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Abstract. Orc was originally presented as a process calculus. It has
now evolved into a full programming language, which we describe in this
paper. The language has the structure and feel of a functional program-
ming language, yet it handles many non-functional aspects effectively,
including spawning of concurrent threads, time-outs and mutable state.
We first describe the original concurrency combinators of the process cal-
culus. Next we describe a small functional programming language that
forms the core language. Then we show how the concurrency combi-
nators of the process calculus and the functional core language are in-
tegrated seamlessly. The resulting language and its supporting libraries
have proven very effective in describing typical concurrent computations;
we demonstrate how several practical concurrent programming problems
are easily solved in Orc.

1 Introduction

Concurrency has become an urgent practical problem with the advent of multi-
core and multi-CPU systems. Unfortunately, concurrency is difficult for pro-
grammers, who are expected to define and manage threads and locks explicitly.
These basic concurrency constructs do not serve well to express the high-level
structure of control flow in concurrent programs, especially when handling fail-
ure, time-outs, and process termination. It is also important to easily compose
processes at different granularities, from small processes to complete workflows,
and to seamlessly integrate asynchronous human interactions within a process.

The Orc process calculus [8] was designed to express orchestrations and wide-
area computations in a simple and structured manner. Its intent was to overcome
some of the problems listed above. It is inherently concurrent and implicitly
distributed. It has a clearly specified operational semantics. Human actors and
computational processes of varying granularity are treated uniformly.

Orc was originally conceived as a formal model rather than a concrete tool.
We have now implemented Orc as a complete programming language and be-
gun writing substantial applications in it [11]. This paper describes the language
and some of the motivating philosophy in its design. The language includes the
three original concurrency combinators of Orc and a fourth one, introduced to
detect terminations of computations. These combinators are seamlessly inte-
grated with a core functional language. The complete language, called just Orc,
has the structure and feel of a functional programming language; yet it han-
dles many non-functional aspects effectively, including spawning of concurrent
threads, time-outs and mutable state.



The paper is structured as follows. In Section 2, we review the Orc concur-
rency calculus. In Section 3, we present the functional core of Orc. Section 4
integrates the functional core with the concurrency calculus, resulting in the full
Orc programming language, which is subsequently enhanced with some helpful
syntactic sugar, a library of useful services and functions, and the capability to
interact with other languages such as Java. Section 5 presents a series of examples
demonstrating solutions to common concurrent programming problems using the
Orc language. We consider Orc’s relationship to similar concurrent languages in
Section 6, and conclude with some remarks on future work in Section 7.

We encourage the reader to visit our website [11] for more information. It
hosts a comprehensive user guide, a community wiki, and a web-based interface
for experimenting with Orc.

2 The Orc Concurrency Calculus

The Orc calculus is based on the execution of expressions. Expressions are built
up recursively using Orc’s concurrent combinators. When executed, an Orc ex-
pression calls services and may publish values. Different executions of the same
expression may have completely different behaviors; they may call different ser-
vices, receive different responses from the same service, and publish different
values.

Orc expressions use sites to refer to external services. A site may be imple-
mented on the client’s machine or a remote machine. A site may provide any
service; it could run sequential code, transform data, communicate with a web
service, or be a proxy for interaction with a human user.

We present the calculus informally in this paper. The formal operational and
denotational semantics of the calculus are given in [4].

2.1 Site Calls

The simplest Orc expression is a site call M(p), where M is a site name and p
is a list of parameters, which are values or variables. The execution of a site call
invokes the service associated with M , sending it the parameters p. If the site
responds, the call publishes that response.

Here are some examples of site calls.

add(3,4) Add the numbers 3 and 4.
CNN(d) Get the CNN news headlines for date d.
Prompt("Name:") Prompt the user to enter a name.
swap(l0,l1) Swap the values stored at locations l0 and l1.
Weather("Austin, TX") Find the current weather in Austin.
random(10) Get a random integer in the range 0..9.
invertMatrix(m) Find the inverse of matrix m.

A site may give at most one response to a call. A site call may explicitly
report that it will never respond, in which case we say that the call has halted.



For example, the call might represent an invalid operation (invertMatrix on a
non-invertible matrix), it may have encountered a system error (trying to swap

with a protected memory location), or it may simply have no available response
(calling CNN on a future date). Some site calls may neither respond nor halt. For
example a call to Prompt will wait forever if the user never inputs a response.

Though the Orc calculus itself contains no sites, there are a few fundamental
sites which are so essential to writing useful computations that we always assume
they are available. The site let is the identity site; when passed one argument,
it publishes that argument, and when passed multiple arguments it publishes
them as a tuple. The site if responds with a signal (a value which carries no
information) if its argument is true, and otherwise halts.

2.2 Combinators

Orc has four combinators to compose expressions: the parallel combinator |,
the sequential combinator >x>, the pruning combinator1 <x<, and the otherwise
combinator2 ;.

When composing expressions, the >x> combinator has the highest prece-
dence, followed by |, then <x<, and finally ; with the lowest precedence.

Parallel Combinator In F | G, expressions F and G execute independently.
The sites called by F and G are the ones called by F | G and any value pub-
lished by either F or G is published by F | G. There is no direct communication
or interaction between these two computations.

For example, evaluation of CNN(d) | BBC(d) initiates two independent com-
putations; up to two values will be published depending on the number of re-
sponses received.

The parallel combinator is commutative and associative.

Sequential Combinator In F >x> G, expression F is evaluated. Each value
published by F initiates a separate execution of G wherein x is bound to that
published value. Execution of F continues in parallel with these executions of
G. If F publishes no values, no executions of G occur. The values published by
the executions of G are the values published by F >x> G. The values published
by F are consumed.

As an example, the following expression calls sites CNN and BBC in parallel
to get the news for date d. Responses from either of these calls are bound to x

and then site email is called to send the information to address a. Thus, email
may be called 0, 1 or 2 times, depending on the number of responses received.

( CNN(d) | BBC(d) ) >x> email(a, x)

1 In previous publications, F <x< G was written as F where x :∈ G.
2 The ; combinator is a new addition to Orc, inspired by practical experience writing

Orc programs. Its formal semantics will appear in a forthcoming technical report.



The sequential combinator is right associative, i.e. F >x> G >y> H is
F >x> (G >y> H). When x is not used in G, one may use the short-hand
F >> G for F >x> G.

Pruning Combinator In F <x< G, both F and G execute in parallel. Execu-
tion of parts of F which do not depend on x can proceed, but site calls in F for
which x is a parameter are suspended until x has a value. If G publishes a value,
then x is assigned that value, G’s execution is terminated and the suspended
parts of F can proceed. This is the only mechanism in Orc to block or terminate
parts of a computation.

In contrast to sequential composition, the following expression calls email

at most once.

email(a, x) <x< ( CNN(d) | BBC(d) )

The pruning combinator is left associative, i.e. F <x< G <y< H is
(F <x< G) <y< H. When x is not used in F , one may use the short-hand
F << G for F <x< G.

Otherwise Combinator The execution of F ; G first executes F . If F pub-
lishes no values and then halts, then G executes. We say that F halts if all of
the following conditions hold:

1. All site calls in the execution of F have either responded or halted.
2. F will never call any more sites.
3. F will never publish any more values.

The following expression calls CNN to get the news for date d. If CNN(d) re-
sponds, email is called using that response, and the BBC is never called. However,
the site CNN may halt, as described in Section 2.1, if there is no news available
for date d. In this case BBC(d) is executed, and if it responds, email is called.

( CNN(d) ; BBC(d) ) >x> email(a, x)

The otherwise combinator is associative, i.e. (F ; G) ; H is the same as
F ; (G ; H).

signal and stop For convenience, we allow two additional expressions: signal
and stop. The expression signal just publishes a signal when executed; it is
equivalent to if(true). The expression stop halts when executed; it is equiva-
lent to if(false).

2.3 Definitions

An Orc expression may be preceded by a sequence of definitions of the form:

def E(x) = F



This defines a function named E whose formal parameter list is x and body
is expression F . A call E(p) is evaluated by replacing the formal parameters
x by the actual parameters p in the body F . Unlike a site call, a function call
does not suspend if one of its arguments is a variable with no value. A function
call may publish more than one value; it publishes every value published by the
execution of F . Definitions may be recursive.

2.4 Time

Orc is designed to communicate with the external world, and one of the most
important characteristics of the external world is the passage of time. Orc implic-
itly accounts for the passage of time by interacting with external services that
may take time to respond. However, Orc can also explicitly wait for a specific
amount of time, using the special site Rtimer.

The call Rtimer(t), where t is an integer, responds with a signal exactly t
milliseconds later3.

The following example defines a metronome, which publishes a signal once
every t milliseconds, indefinitely.

def metronome(t) = signal | Rtimer(t) >> metronome(t)

We can also use Rtimer together with the <x< combinator to enforce a time-
out. For example, we can query BBC for a headline, but allow a default response
if BBC does not respond within 5 seconds.

email(a, x) <x< (BBC(d) | Rtimer(5000) >> "BBC timed out.")

3 Functional Core Language

In the preceding section, we introduced an abstract language intended to high-
light several issues pertaining to concurrency. However, concurrent programs
contain large amounts of sequential code, with attendant data and control struc-
tures. We enhance Orc by adding a functional core language to it. In this section
we describe Cor, the functional core. In Section 4 we will show how any Cor
expression can be written as an equivalent Orc expression; this will allow us to
integrate Cor into Orc.

A Cor program is an expression. Cor expressions are built up recursively from
smaller expressions. Cor evaluates an expression to reduce it to some simple value
which cannot be evaluated further, for example a list of numbers or a Boolean
truth value. This value is called the result of the expression. Some expressions
do not have a result, because they represent an invalid computation (such as
division by zero) or an infinite computation. Such expressions are called silent.

3 An implementation can only approximate this guarantee.



Values and Operators Cor has three types of constants: numbers
(5, -1, 2.71828, · · · ), strings ("orc", "ceci n’est pas une |", · · · ), and
booleans (true and false). It provides the usual arithmetic (+ - * / · · · ),
logical (&& || · · · ), and comparative (= < > · · · ) operators. They are written
infix with Java-like operator precedence. Parentheses can be used to override
this precedence.

(98+2)*17 evaluates to 1700.
4 = 20 / 5 evaluates to true.
"leap" + "frog" evaluates to "leapfrog".

Conditionals Cor has conditional expressions: if E then F else G. If E
evaluates to true, then F is evaluated. If E evaluates to false, then G is
evaluated.

if true then 4 else 5 evaluates to 4.
if 0 < 5 then 0/5 else 5/0 evaluates to 0.
if false || false then 4+5 else 9/0 is silent.

Variables We introduce and bind variables using a val declaration, as follows.
Below, x and y are bound to 3 and 6, respectively.

val x = 1 + 2
val y = x + x

Variables cannot be reassigned because Cor is a pure functional language
and has no mutable state. If the same variable is bound again, subsequent refer-
ences to that variable will use the new binding, but previous references remain
unchanged. Declarations obey the rules of lexical scope.

What if a variable is bound to a silent expression? Consider:

val x = 1/0
val y = 4+5
if false then x else y

Any expression that evaluates x will be silent. However, the evaluation of
val y = 4+5 and if false then x else y proceeds as normal.

Data Structures Cor supports two basic data structures: tuples ((3, 7),
("tag", true, false), · · · ) and finite lists ([4,4,1], ["example"], [], · · · ).
A tuple or list containing expressions to be evaluated is itself an expression; each
of the expressions is evaluated, and the result is a tuple or list of those results.

[1,2+3] evaluates to [1,5].
(3+4, if true then "yes" else "no") evaluates to (7, "yes").

Tuples and lists can contain any value, including other tuples or lists.



The prepend (cons) operation on lists is written x:xs, where xs is a list and
x is some element to be prepended to that list.

(1+3):[2+5,6] evaluates to [4,7,6].
2:2:5:[] evaluates to [2,2,5].

val t = [3,5]

1:t evaluates to [1,3,5].

2:3 is silent, because 3 is not a list.

Patterns We can bind parts of data structures to variables using patterns. We
write _ for the wildcard pattern.

val (x,y) = (2+3,2*3)

binds x to 5 and y to 6.

val t = ["two", "three"]

val [a,_,c] = "one":t

binds t to ["two","three"], a to "one", and c to "three".

val ((a,b),c) = ((1, true), (2, false))

binds a to 1, b to true, and c to (2,false).

Functions Functions are defined using the keyword def, in the following way.

def add(x,y) = x+y

The expression to the right of the = is called the body of the function.
The syntax for function calls is typical for functional programming. However,

the interpretation of a function call is more elaborate, in anticipation of the
concurrency combinators to be added. A call, such as add(1+2,3+4) is converted
to a sequence of val declarations, one per formal parameter, followed by a goal
expression, which is just the body of the function:

val x = 1+2
val y = 3+4
x+y

Notice that the evaluation strategy of functions allows a call to proceed even
if some of the actual parameters are silent expressions, so long as the values of
those actual parameters are not used in the evaluation of the body.

Functions may be defined recursively, as in:

def sumto(n) = if n < 1 then 0 else n + sumto(n-1)

Mutual recursion is also supported. There is no special keyword for mutual
recursion; any contiguous sequence of function definitions is allowed to be mu-
tually recursive.



Functions are actually values, just like any other. Defining a function creates
a special value called a closure; the name of the function is a variable and its
bound value is the closure. Since a closure is a value, it can be passed as an
argument to another function, thus allowing us to define a higher-order function.
Cor functions obey lexical closure.

def onetwosum(f) = f(1) + f(2)
def triple(x) = x * 3
onetwosum(triple)

This is the same as triple(1) + triple(2), i.e. 1 * 3 + 2 * 3.
We may create a closure without giving it a name, using the keyword lambda.

For example, onetwosum( lambda(x) = x * 3 ) is equivalent to
onetwosum(triple) as defined above.

Functions can be defined as a series of clauses, each of which has a different
list of patterns for its formal parameters. When such a function is called, the
function body used for the call is that of the first clause whose formal parameter
patterns match the actual parameters.

def sum([]) = 0
def sum(h:t) = h + sum(t)

def fib(0) = 0
def fib(1) = 1
def fib(n) =
if (n < 0) then fib(0)

else fib(n-1) + fib(n-2)

4 The Orc Programming Language

The full Orc programming language combines the concurrency calculus with the
functional core language, and adds to it a few notational conveniences and the
support of a large library of sites and predefined functions. The full language
has many features which we do not discuss here due to space constraints; see
the Orc User Guide [5] for details.

4.1 Translating Cor to Orc

Every Cor expression can be translated to an equivalent expression in the Orc
calculus, using a small set of primitive sites to perform tasks such as arithmetic
and list manipulation.

Values and Operators The arithmetic, logical, and comparison operators
translate directly to site calls; for example, 2+3 translates to add(2,3), where
add is simply a site which performs addition.

If a value or variable is mentioned alone, such as 3 or x, it becomes a call to
the identity site let with that argument.



Cor expressions may be recursively nested. However, site calls in the Orc
calculus may only have values or variables as arguments. For example, 2+(3+4)
cannot translate directly to add(2, add(3,4)), since the call add(3,4) cannot
be an argument. Instead, we translate 2+(3+4) to add(2,z) <z< add(3,4),
where z is a fresh variable name. This translation can be applied to any such
nested expression.

Conditionals The conditional expression if E then F else G translates to:

( if(b) >> F | not(b) >c> if(c) >> G ) <b< E

Variables The declaration val x = G, followed by expression F , translates to:

F <x< G

Data Structures Data structures are created by site calls. The site let creates
tuples directly. The site nil returns the empty list when called. The site cons

implements the cons operator and is also used to construct list expressions. For
example, [1,2] translates to cons(1,t) <s< cons(2,t) <t< nil().

Patterns Patterns can be translated into a set of calls to pattern deconstruction
sites followed by a set of variable bindings to match up each of the pieces with the
appropriate variable names. For example, the site trycons takes one argument;
if that argument is a nonempty list, then it returns a tuple of the list’s head and
tail, otherwise it remains silent.

Functions Cor function definitions translate to Orc definitions, though we must
extend the calculus slightly to permit such definitions to occur within the scope
of normal expressions and create closures.

The expression lambda(...) = E translates to the following Orc expression,
where f is a fresh variable name:

def f(...) = E
let(f)

4.2 Integrating Cor and Orc

As we have seen, any Cor expression can be translated into an equivalent Orc
expression. This allows us to integrate the concurrency combinators with Cor.



Mingling Cor and Orc expressions The combined language allows any Cor
or Orc expression to appear as a subexpression of any other Cor or Orc expres-
sion. Sometimes, an Orc expression which publishes multiple values will appear
in the context of a Cor expression which expects only one value, for example
2 + (3 | 4). In such a case, the Orc expression executes until it publishes a
value, and then is terminated. Therefore 2 + (3 | 4) is to be understood as
(2 + x) <x< (3 | 4). While this may be an unexpected behavior, it is quite
useful once it becomes familiar. In fact, it is used so often in Orc programs that
the pruning combinator itself is rarely written explicitly.

Patterns in Combinators The combined language also allows patterns to
replace variables in the >x> and <x< combinators. If a publication does not
match the pattern of a >x> combinator, the publication is ignored, and no new
instance of the right hand expression is executed. For the <x< combinator, the
publication is ignored, and the right hand expression continues to run.

(3,4) >(x,y)> x+y publishes 7.
x <(0,x)< ((1,0) | (0,1)) publishes 1.

Functions A function call in Orc, as in Cor, binds the values of its actual
parameters to its formal parameters, and then executes the function body with
those bindings. Whenever the function body publishes a value, the function call
publishes that value. Thus, unlike a site call, or a pure functional Cor call, an
Orc function call may publish many values.

In the context of Orc, function calls are not strict. When a function call
executes, it begins to execute the function body immediately, and also executes
the argument expressions in parallel. When an argument expression publishes
a value, it is terminated, and the corresponding formal parameter is bound to
that value in the execution of the function body. Any part of the function body
which uses a formal parameter that has not yet been bound suspends until that
parameter is bound to a value.

An Example We show an Orc program that does not use any of the concurrency
combinators explicitly. In fact, the program is almost entirely functional, with
the sole exception of the site call random(6), which returns a random integer
between 0 and 5. Each nested expression will translate into a use of the pruning
combinator, making this program implicitly concurrent without any programmer
intervention.

This program runs a series of experiments. Each experiment consists of rolling
a pair of dice. An experiment succeeds if the total shown by the two dice is c.
The function exp(n,c) returns the number of successes in n experiments.



def throw() = random(6) + 1

def exp(0,_) = 0
def exp(n,c) =
(if throw() + throw() = c then 1 else 0)
+ exp(n-1,c)

Here is the translation of this program into the Orc calculus. Site add returns
the sum of its arguments, not returns the negation of its boolean argument, and
equals returns true iff its two arguments are equal.

def throw() = add(x,1) <x< random(6)

def exp(n,c) =
( if(b) >> let(0)
| not(b) >nb> if(nb) >>
( add(x,y)

<x< ( ( if(bb) >> 1 | not(bb) >nbb> if(nbb) >> 0 )
<bb< equals(p,c)
<p< add(q,r)

<q< throw()
<r< throw() )

<y< ( exp(m,c) <m< sub(n,1) ) )
) <b< equals(n,0)

4.3 The . notation

We will see many sites which represent objects with multiple behaviors. It is
often convenient to treat such sites as if they had methods, in an object-oriented
style. We access methods on sites using a special form of site call, as in
c.put(4).

This call form, like every other new syntactic form introduced so far, can be
encoded in the Orc calculus. The site c is sent a special value called a message,
in this case the ’put’ message. It responds to that message with another site
which will execute the desired method when called. So c.put(4) translates to
c(’put’) >x> x(4).

4.4 Site library

The Orc programming language has access to a library of useful sites. We intro-
duce a few essential ones here.

Channels Orc has no communication primitives like π-calculus channels [7]
or Erlang mailboxes [1]. Instead, it makes use of sites to create channels of
communication.

The most frequently used of these sites is Buffer. When called, it publishes
a new asynchronous FIFO channel. That channel is a site with two methods: get



and put. The call c.get() takes the first value from channel c and publishes it,
or blocks waiting for a value if none is available. The call c.put(v) puts v as
the last item of c and publishes a signal.

A channel may be closed to indicate that it will not be sent any more values.
If the channel c is closed, c.put(v) always halts (without modifying the state
of the channel), and c.get() halts once c becomes empty. The channel c may
be closed by calling either c.close(), which returns a signal once c becomes
empty, or c.closenb(), which returns a signal immediately.

References Unlike imperative programming languages, Orc does not have mu-
table variables. Mutable state is provided by sites instead. The Ref site is used
to create new mutable references, which are used in a style similar to Standard
ML’s ref [9].

A call to Ref may include an argument specifying the initial contents of
the reference; if none is given, then the reference’s value is undefined. Given a
reference r, r.write(v) overwrites the current value stored in r, changing it
to v, and r.read() publishes the current value stored in r. If r is undefined,
r.read() blocks until some write occurs.

Semaphores Unlike other concurrent languages, Orc does not have any locking
mechanisms built into the language. Instead, it uses the Semaphore site to create
semaphores which enable synchronization and mutual exclusion. Semaphore(k)
creates a semaphore with the initial value k (i.e. it may be acquired by up
to k parties simultaneously). Given a semaphore s, s.acquire() attempts to
acquire s, blocking if it cannot be acquired yet because its value is zero. The
call s.release() releases s, increasing is value by one.

4.5 Function library

The Orc programming language also includes a library of predefined functions.
These are functions written in Orc, using def. We introduce a few important
ones here.

each One of the most common uses for a list is to send each of its elements
through a sequential combinator. Since the list itself is a single value, we want
to walk through the list and publish each one of its elements in parallel as a
value. The library function each does exactly that.

Suppose we want to send the message invite to each email address in the
list inviteList:

each(inviteList) >address> email(address, invite)



repeat A site in Orc responds with at most one value. If we wish to model a
service that outputs a stream of values, we can either encode the stream as a
single value, or we can call the site repeatedly to receive successive values in the
stream. The function repeat is very useful for the latter approach: repeat(M)
calls site M, waits for it to respond, publishes the response, and then repeats the
process, until the call to M halts. For example, repeat(c.get) will take and
publish values from the channel c whenever they are available.

List Functions Orc adopts many of the list idioms of functional programming.
The Orc library contains definitions for most of the standard list functions,
such as map and fold. Many of the list functions internally take advantage
of concurrency to make use of any available parallelism; for example, the map

function uses a fork-join to dispatch all of the mapped calls concurrently and
assemble the result list from their responses.

4.6 Interacting with other languages

The current Orc implementation allows Java classes to be used as sites. A special
declaration makes a Java class constructor available to Orc as a site with the
same name. Calling that constructor site creates an instance of the Java object.
That object’s methods and fields can then be accessed using the dot notation
described earlier. We anticipate that this mechanism may be generalized to other
languages.

4.7 Complete Syntax

The complete abstract syntax of the Orc language used for the remainder of this
paper is given below.

Constant C ::= boolean, number, or string
Variable X ::= variable name
Message m ::= message name
Pattern P ::= C | X | (P) | [P] | _

Declaration D ::= val P = E

| def X(P) = E

Expression E ::= C | X | (E) | [E] | signal
| E op E | X(E) | X.m(E)

| if E then E else E

| lambda(P) = E

| D E
| E | E

| E >P> E

| E <P< E

| E ; E

| stop



5 Programming Idioms

In this section we give Orc implementations of some standard idioms from con-
current and functional programming. Despite the austerity of Orc’s four combi-
nators, we are able to encode a variety of idioms straightforwardly.

5.1 Fork-Join

One of the most common concurrent idioms is a fork-join: evaluate two expres-
sions F and G concurrently and wait for a result from both before proceeding.
This is easy to express in Orc:

(F, G)

Recall that this is equivalent to:

( (x,y) <x< F ) <y< G

This implementation takes advantage of the fact that a tuple is constructed
by a site call, which must wait for all of its arguments to become available. In
fact, any operator or site call may serve to join forked expressions. For example,
if F and G produce numbers and we wish to fork-join and add their results, we
write simply F + G.

Example: Simple Parallel Auction Orc programs often use fork-join with
recursion to dispatch many tasks in parallel and wait for all of them to complete.
Suppose we have a list of bidders in a sealed-bid, single-round auction. Calling
b.ask() requests a bid from the bidder b. We want to ask for one bid from
each bidder and then return the highest bid. The function auction performs
this task (max finds the maximum of its arguments):

def auction([]) = 0
def auction(b:bs) = max(b.ask(), auction(bs))

Note that all bidders are called simultaneously. Also note that if some bidder
fails to return a bid, then the auction will never complete. Section 5.5 presents
a different solution that addresses the issue of non-termination.

Example: Barrier Synchronization Consider an expression of the following
form, where F and G are expressions and M and N are sites:

M() >x> F | N() >y> G

Suppose we would like to synchronize F and G, so that both start executing
at the same time, after both M() and N() respond. This is easily done using the
fork-join idiom. In the following, we assume that x does not occur free in G, nor
y in F .

(M(), N()) >(x,y)> ( F | G )



5.2 Sequential Fork-Join

Previous sections illustrate how Orc can use the fork-join idiom to process a fixed
set of expressions or a list of values. Suppose that instead we wish to process
all the publications of an expression F , and once this processing is complete,
execute some expression G. For example, F publishes the contents of a text file,
one line at a time, and we wish to print each line to the console using the site
println, then publish a signal after all lines have been printed.

Sequential composition alone is not sufficient, because we have no way to
detect when all of the lines have been processed. A recursive fork-join solution
would require that the lines be stored in a traversable data structure like a
list, rather than streamed as publications from F . A better solution uses the ;

combinator to detect when processing is complete:

F >x> println(x) >> stop ; signal

Since ; only evaluates its right side if the left side does not publish, we
suppress the publications on the left side using stop. Here, we assume that we
can detect when F halts. If, for example, F is publishing the lines of the file as it
receives them over a socket, and the sending party never closes the socket, then
F never halts and no signal is published.

5.3 Priority Poll

The otherwise combinator is also useful for trying alternatives in sequence. Con-
sider an expression of the form F0 ; F1 ; F2 ; · · · . If Fi does not publish and
halts, then Fi+1 is executed. We can think of the Fi’s as a series of alternatives
that are explored until a publication occurs.

Suppose that we would like to poll a list of buffers for available data. The
list of buffers is ordered by priority. The first buffer in the list has the highest
priority, so it is polled first. If it has no data, then the next buffer is polled, and
so on.

Here is a function which polls a prioritized list of buffers in this way. It
publishes the first item that it finds, removing it from the originating buffer. If
all buffers are empty, the function halts. We use the getnb (”get non-blocking”)
method of the buffer, which retrieves the first available item if there is one, and
halts otherwise.

def priorityPoll([]) = stop
def priorityPoll(b:bs) = b.getnb() ; priorityPoll(bs)

5.4 Parallel Or

“Parallel or” is a classic idiom of parallel programming. The “parallel or” oper-
ation executes two expressions F and G in parallel, each of which may publish
a single boolean, and returns the disjunction of their publications as soon as
possible. If one of the expressions publishes true, then the disjunction is true,



so it is not necessary to wait for the other expression to publish a value. This
holds even if one of the expressions is silent.

The “parallel or” of expressions F and G may be expressed in Orc as follows:
let(
val a = F
val b = G
(a || b) | if(a) >> true | if(b) >> true

)

The expression (a || b) waits for both a and b to become available and then
publishes their disjunction. However if either a or b is true we can publish true

immediately regardless of whether the other variable is available. Therefore we
run if(a) >> true and if(b) >> true in parallel to wait for either variable
to become true and immediately publish the result true. Since more than one
of these expressions may publish true, the surrounding let(. . .) is necessary to
select and publish only the first result.

5.5 Timeout

Timeout, the ability to execute an expression for at most a specified amount of
time, is an essential ingredient of fault-tolerant and distributed programming.
Orc accomplishes timeout using pruning and the Rtimer site. The following
program runs F for at most one second, publishing its result if available and the
value 0 otherwise.
let( F | Rtimer(1000) >> 0 )

Example: Auction with Timeout The auction example in Section 5.1 may
never finish if one of the bidders does not respond. We can add a timeout so
that each bidder has at most 8 seconds to provide a bid:
def auction([]) = 0
def auction(b:bs) =
val bid = b.ask() | Rtimer(8000) >> 0
max(bid, auction(bs))

This version of the auction is guaranteed to complete within 8 seconds.

Detecting Timeout Sometimes, rather than just yielding a default value, we
would like to determine whether an expression has timed out, and if so, perform
some other computation. To detect the timeout, we pair the result of the orig-
inal expression with true and the result of the timer with false. Thus, if the
expression does time out, then we can distinguish that case using the boolean
value.

Here, we run expression F with a time limit t. If it publishes within the time
limit, we bind its result to r and execute G. Otherwise, we execute H.
val (r, b) = (F, true) | (Rtimer(t), false)
if b then G else H



Priority We can use a timer to give a window of priority to one computation
over another. In this example, we run expressions F and G concurrently. For
one second, F has priority; F ’s result is published immediately, but G’s result
is held until the time interval has elapsed. If neither F nor G publishes a result
within one second, then the first result from either is published.

val x = F
val y = G
let( x | Rtimer(1000) >> y )

5.6 Metronome

A timer can be used to execute an expression repeatedly at regular intervals, for
example to poll a service. Recall the definition of metronome from Section 2.4:

def metronome(t) = signal | Rtimer(t) >> metronome(t)

The following example publishes “tick” once per second and “tock” once per
second after an initial half-second delay. The publications alternate: “tick tock
tick tock . . . ”. Note that this program is not defined recursively; the recursion
is entirely contained within metronome.

metronome(1000) >> "tick"
| Rtimer(500) >> metronome(1000) >> "tock"

5.7 Fold

We consider various concurrent implementations of the classic “list fold” function
from functional programming:

def fold(_, [x]) = x
def fold(f, x:xs) = f(x, fold(xs))

This is a seedless fold (sometimes called fold1) which requires that the list
be nonempty and uses its first element as a seed. This implementation is short-
circuiting — it may finish early if the reduction operator f does not use its
second argument — but it is not concurrent; no two calls to f can proceed in
parallel.

Associative Fold We first consider the case when the reduction operator is
associative. We define afold(b,xs) where b is a binary associative function
and xs is a non-empty list. The implementation iteratively reduces xs to a
single value. Each step of the iteration applies the auxiliary function step, which
halves the size of xs by reducing disjoint pairs of adjacent items. Notice that
b(x,y):step(xs) is an implicit fork-join, as described in Section 5.1. Thus,
the call b(x,y) executes in parallel with the recursive call step(xs), and as a
result, all of the calls to b in each iteration occur in parallel.



def afold(b, [x]) = x
def afold(b, xs) =
def step([]) = []
def step([x]) = [x]
def step(x:y:xs) = b(x,y):step(xs)
afold(b, step(xs))

Associative, Commutative Fold We can devise a better strategy when the
fold operator is both associative and commutative. We define cfold(b,xs),
where b is a binary associative and commutative function over two arguments
and xs is a non-empty list. The implementation initially copies all list items
into a buffer in arbitrary order using the auxiliary function xfer. The auxiliary
function combine repeatedly pulls pairs of items from the buffer, reduces them,
and places the result back in the buffer. Each pair of items is reduced in parallel
as they become available. The last item in the buffer is the result of the overall
fold.

def cfold(b, xs) =
val c = Buffer()

def xfer([]) = stop
def xfer(x:xs) = c.put(x) >> stop | xfer(xs)

def combine(1) = c.get()
def combine(m) = c.get() >x> c.get() >y>

( c.put(b(x,y)) >> stop | combine(m-1))

xfer(xs) | combine(length(xs))

5.8 Routing

The Orc combinators restrict the passing of values among their component ex-
pressions. However, some programs will require greater flexibility. For example,
F <x< G provides F with the first publication of G, but what if F needs the
first n publications of G? In cases like this we use channels or other stateful
sites to redirect or store publications. We call this technique routing because it
involves routing values from one execution to another.

Generalizing Termination The pruning combinator terminates an expression
after it publishes its first value. We have already seen how to use pruning just for
its termination capability, without binding a variable, using the let site. Now
we use routing to terminate an expression under different conditions, not just
when it publishes a value; it may publish many values, or none, before being
terminated.



Our implementation strategy is to route the publications of the expression
through a channel so that we can put the expression inside a pruning combi-
nator and still see its publications without those publications terminating the
expression.

Enhanced Timeout As a simple demonstration of this concept, we construct
a more powerful form of timeout: allow an expression to execute, publishing
arbitrarily many values (not just one), until a time limit is reached.

val c = Buffer()
repeat(c.get) <<

F >x> c.put(x) >> stop
| Rtimer(1000) >> c.closenb()

This program allows F to execute for one second and then terminates it. Each
value published by F is routed through channel c so that it does not terminate
F . After one second, Rtimer(1000) responds, triggering the call c.closenb().
The call c.closenb() closes c and publishes a signal, terminating F . The library
function repeat is used to repeatedly take and publish values from c until it is
closed.

Interrupt We can use routing to interrupt an expression based on a signal
from elsewhere in the program. We set up the expression like a timeout, but
instead of waiting for a timer, we wait for the semaphore done to be released.
Any call to done.release will terminate the expression (because it will cause
done.acquire() to publish), but otherwise F executes as normal and may
publish any number of values.

val c = Buffer()
val done = Semaphore(0)
repeat(c.get) <<

F >x> c.put(x) >> stop
| done.acquire() >> c.closenb()

Publication Limit We can use the interrupt idiom to limit an expression to n
publications, rather than just one. Here is an expression that executes F until
it publishes 5 values, and then terminates it.

val c = Buffer()
val done = Semaphore(0)
def allow(0) = done.release() >> stop
def allow(n) = c.get() >x> ( x | allow(n-1) )
allow(5) <<

F >x> c.put(x) >> stop
| done.acquire() >> c.closenb()

We use the auxiliary function allow to get only the first 5 publications from
the channel c. When no more publications are allowed, allow uses the interrupt
idiom to halt F and close c.



Non-Terminating Pruning We can use routing to create a modified version of
the pruning combinator. As in F <x< G, we’ll run F and G in parallel and make
the first value published by G available to F . However instead of terminating
G after it publishes a value, we will continue running it, ignoring its remaining
publications.

val r = Ref()
(F <x< r.read()) | (G >x> r.write(x))

Publication-Agnostic Otherwise We can also use routing to create a mod-
ified version of the otherwise combinator. We’ll run F until it halts, and then
run G, regardless of whether F published any values or not.

val c = Buffer()
repeat(c.get) | (F >x> c.put(x) >> stop

; c.close() >> G)

We use c.close() instead of the more common c.closenb() to ensure that
G does not execute until all the publications of F have been routed. Recall that
c.close() does not return until c is empty.

5.9 Larger Examples

In the previous sections we demonstrated how various concurrent programming
idioms are expressed simply in Orc. Now we apply these idioms to solve non-
trivial problems. The following examples illustrate how the different aspects of
Orc — including the functional core, concurrency, time, synchronization and
mutable state — combine to produce concise and efficient programs.

Dining Philosophers The dining philosophers problem is a well known and
intensely studied problem in concurrent programming. Five philosophers sit
around a circular table. Each philosopher has two forks that she shares with
her neighbors (giving five forks in total). Philosophers think until they become
hungry. A hungry philosopher picks up both forks, one at a time, eats, puts down
both forks, and then resumes thinking. Without further refinement, this scenario
allows deadlock; if all philosophers become hungry and pick up their left-hand
forks simultaneously, no philosopher will be able to pick up her right-hand fork
to eat. Lehmann and Rabin’s solution [6], which we implement, requires that
each philosopher pick up her forks in a random order. If the second fork is not
immediately available, the philosopher must set down both forks and try again.
While livelock is still possible if all philosophers take forks in the same order,
randomization makes this possibility vanishingly unlikely.

The following program gives the Orc implementation of dining philosophers.
The phil function simulates a single philosopher. It takes as arguments two
binary semaphores representing the philosopher’s forks, and calls the thinking,
hungry, and eating functions in a continuous loop. A thinking philosopher



waits for a random amount of time, with a 10% chance of thinking forever. A
hungry philosopher uses the take function to acquire two forks. An eating

philosopher waits for a random time interval and then uses the drop function to
relinquish ownership of her forks.

Calling take attempts to acquire a pair of forks (a,b) in two steps: wait
for fork a to become available, then immediately attempt to acquire fork b. The
call b.acquirenb() either acquires b and responds immediately, or halts if b is
not available. If b is acquired, signal success; otherwise, release a, and then try
again, randomly changing the order in which the forks are acquired using the
auxiliary function shuffle.

The function philosophers recursively creates a chain of n philosophers,
bounded by fork a on the left and b on the right. The goal expression of the
program calls philosophers to create a chain of five philosophers bounded on
the left and right by the same fork; hence, a ring.

def shuffle(a,b) = if (random(2) = 1) then (a,b) else (b,a)

def take((a,b)) =
a.acquire() >> b.acquirenb() ;
a.release() >> take(shuffle(a,b))

def drop(a,b) = (a.release(), b.release()) >> signal

def phil(a,b) =
def thinking() =

if (random(10) < 9)
then Rtimer(random(1000))
else stop

def hungry() = take((a,b))
def eating() =

Rtimer(random(1000)) >>
drop(a,b)

thinking() >> hungry() >> eating() >> phil(a,b)

def philosophers(1,a,b) = phil(a,b)
def philosophers(n,a,b) =
val c = Semaphore(1)
philosophers(n-1,a,c) | phil(c,b)

val fork = Semaphore(1)
philosophers(5,fork,fork)

This Orc solution has several nice properties. The overall structure of the
program is functional, with each behavior encapsulated in its own function,
making the program easy to understand and modify. Mutable state is isolated
to the “fork” semaphores and associated take and get functions, simplifying
the implementation of the philosophers. The program never manipulates threads
explicitly, but instead expresses relationships between activities using Orc’s com-
binators.



Quicksort The original quicksort algorithm [3] was designed for efficient exe-
cution on a uniprocessor. Encoding it as a functional program typically ignores
its efficient rearrangement of the elements of an array. Further, no known imple-
mentation highlights its concurrent aspects. The following program attempts to
overcome these two limitations. The program is mostly functional in its struc-
ture, though it manipulates the array elements in place. We encode parts of the
algorithm as concurrent activities where sequentiality is unneeded.

The following listing gives the implementation of the quicksort function
which sorts the array a in place. The auxiliary function sort sorts the subarray
given by indices s through t by calling part to partition the subarray and then
recursively sorting the partitions.

The function part partitions the subarray given by indices s through t into
two partitions, one containing values ≤ p and the other containing values >

p. The last index of the lower partition is returned. The value at a(s-1) is
assumed to be ≤ p — this is satisfied by choosing p = a(s-1)? initially. To
create the partitions, part calls two auxiliary functions lr and rl concurrently.
These functions scan from the left and right of the subarray respectively, looking
for out-of-place elements. Once two such elements have been found, they are
swapped using the auxiliary function swap, and then the unscanned portion of
the subarray is partitioned further. Partitioning is complete when the entire
subarray has been scanned.

This program uses the syntactic sugar x? for x.read() and x := y for
x.write(y). Also note that the expression a(i) returns a reference to the ele-
ment of array a at index i, counting from 0.

def quicksort(a) =

def swap(x, y) = a(x)? >z> a(x) := a(y)? >> a(y) := z

def part(p, s, t) =
def lr(i) = if i < t && a(i)? <= p then lr(i+1) else i
def rl(i) = if a(i)? > p then rl(i-1) else i

(lr(s), rl(t)) >(s’, t’)>
( if (s’ + 1 < t’) >> swap(s’, t’) >> part(p, s’+1, t’-1)
| if (s’ + 1 = t’) >> swap(s’, t’) >> s’
| if (s’ + 1 > t’) >> t’
)

def sort(s, t) =
if s >= t then signal
else part(a(s)?, s+1, t) >m>

swap(m, s) >>
(sort(s, m-1), sort(m+1, t)) >>
signal

sort(0, a.length()-1)



Meeting Scheduler Orc makes very few assumptions about the behaviors of
services it uses. Therefore it is straightforward to write programs which interact
with human agents and network services. This makes Orc especially suitable for
encoding workflows [2], the coordination of multiple activities involving multiple
participants. The following program illustrates a simple workflow for scheduling
a business meeting. Given a list of people and a date range, the program asks
each person when they are available for a meeting. It then combines all the
responses, selects a meeting time which is acceptable to everyone, and notifies
everyone of the selected time.

val during = DateTimeRange(LocalDate(2009, 9, 10),
LocalDate(2009, 10, 17))

val invitees = ["dkitchin@cs.utexas.edu", "quark@cs.utexas.edu"]

def invite(invitee) =
Form() >f>
f.addPart(DateTimeRangesField("times",
"When are you available for a meeting?", during, 9, 17)) >>

f.addPart(Button("submit", "Submit")) >>
SendForm(f) >receiver>
SendMail(invitee, "Meeting Request", receiver.getURL()) >>
receiver.get() >response>
response.get("times")

def notify([]) =
each(invitees) >invitee>
SendMail(invitee, "Meeting Request Failed",

"No meeting time found.")
def notify(first:_) =
each(invitees) >invitee>
SendMail(invitee, "Meeting Request Succeeded",

first.getStart())

map(invite, invitees) >responses>
afold(lambda (a,b) = a.intersect(b), responses) >times>
notify(times)

This program begins with declarations of during (the date range for the
proposed meeting) and invitees (the list of people to invite represented by
email addresses).

The invite function obtains possible meeting times from a given invitee, as
follows. First it uses library sites (Form, DateTimeRangesField, Button, and
SendForm) to construct a web form which may be used to submit possible meet-
ing times. Then it emails the URL of this form to the invitee and blocks waiting
for a response. When the invitee receives the email, he or she will use a web
browser to visit the URL, complete the form, and submit it. The corresponding
execution of invite receives the response in the variable response and extracts
the chosen meeting times.



The notify function takes a list of possible meeting times, selects the first
meeting time in the list, and emails everyone with this time. If the list of possible
meeting times is empty, it emails everyone indicating that no meeting time was
found.

The goal expression of the program uses the library function map to apply
notify to each invitee and collect the responses in a list. It then uses the library
function afold to intersect all of the responses. The result is a set of meeting
times which are acceptable to everyone. Finally, notify is called to select one
of these times and notify everyone of the result.

This program may be extended to add more sophisticated features, such as
a quorum (to select a meeting as soon as some subset of invitees responds) or
timeouts (to remind invitees if they don’t respond in a timely manner). These
modifications are local and do not affect the overall structure of the program.
For complete details, see examples on our website [11].

6 Related Work

Many attempts have been made to rethink the prevailing concurrency model of
threads with shared state and put forth programming languages based on novel
approaches.

Erlang is perhaps the most widely adopted of these languages [1]. It is founded
on an actor model of concurrency, wherein sequential processes communicate via
message-passing. While the Orc language is very different in design, Erlang has
often served as a basis for comparison.

Oz is another novel concurrent programming language [12]. Though it uses a
more conventional thread-based approach to concurrent computation, its model
of shared state is much more structured and safe than that of mainstream lan-
guages. Rather than reducing all programs to a small calculus, Oz instead starts
with a kernel calculus and incrementally expands it with new concepts that pro-
vide additional expressive capability, such as ports, objects, and computation
spaces. While Oz is more structured than a pure message-passing model and
its unification-based assignment operation is more expressive than Orc’s pattern
matching, evaluation of Oz programs requires access to a global unification store,
which Orc programs do not need. The site Cell in the Orc library, which creates
write-once mutable cells, was inspired by Oz’s single-assignment variables.

Pict is a concurrent functional language [10] which is based on the π-calculus,
in much the same way that the Orc language is based on the Orc calculus. In
fact, Pict was an inspiration for some of the design choices of the Orc lan-
guage. The primary difference between Pict and Orc is that Pict imposes a
functional, continuation-passing structure on an unstructured communication
calculus, whereas the Orc calculus is already structured, so a translation into
the calculus preserves much of the structure of the original program and may
thereby ease formal analysis.



7 Conclusion

We have presented Orc, developed from a simple concurrency calculus into a
complete programming language capable of addressing real-world problems while
maintaining its original formal simplicity.

Future Work The language continues to be actively developed; current areas of
development include a static type system with partial type inference, an explicit
exception handling mechanism, a module system for namespace management
and separate compilation, support for atomic sections using transactions, and
dynamic modification of programs.
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