computing Machinery, pp. 92-103.

SAHA, B., AprL-TaBaTAaBAI, A.-R., Hupson, R. L., MiNnH, C. C., AND
HERTZBERG, B. McRT-STM: a high performance software transactional mem-
ory system for a multi-core runtime. In PPoPP ’06: Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and practice of parallel programming
(New York, 2006), Association of Computing Machinery, pp. 187-197.

SAHA, B., ADL-TABATABAI, A.-R., AND JACOBSON, Q. Architectural support
for software transactional memory. In MICRO 39: Proceedings of the 39th An-
nual IEEE/ACM International Symposium on Microarchitecture (Washington,
DC, 2006), IEEE Computer Society, pp. 185-196.

SHPEISMAN, T., MENON, V., ADL-TABATABAI, A.-R., BALENSIEFER, S.,
GRrOssMAN, D., HubpsoN, R. L., MOORE, K. F., AND SAHA, B. Enforcing
isolation and ordering in STM. In PLDI ’07: Proceedings of the 2007 ACM
SIGPLAN conference on Programming language design and implementation
(New York, 2007), Association of Computing Machinery, pp. 78-88.

SHRIRAMAN, A., SPEAR, M. F., HossaiNn, H., MARATHE, V. J.,
DWARKADAS, S., AND ScoTT, M. L. An integrated hardware-software ap-
proach to flexible transactional memory. In ISCA ’07: Proceedings of the 34th
annual international symposium on Computer architecture (New York, 2007),
Association of Computing Machinery, pp. 104-115.

SMARAGDAKIS, Y., KAY, A., BEHRENDS, R., AND YOUNG, M. Transactions
with isolation and cooperation. In OOPSLA °07: Proceedings of the 22nd an-
nual ACM SIGPLAN conference on Object oriented programming systems and
applications (New York, 2007), Association of Computing Machinery, pp. 191—
210.

WanNgG, C., CHEN, W.-Y., Wu, Y., SAHA, B., AND ADL-TABATABAI, A.-
R. Code generation and optimization for transactional memory constructs
in an unmanaged language. In CGO ’07: Proceedings of the International
Symposium on Code Generation and Optimization (Washington, DC, 2007),
IEEE Computer Society, pp. 34-48.

YEN, L., BoBBA, J., MARTY, M. R., MOORE, K. E., VoLos, H., HiLL,
M. D., SwirT, M. M., AND WooOD, D. A. LogTM-SE: Decoupling hardware
transactional memory from caches. In HPCA ’07: Proceedings of the 2007 IEEE
18th International Symposium on High Performance Computer Architecture
(Washington, DC, 2007), IEEE Computer Society, pp. 261-272.

21

