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Abstract Quicksort [5] remains one of the most studied algorithms in computer
science. It is important not only as a practical sorting method, but also as a splendid
teaching aid for introducing recursion and systematic algorithm development. The
algorithm has been studied extensively; so, it is natural to assume that everything
that needs to be said about it has already been said. Yet, in attempting to code it
using a recent programming language of our design, we discovered that its structure
is more clearly expressed as a concurrent program that manipulates a shared mutable
store, without any locking or explicit synchronization. In this paper, we describe the
essential aspects of our programming language Orc [8], show a number of examples
that combine its features in various forms, and then develop a concise description of
Quicksort. We hope to highlight the importance of including concurrency, recursion
and mutability within a single theory.

1 Introduction

Quicksort [5] remains one of the most studied algorithms in computer science. Its
performance has been studied extensively, by Knuth [11] and Sedgewick [17] in
particular. A variety of implementations exist on different architectures, and many
variants of Quicksort have been developed that improve its performance for specific
platforms.
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The structure of the algorithm has also been studied extensively. It presents three
important ideas in computing —mutable store, recursion and concurrency— mak-
ing it attractive as a teaching tool. These aspects cross the usual boundaries of pro-
gramming languages: pure functional programs typically do not admit in-situ per-
mutation of data elements, imperative programs are typically sequential and do not
highlight concurrency, and typical concurrency constructs do not combine well with
recursion.

We have recently designed a process calculus [14] and a programming language
based on it, called Orc [8]. We believe that the Orc coding of Quicksort, in Section 5,
highlights all three of these aspects while remaining faithful to the original intent of
the algorithm.

This paper first presents Orc, starting with the Orc calculus, and then the pro-
gramming language designed around the calculus. The calculus starts with the
premise that concurrency is fundamental; sequential programming is a special case.
The calculus itself is extremely small, consisting of four combinators (only three of
which are essential for this paper) and a definition mechanism. It contains no data
structuring, nor any notion of process, thread or communication.

The calculus is next enhanced with a small functional language to ease writing of
practical programs. The language includes basic operators, conditionals, some prim-
itive data types, and pattern matching mechanisms. The enhancements are mere syn-
tactic sugar; they can all be translated to the core Orc calculus, and that is how they
are actually implemented. The programming model draws its power from external
services, called sites, which may encode functionalities that are better expressed in
other programming paradigms. The combinators allow these sites to be integrated
into a full concurrent program.

The paper is structured as follows. In Section 2, we review the Orc concurrency
calculus. Section 3 shows its expansion into a functional concurrent programming
language, with a library of sites supporting time, mutable state, communication, and
synchronization. Section 4 present a series of example programs using concurrency,
recursion, and the additional capabilities provided by the site library. In Section 5,
we present the Quicksort algorithm in Orc. Section 6 includes brief concluding re-
marks.

For a more thorough review of the Orc language, see [8], from which Sec-
tions 2, 3, and 4 borrow substantially. We also encourage the reader to visit our
website [16]; it hosts a comprehensive user guide [9], a community wiki, and a
web-based interface for experimenting with Orc.

2 The Orc Concurrency Calculus

The Orc calculus is based on the execution of expressions. Expressions are built up
recursively using Orc’s concurrency combinators. When executed, an Orc expres-
sion invokes services and may publish values. Different executions of the same ex-
pression may have completely different behaviors; they may call different services,
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receive different responses from the same service, and publish different values. An
expression is silent if it never publishes a value.

In order to invoke services, Orc expressions call sites. A site may be implemented
on the client’s machine or a remote machine. A site may provide any service; it could
run sequential code, transform data, communicate with a web service, or be a proxy
for interaction with a human user.

We describe three of the four concurrency combinators of Orc in this paper. No-
table omissions in this paper are treatments of logical time (using site Ltimer) and
halting (using the fourth concurrency combinator ;). The operational and denota-
tional semantics of the calculus appear in [7].

2.1 Site Calls

The simplest Orc expression is a site call M(p), where M is a site name and p is a
list of parameters, which are values or variables. The execution of a site call invokes
the service associated with M, sending it the parameters p. If the site responds, the
call publishes that response. A site responds with at most one value.

Here are some examples of site calls.

add(3,4) Add the numbers 3 and 4.
CNN(d) Get the CNN news headlines for date d.
Prompt("Name:") Prompt the user to enter a name on the console.
random(10) Generate a random integer in the range 0..9.
email(a,m) Send message m to email address a

Fundamental Sites

Though the Orc calculus itself contains no sites, there are a few fundamental sites
that are so essential to writing useful programs that we always assume they are
available. The site let is the identity site; when passed one argument, it publishes
that argument, and when passed multiple arguments it publishes them as a tuple. The
site if responds with a signal (a value which carries no information) if its argument
is true, and otherwise it does not respond. The site call Rtimer(t) responds with
a signal after exactly t time units.

signal and stop

For convenience, we allow two additional expressions: signal and stop. The ex-
pression signal just publishes a signal when executed; it is equivalent to if(true).
The expression stop is simply silent; it is equivalent to if(false).
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2.2 Combinators

Orc has four combinators to compose expressions: the parallel combinator |, the
sequential combinator >x>, the pruning combinator2 <x<, and the otherwise combi-
nator ;. We discuss only the first three in this paper; see [8] for more information on
the otherwise combinator.

When composing expressions, the >x> combinator has the highest precedence,
followed by |, then <x<.

Parallel Combinator

In F | G, expressions F and G execute independently. The sites called by F and G
are the ones called by F | G and any value published by either F or G is published
by F | G. There is no direct communication or interaction between F and G.

For example, evaluation of CNN(d) | BBC(d) initiates two independent compu-
tations; up to two values will be published depending on the number of responses
received.

The parallel combinator is commutative and associative.

Sequential Combinator

In F >x> G, expression F is first evaluated. Each value published by F initiates
a separate execution of G wherein x is bound to that published value. Execution
of F continues in parallel with these executions of G. If F publishes no value, no
execution of G occurs. The values published by the executions of G are the values
published by F >x> G. The values published by F are consumed.

As an example, the following expression calls sites CNN and BBC in parallel to get
the news for date d. Responses from either of these calls are bound to x and then site
email is called to send the information to address a. Thus, email may be called 0,
1 or 2 times, depending on the number of responses received.
( CNN(d) | BBC(d) ) >x> email(a, x)

The sequential combinator is right associative, i.e. F >x> G >y> H is
F >x> (G >y> H). When x is not used in G, one may use the short-hand
F >> G for F >x> G.

The sequential combinator generalizes the sequential composition of the tradi-
tional imperative languages for a concurrent world: if F publishes a single value
and does nothing further, then F >> G behaves like an imperative sequential pro-
gram, F followed by G.

Pruning Combinator

In F <x< G, both F and G execute in parallel. Execution of parts of F that do not
depend on x can proceed, but site calls in F for which x is a parameter are suspended

2 In previous publications, F <x< G was written as F where x :∈ G.
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until x has a value. If G publishes a value, then x is assigned that value, G’s execution
is terminated and the suspended parts of F can proceed. This is the only mechanism
in Orc to block or terminate parts of a computation.

In contrast to sequential composition, the following expression calls email at
most once.

email(a, x) <x< ( CNN(d) | BBC(d) )

The pruning combinator is left associative, i.e. F <x< G <y< H is
(F <x< G) <y< H. When x is not used in F , one may use the short-hand
F << G for F <x< G.

The pruning combinator introduces eager concurrent evaluation. Later, we will
see that expressions in the Orc language are often converted to pure Orc calculus
using the pruning combinator; this introduces concurrency, even in the evaluation of
arithmetic expressions, without programmer intervention.

2.3 Algebraic Properties of the Combinators

An operational semantics of Orc based on a labeled transition system appears
in [18]. Employing bisimulation, we have proven the following algebraic proper-
ties of the combinators, some of which resemble laws of Kleene algebra (see [19]
for these proofs). Below, we write “ f is x-free” to mean that x does not occur as a
free variable in f .

(Unit of | ) f | stop = f
(Commutativity of | ) f | g = g | f
(Associativity of | ) ( f | g) | h = f | (g | h)

(Left zero of �) stop >x> f = stop

(Left unit of �) signal� f = f
(Right unit of �) f >x> let(x) = f
(Associativity of �) ( f >x> g) >y> h = f >x> (g >y> h),

if h is x-free
(Distributivity of | over �) ( f | g) >x> h = ( f >x> h | g >x> h)

(Right unit of �) f �stop = f
(Commutativity of | with �) ( f | g) <x< h = ( f <x< h) | g,

if g is x-free
(Commutativity of � with �) ( f >y> g) <x< h = ( f <x< h) >y> g,

if g is x-free
(Commutativity of � with �) (( f <x< g) <y< h) = (( f <y< h) <x< g),

if g is y-free and h is x-free

We can prove, for example, that ( f <x< g) = f | (stop <x< g), if f is x-free.
This follows from unit of | , commutativity of | , and commutativity of | over � .
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2.4 Definitions

An Orc expression may be preceded by a sequence of definitions of the form:

def E(x) = F

This defines a function named E whose formal parameter list is x and body is
expression F . Definitions may be recursive.

A call E(p) executes the body F with the actual parameters p substituted for the
formal parameters x. A function call may publish more than one value; it publishes
every value published by the execution of F . If multiple concurrent calls are made
to a function E, all instances of the body F execute concurrently.

Unlike a site call, a function call does not require all of its arguments to have
values. Suppose E is called when an actual parameter q, corresponding to a formal
parameter y, does not have a value. As in the pruning combinator, the executions of
parts of F that do not depend on y may proceed, and the parts that depend on y will
block until q has a value, which is then substituted for y.

3 The Orc Programming Language

In the preceding section, we introduced a small concurrency calculus, which serves
well as a formal model, but is not a practical language for writing larger programs.
Now we describe a language by introducing constructs familiar from functional pro-
gramming. We show how each construct can be represented in the Orc calculus, so
that every program can be translated directly into an equivalent expression in the
calculus that uses a small set of primitive sites for arithmetic or data structuring op-
erations. We conclude with an example program and its translation into the calculus.
For the details of the full language, see the Orc User Guide [9].

3.1 Functional Aspects of the Language

Values and Operators

The Orc language has three types of constants: numbers (5, -1, 2.71828, · · · ), strings
("orc", "ceci n’est pas une |", · · · ), and booleans (true and false). It pro-
vides typical arithmetic (+ - * / · · · ), logical (&& || · · · ), and comparison (= < > · · · )
operators. They are written infix with Java-like operator precedence. Parentheses
can be used to override this precedence.

(98+2)*17 evaluates to 1700.
4 = 20 / 5 evaluates to true.
"leap" + "frog" evaluates to "leapfrog".
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The arithmetic, logical, and comparison operators translate directly to site calls;
for example, 2+3 translates to add(2,3), where add is simply a site that performs
addition. A value v which occurs as an expression on its own becomes a site call
let(v).

Nested Expressions and Implicit Concurrency

The Orc language allows nested expressions, such as 2+(3+4). However, 2+(3+4)
cannot be translated directly to add(2, add(3,4)) as described above; the Orc
calculus does not allow expressions, such as add(3,4), to appear as arguments.
Instead, we use a fresh variable z as the argument, and then use a pruning combina-
tor to bind the result of add(3,4) to z. Thus the expression 2+(3+4) translates to
add(2,z) <z< add(3,4).

Any expression may be nested in this way, even expressions using concur-
rency combinators. For example, we allow the expression 2 + (3 | 4); it trans-
lates to add(2,z) <z< (3 | 4). Since the pruning combinator <z< binds only the
first value published by 3 | 4 to z, the expression could evaluate to either 5 or
6. Furthermore any depth of nesting is allowed, and unfolded in the same way;
2+(3+(4+5)) becomes add(2,z) <z< add(3,y) <y< add(4,5).

This is the fundamental link between Orc as a concurrency calculus and Orc
as a functional concurrent language. Since we use the pruning combinator in this
translation, all subexpressions are executed concurrently, providing massive implicit
parallelism without any additional work by the programmer. See sections 3.2 and 4.1
for examples.

Conditionals

A conditional expression is of the form if E then F else G. If E evaluates to
true, then F is evaluated. If E evaluates to false, then G is evaluated. If E does
not publish a value, neither F nor G is evaluated.

if true then 4 else 5 evaluates to 4.
if 0 < 5 then 0/5 else 5/0 evaluates to 0.
if 1 < 1/0 then 2 else 3 is silent.

The conditional expression if E then F else G translates to:
( if(b) >> F ′ | not(b) >c> if(c) >> G′ ) <b< E ′

where E ′, F ′ and G′ are translations of E, F and G, respectively.
Recall that if(true) publishes a signal and if(false) is silent. The site not

performs boolean negation.

Variables

We introduce and bind variables using a val declaration, as follows. Below, x and y

are bound to 3 and 6, respectively.
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val x = 1 + 2
val y = x + x

Variables cannot be reassigned. If the same variable is bound again, subsequent
references to that variable will use the new binding, but previous references remain
unchanged. Variable bindings obey the rules of lexical scope.

The declaration val x = G, followed by expression F , translates to:

F ′ <x< G′

where F ′ and G′ are translations of F and G, respectively.
All the rules that apply to the pruning combinator apply to val, and it is permis-

sible to write any Orc expression, even one that publishes multiple values, in a val.
One of the most common Orc programming idioms is to write a val to choose the
first available publication of a concurrent expression:

val url = Google("search term") | Yahoo("search term")

Data Structures

The Orc language supports two types of data structures: tuples, such as (3, 7) or
("tag", true, false), and finite lists, such as [4,4,1] or ["example"] or [].
A tuple or list containing expressions to be evaluated is itself an expression; each of
the expressions is evaluated, and the result is a tuple or list of those results.

[1,2+3] evaluates to [1,5].
(3+4, if true then "yes" else "no") evaluates to (7, "yes").

Tuples and lists can contain any value, including other tuples or lists.
The prepend (cons) operation on lists is written x:xs, where xs is a list and x is

some element to be prepended to that list.

[3,5] >t> 1:t evaluates to [1,3,5].

Data structures are created by site calls. The site let creates tuples directly. The
site nil returns the empty list when called. The site cons implements the cons
operator and is also used to construct list expressions. For example, [1,2] translates
to cons(1,s) <s< cons(2,t) <t< nil().

Patterns

We can bind parts of data structures to variables using patterns. We write _ for the
wildcard pattern.

Patterns may replace variables in the >x> and <x< combinators. If a publication
does not match the pattern of a >x> combinator, the publication is ignored, and no
new instance of the right hand expression is executed. For the <x< combinator, the
publication is ignored, and the right hand expression continues to run.
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(3,4) >(x,y)> x+y publishes 7.
x <(0,x)< ((1,0) | (0,1)) publishes 1.

Since the val declaration is simply a different form of the <x< combinator, pat-
terns may replace variables in val as well:

val (x,y) = (2+3,2*3)

binds x to 5 and y to 6.

val [a,_,c] = "one":["two", "three"]

binds a to "one" and c to "three".

val ((a,b),c) = ((1, true), (2, false))

binds a to 1, b to true, and c to (2,false).

Patterns can be translated into a set of calls to pattern deconstruction sites fol-
lowed by a set of variable bindings to match up each of the pieces with the appro-
priate variable names.

Functions

Functions are defined using the keyword def, and are identical to definitions in
the Orc calculus. Definitions may be recursive, and groups of definitions may be
mutually recursive.
def sumto(n) = if n <= 0 then 0 else n + sumto(n-1)

Functions can be defined as a series of clauses, each of which has a different list
of patterns for its formal parameters. When such a function is called, the function
body used for the call is that of the first clause whose formal parameter patterns
match the actual parameters.
def fib(0) = 0
def fib(1) = 1
def fib(n) = if (n < 0) then 0 else fib(n-1) + fib(n-2)

The function fib may also be written more efficiently, as follows:
def fibpair(0) = (0,1)
def fibpair(n) = fibpair(n-1) >(a,b)> (b,a+b)
def fib(n) = if (n < 0) then 0 else fibpair(n) >(x,_)> x

Defining a function creates a value called a lexical closure; the name of the func-
tion is a variable and its bound value is the closure, which records all of the current
bindings for free variables in the function body.

Since a closure is a value, it can be passed as an argument to another function,
thus allowing us to define higher-order functions. As an example, here is the classic
map function; see additional examples in Sections 4.1.3 and 4.3.3.
def map(f,[]) = []
def map(f,x:xs) = f(x):map(f,xs)
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Note the important distinction between f and f(x); the former is a variable
whose bound value is a function (closure), and the latter is a call to that function.

3.2 Implicit Concurrency: An Example

We show an Orc program that does not use any of the concurrency combinators ex-
plicitly. In fact, the program is entirely functional, with the sole exception of the site
call random(6), which returns a random integer between 0 and 5. Yet, each nested
expression translates into a use of the pruning combinator, making this program
implicitly concurrent without any programmer intervention.

The program runs a series of experiments. Each experiment consists of rolling a
pair of dice. An experiment succeeds if the total shown by the two dice is c. The
function exp(n,c) returns the number of successes in n experiments.
-- return a random number between 1 and 6
def toss() = random(6) + 1

def exp(0,_) = 0
def exp(n,c) = exp(n-1,c) + (if toss()+toss() = c then 1 else 0)

In exp(n,c), the two expressions exp(n-1,c) and if toss()+toss() = ...

may be executed concurrently; both calls to toss may also be executed concurrently.
Therefore, all 2n calls to toss may be executed concurrently. This is clearly seen
in the translation, given below, of this program into the Orc calculus. Here, site
add returns the sum of its arguments, sub(x,y) returns x-y, not(b) returns the
negation of b, and equals returns true iff its two arguments are equal.
def toss() = add(x,1) <x< random(6)

def exp(n,c) =
( if(b) >> let(0)
| not(b) >nb> if(nb) >>

( add(x,y)
<x< ( exp(m,c) <m< sub(n,1) ) )
<y< ( ( if(bb) >> 1 | not(bb) >nbb> if(nbb) >> 0 )

<bb< equals(p,c)
<p< add(q,r)

<q< toss()
<r< toss() )

) <b< equals(n,0)

3.3 Site library

We have implemented a library of useful sites. We introduce a few essential sites
here, and we also note a few properties of sites that were not previously discussed.
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Sites are first-class values

In both the Orc calculus and the Orc programming language, sites are first-class val-
ues; they may be bound to variables, passed as arguments, published, and returned
by site calls. It is very important that sites can be published by other sites, as this
allows the use of “factory” sites, which create new sites such as mutable references
or communication channels.

Sites may have methods

Sites may represent objects with multiple methods, in an object-oriented style. We
access methods on sites using a special form of site call, as in c.put(4), which
accesses the put method of channel c and calls it as a site, with argument 4.

This call form, like every other new syntactic form introduced so far, can be
encoded in the Orc calculus. The site c is sent a special value called a message,
in this case the "put" message. The site responds to that message with another
site which will execute the desired method when called. So c.put(4) translates to
c("put") >x> x(4).

Time

Orc is designed to communicate with the external world, and one of the most im-
portant characteristics of the external world is the passage of time. Orc implicitly
accounts for the passage of time by interacting with external services that may take
time to respond. However, Orc can also explicitly wait for a specific amount of time,
using the special site Rtimer. The call Rtimer(t), where t is an integer, responds
with a signal exactly t milliseconds later3.

We can use Rtimer together with the <x< combinator to enforce a timeout. Con-
tinuing with the example from Section 2.2, we can query BBC for a headline, but
allow a default response if BBC does not respond within 5 seconds.

email(a, x) <x< (BBC(d) | Rtimer(5000) >> "BBC timed out.")

References

Orc does not have mutable variables. Mutable state is provided by sites instead. The
Ref site is used to create new mutable references, which are used in a style similar
to Standard ML’s ref [15].

A call to Ref may include an argument specifying the initial contents of the ref-
erence; if none is given, then the reference’s value is undefined. Given a reference
r, r.write(v) overwrites the current value stored in r, changing it to v, and re-
turns a signal; r.read() publishes the current value stored in r. If r is undefined,
r.read() blocks until a value is written into r.

We write r := v as syntactic sugar for r.write(v), and r? for r.read().

3 An implementation can only approximate this guarantee.
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Arrays

The Array site creates new mutable arrays. Calling Array(n), where n is the size
of the array to be created, returns an array a with indices 0 through n-1, where the
element values are undefined. Elements of array a are accessed by a site call, a(i),
which returns a reference to the ith element. That reference can then be read or
written just like any reference created by Ref. The expression a.length() returns
the length of the array.

Array(3) >a> a(0):= true >> a(1):= false >> a(1)?

publishes false.

Array(3) >a> a(a.length()-1)?

blocks until a(2) has a value.

Semaphores

Unlike other concurrent languages, Orc does not have any built-in locking mecha-
nisms. Instead, it uses the Semaphore site to create semaphores which enable syn-
chronization and mutual exclusion. Semaphore(k) creates a semaphore with the
initial value k (i.e. it may be acquired by up to k parties simultaneously). Given a
semaphore s, s.acquire() attempts to acquire s, reducing its value by one if it is
positive, or blocking if its value is zero. The call s.release() releases s, increas-
ing its value by one. The implementation of Semaphore guarantees strong fairness,
i.e. if the semaphore value is infinitely often nonzero, then every call to acquire

will eventually succeed.
We show below a function that returns an array of n semaphores, each with initial

value 0.

def semArray(n) =
val a = Array(n)
def populate(0) = signal
def populate(i) = a(i-1) := Semaphore(0) >> populate(i-1)
populate(n) >> a

In practice, semaphores and other synchronization sites are only needed when
resolving resource conflicts, i.e. concurrent calls to a site that has mutable state. Orc
programs with implicit concurrency do not require these arbitration mechanisms.

Channels

Orc has no communication primitives like π-calculus channels [13] or Erlang mail-
boxes [1]. Instead, it makes use of sites to create channels of communication.

The most frequently used of these sites is Buffer, which publishes a new asyn-
chronous FIFO channel. That channel is a site with two methods: get and put. The
call c.get() takes the first value from channel c and publishes it, or blocks un-
til a value becomes available. The call c.put(v) puts v as the last item of c and
publishes a signal. A channel is a value, so it can be passed as an argument.
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4 Example Programs

In this section, we present a number of small programs, demonstrating how Orc
combines concurrency and recursion, integrates real time, manipulates mutable
state, and performs complex synchronizations.

4.1 Examples using Concurrency and Recursion

These examples implement some common idioms of concurrent and functional pro-
gramming. Despite the austerity of Orc’s combinators, we are able to encode a va-
riety of idioms concisely.

4.1.1 Fork-Join

One of the most common concurrent idioms is a fork-join: evaluate two expressions
F and G concurrently and wait for a result from both before proceeding. Thanks to
the unfolding of nested expressions described in Section 3.1, this is easily expressed
in Orc using just a tuple:

(F, G)

This expands to:

(x,y) <x< F <y< G

We take advantage of the fact that a tuple is constructed by a site call, which
must wait for all of its arguments to become available. In fact, any operator or site
call may serve to join forked expressions. For example, if F and G each publish a
number and we wish to output their maximum value, we simply write max(F, G),
where max returns the maximum of its arguments. We extend this example below.

Simple Parallel Auction

Orc programs often use fork-join together with recursion to dispatch many tasks in
parallel and wait for all of them to complete. Suppose we have a list of bidders in a
sealed-bid, single-round auction. Calling b.ask() requests a bid from the bidder b.
We want to ask for one bid from each bidder and then publish the highest bid. The
function auction performs this task:

def auction([]) = 0
def auction(b:bs) = max(b.ask(), auction(bs))

Note that all bidders are called simultaneously. Also note that if some bidder
fails to return a bid, then the auction will never complete. Section 4.2.1 presents a
different solution that addresses the issue of non-termination by using timeout.
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4.1.2 Parallel Or

“Parallel or” is a classic idiom of parallel programming. The “parallel or” operation
executes two expressions F and G in parallel, each of which may publish a single
boolean, and returns the disjunction of their publications as soon as possible. If one
of the expressions publishes true, then the disjunction is true, so it is not necessary
to wait for the other expression to publish a value. This holds even if one of the
expressions never publishes a value.

The “parallel or” of expressions F and G may be expressed in Orc as follows:
val result =

val a = F
val b = G
(a || b) | if(a) >> true | if(b) >> true

result

The expression (a || b) waits for both a and b to become available and then
publishes their disjunction. However, if either a or b is true we must publish true

immediately, regardless of whether the other variable has a value. Therefore we
run if(a) >> true and if(b) >> true in parallel. Since more than one of these
expressions may publish true, we bind only the first result to result. The value of
the whole expression is simply the value bound to result.

Note that F and G are evaluated within the binding of result, so that when
result becomes bound, F and G are terminated. If val a = F and val b = G
were written above val result = ..., their executions would continue.

4.1.3 Fold

We consider various concurrent implementations of the classic “list fold” function,
defined by fold(f, [x1, ... , xn]) = f(x1, f(x2, ... f(xn−1, xn) ... ).
Here is a simple functional implementation:
def fold(_, [x]) = x
def fold(f, x:xs) = f(x, fold(f, xs))

This is a seedless fold (sometimes called fold1) which requires that the list
be nonempty, and uses its first element as the seed. This implementation is short-
circuiting — it may finish early if the reduction operator f does not use its sec-
ond argument — but it is not concurrent; no two calls to f can proceed in parallel.
However, if f is associative, we can overcome this restriction and implement fold
concurrently. If f is also commutative, we can further increase concurrency.

Associative Fold

We define afold(f,xs) where f is an associative binary function and xs is a non-
empty list. The implementation iteratively reduces xs to a single value. Each iter-
ation applies the auxiliary function step, which reduces adjacent pairs of items to
single values.
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def afold(f, [x]) = x
def afold(f, xs) =

def step([]) = []
def step([x]) = [x]
def step(x:y:xs) = f(x,y):step(xs)
afold(f, step(xs))

Notice that f(x,y):step(xs) is an implicit fork-join, as described in Sec-
tion 4.1.1. Thus, the call f(x,y) executes concurrently with the recursive call
step(xs). As a result, all calls to f execute concurrently within each iteration of
afold.

Associative, Commutative Fold

We can make the implementation even more concurrent when the fold operator is
both associative and commutative. We define cfold(f,xs), where f is an associa-
tive and commutative binary function and xs is a non-empty list. The implementa-
tion initially copies all list items into a buffer in arbitrary order using the auxiliary
function xfer, counting the total number of items copied. The auxiliary function
combine repeatedly pulls pairs of items from the buffer, reduces them, and places
the result back in the buffer. Each pair of items is reduced in parallel as they become
available. The last item in the buffer is the result of the overall fold.

def cfold(f, xs) =
val c = Buffer()

def xfer([]) = 0
def xfer(x:xs) = c.put(x) >> stop | xfer(xs)+1

def combine(0) = stop
def combine(1) = c.get()
def combine(m) = c.get() >x> c.get() >y>

( c.put(f(x,y)) >> stop | combine(m-1))

xfer(xs) >n> combine(n)

4.2 Examples using Time

These examples demonstrate how Orc programs can integrate real time to detect
time outs, and execute expressions at regular time intervals, using the site Rtimer

described in Section 3.3.

4.2.1 Timeout

Timeout, the ability to execute an expression for at most a specified amount of time,
is an essential ingredient of fault-tolerant and distributed programming. Orc accom-
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plishes timeout using pruning and the Rtimer site, as we saw in Section 3.3; we
further develop that technique in these examples.

Auction with Timeout

The auction example in Section 4.1.1 may never finish if one of the bidders does not
respond. We add a timeout so that each bidder has at most 8 seconds to respond:

def auction([]) = 0
def auction(b:bs) = max(b.ask() | Rtimer(8000) >> 0, auction(bs))

This version of the auction is guaranteed to complete within 8 seconds4.

Priority

We can use Rimer to give a window of priority to one computation over another. In
this example, we run expressions F and G concurrently, each of which may publish a
single result. For a time interval of one second, F has priority; F’s result is published
immediately if it is produced within one second; otherwise, the first value from F
or G is published after the time interval.

val result =
val a = F
val b = G
a | Rtimer(1000) >> b

result

Detecting Timeout

Sometimes, rather than just yielding a default value, we would like to determine
whether an expression has timed out, and if so, perform some other computation. To
detect the timeout, we pair the result of the original expression with true and the
result of the timer with false. Thus, if the expression does time out, then we can
distinguish that case using the boolean value.

Here, we run expression F with a time limit t. If it publishes within the time limit,
we bind its result to r and execute G. Otherwise, we execute H.

val (r, b) = (F, true) | (Rtimer(t), false)
if b then G else H

4.2.2 Metronome

A timer can be used to execute an expression repeatedly at regular intervals. We
define a function metronome(t), which publishes a signal every t time units.

def metronome(t) = signal | Rtimer(t) >> metronome(t)

4 An implementation can only approximate this guarantee.
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The following example publishes “tick” once per second, and “tock” once per
second after a half-second delay. The publications alternate: “tick tock tick tock
. . . ”. Note that this code is not recursive; the recursion is entirely contained within
metronome.

metronome(1000) >> ("tick" | Rtimer(500) >> "tock")

4.3 Examples using Mutable State

These examples show how Orc can manipulate mutable state, such as the refer-
ence cells and arrays described in Section 3.3. Recall that x? is syntactic sugar for
x.read(), and x := y for x.write(y). Also recall that the expression a(i) re-
turns a reference to the element of array a at index i; array indices start from 0.

4.3.1 Simple Swap

The following function takes two references as arguments, exchanges their values,
and returns a signal.

def swap(a, b) = (a?, b?) >(x,y)> (a := y, b := x) >> signal

4.3.2 Array Permutation

The following function randomly permutes the elements of an array in place. It uses
the helper function randomize, which for each index i in the array, generates a
random number j between 0 and (i-1) inclusive, and swaps a(i-1) with a(j).

def permute(a) =
def randomize(0) = signal
def randomize(i) = random(i) >j>

swap(a(i-1),a(j)) >>
randomize(i-1)

randomize(a.length())

Since random returns values from a uniform distribution, each possible permuta-
tion of the array is equally likely. This algorithm originally appears in [3, 10].

The technique we use here —traversing an array recursively and calling swap to
exchange its elements— is crucial for our Quicksort implementation.

4.3.3 Applicative Map

The map function, shown in Section 3.1, applies a function to each element in a
list and returns a new list populated with the results; it is a common idiom in pure
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functional programming. When manipulating mutable arrays, it is often helpful to
perform a map operation in place: apply the function to each element of the array
overwriting the previous contents. The function inplacemap(f,a), defined below,
applies the function f to the array a in this way. The helper function mapstep(i)

applies f to each element of a with index less than i.

def inplacemap(f,a) =
def mapstep(0) = signal
def mapstep(i) =

val rest = mapstep(i-1)
a(i-1) := f(a(i-1)?) >> rest

mapstep(a.length())

A call to mapstep(i) applies the function f to element a(i-1), and concurrently
maps the remainder of the array by calling mapstep(i-1). When mapstep(i-1)

completes, rest is bound to a signal, and then mapstep(i) returns.
The following expression increments the value of each element of a by 1:

def inc(x) = x+1
inplacemap(inc,a)

4.4 Examples using Synchronization and Communication

Synchronization and communication are fundamental to concurrent computing. We
implement some examples of synchronization –the rendezvous mechanism [6, 12]
and a solution to the readers-writers problem [2]– and show how communicating
processes [6] may be programmed in Orc.

4.4.1 Rendezvous

The concept of rendezvous between two parties was first introduced by Hoare and
Milner as a form of process synchronization. Orc does not include rendezvous as a
primitive concept, but we can program it using semaphores. First, we show a two-
party rendezvous, and then generalize it to (n+1)-party rendezvous, for n≥ 1.

A rendezvous occurs between a sender and a receiver when both of them are
waiting to perform their respective operations. They each wait until they complete
the rendezvous, and then they can proceed with their computations. A rendezvous
involves synchronization and data transfer. In the solution below, first we show only
the synchronization, and later data transfer. Potentially many senders and receivers
may simultaneously wait to rendezvous, but each can rendezvous with exactly one
other party.

Senders and receivers call the functions send and receive, respectively, when
they are ready to rendezvous. The solution employs two semaphores, up and down,
which are acquired and released in a symmetric manner. (The roles of sender and
receiver are symmetric; so the two function bodies may be exchanged.) It can be



Quicksort: Combining Concurrency, Recursion, and Mutable Data Structures 19

shown that this solution synchronizes a pair of sender and receiver, each of them
receives a signal following a synchronization, and that it leaves the semaphores
in their original states (with value 0) following the synchronization. We expect
each semaphore to be binary-valued, yet this is not a requirement. For general
semaphores, there is still pairwise synchronization, though it cannot be ascertained
which sender has synchronized with which receiver.

val up = Semaphore(0)
val down = Semaphore(0)
def send() = up.release() >> down.acquire()
def recv() = up.acquire() >> down.release()

In order for the sender to send data value v, replace semaphore up by buffer b,
and modify the programs:

def send(v) = b.put(v) >> down.acquire()
def receive() = b.get() >x> down.release() >> x

The given solution can be generalized to the case where the senders and receivers
belong to specific groups, and a rendezvous occurs only between members of a
group. In that case, each group uses its own pair of semaphores and corresponding
definitions.

(n+1)-party Rendezvous

We generalize the rendezvous algorithm given above to synchronize n + 1 parties
(processes), n ≥ 1, using 2n semaphores. We create two arrays of semaphores, up
and down, using the semArray function defined in Section 3.3. The algorithm is
reminiscent of 2-phase commit protocol in databases. Each of the n+1 parties calls
a function when it is ready to synchronize, like the sender and the receiver above.
The process with index n is designated the coordinator, and it calls function coord;
all others call ready. Function call ready(i), where 0 ≤ i < n, first releases
semaphore up(i) and then waits to acquire down(i). Function coord first acquires
all the up semaphores and then releases all the down semaphores. The 2-party ren-
dezvous is a special case where the receiver played the role of the coordinator.

val up = semArray(n)
val down = semArray(n)
def ready(i) = up(i).release >> down(i).acquire
def coord() =

def Acq(0) = signal
def Acq(k) = up(k-1).acquire >> Acq(k-1)
def Rel(0) = signal
def Rel(k) = (down(k-1).release,Rel(k-1)) >> signal
Acq(n) >> Rel(n)
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4.4.2 Readers-Writers Synchronization

We present a solution to the classical Readers-Writers synchronization problem [2].
Processes, called readers and writers, share a resource such that concurrent reading
is permitted but a writer needs exclusive access. We present a starvation-free solu-
tion consisting of three functions: start, end, and manager. Readers and writers
call start, a blocking operation, to request access; readers call start(true) and
writers call start(false). Function start publishes a signal when the resource
can be granted. Readers and writers call end() to release the resource. Function
manager runs concurrently with the rest of the program to grant the requests.

A call to start(b) adds a request to channel q. Function manager reads from
q, decides when the request can be granted, and then calls back the requester. We
employ semaphores for callback. Specifically,

val q = Buffer()
def start(b) = Semaphore(0) >s> q.put((b,s)) >> s.acquire()

Function manager releases s when it can grant the request. Since s has initial
value 0, s.acquire() blocks until the request is granted.

To count the number of active readers and writers, we employ a counter c, a mu-
table object on which three methods are defined: (1) c.inc() adds 1 to the counter
value, (2) c.dec() subtracts 1 from the counter value, and (3) c.onZero() sends
a signal only when the counter value is zero. The first two are non-blocking opera-
tions, and the last one is blocking. Though onZero() sends a signal only when the
counter value is zero, the value may be non-zero by the time the recipient receives
the signal. There is a weak fairness guarantee: if the counter value remains 0 contin-
uously, a signal is sent to some caller of onZero(). The counter is initially 0. The
site call Counter() creates and returns a new counter.

The code for end merely decrements the counter:

val c = Counter()
def end() = c.dec()

The manager is an eternal loop structured as follows:

def manager() =
q.get() >(b,s)> if b then read(s) else write(s) >> manager()

The invariants in each iteration of manager are that (1) there are no current writ-
ers, and (2) the counter value is the number of current readers. We use these invari-
ants in the implementations of read and write.

A reader can always be granted permission to execute, from invariant (1). To
satisfy invariant (2), the counter value must be incremented.

def read(s) = c.inc() >> s.release()

A writer can be granted permission only if there are no active readers. To sat-
isfy invariant (1), the execution of write terminates only when there are no active
writers.

def write(s) = c.onZero() >> c.inc() >> s.release() >> c.onZero()
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We start execution of an instance of manager by writing:

val _ = manager()

The Readers-Writers program in its entirety is shown below.

val q = Buffer()
def start(b) = Semaphore(0) >s> q.put((b,s)) >> s.acquire()
val c = Counter()
def end() = c.dec()
def manager() =

q.get() >(b,s)> if b then read(s) else write(s) >> manager()
def read(s) = c.inc() >> s.release()
def write(s) = c.onZero() >> c.inc() >> s.release() >> c.onZero()
val _ = manager()

4.4.3 Process Network

Process networks [6] and actors [4, 1] are popular models for concurrent program-
ming. Their popularity derives from the structure they impose on a concurrent com-
putation. Different aspects of the computation are partitioned among different pro-
cesses (actors), and the processes communicate through messages over channels.
This simple programming model allows a programmer to focus attention on one
aspect of a problem at a time, corresponding to a process. Additionally, interfer-
ence and race conditions among processes, the bane of concurrent programming,
are largely eliminated by restricting communication to occur through messages.

We show how this programming model can be incorporated within Orc. Chan-
nels are created by calls to Buffer. Processes are represented as Orc definitions,
which share these channels. The entire process network is the parallel composi-
tion of these processes. Below, we restrict ourselves to FIFO channels though other
communication protocols can be defined in Orc.

As an example, consider a transformer process P that reads inputs one at a time
from channel in, transforms each input to a single output by calling function (or
site) transform, writes the result on channel out, and repeats these steps forever.

def P(c,d) = c.get() >x> transform(x) >y> d.put(y) >> P(c,d)
P(in,out)

Next, we build a small network of such processes. The network has two pro-
cesses, and both read from in and write to out.

P(in,out) | P(in,out)

Here, the two processes may operate at arbitrary speeds in removing items from
in and writing to out. Therefore, the order of items in the input channel is not
necessarily preserved with the corresponding outputs in out.
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Probabilistic Load Balancing

Consider adding a balancer process that reads from in and randomly assigns the
input to one of the processes for transformation, as a form of load balancing. Again,
the processes write their results to out, and they may not preserve the input order.
We define two internal channels in’ and in’’ which link balancer to the trans-
former processes.

def balancer(c,c’,c’’) =
c.get() >x>
(if random(2) = 0 then c’.put(x) else c’’.put(x)) >>
balancer(c,c’,c’’)

val (in’, in’’) = (Buffer(), Buffer())

balancer(in,in’,in’’)
| P(in’,out) | P(in’’,out)

Deterministic Load Balancing

Now consider a load balancing network in which the order of inputs is preserved
in the output. We replace the balancer process with a distributor process that sends
alternate input items along in’ and in’’. The transformer processes write their
outputs to two internal channels out’ and out’’. And, we add a collector process
that copies the values from out’ and out’’ alternately to out.

def distributor(c,c’,c’’) =
c.get() >x> c’.put(x) >>
c.get() >y> c’’.put(y) >>
distributor(c,c’,c’’)

def collector(d’,d’’,d) =
d’.get() >x> d.put(x) >>
d’’.get() >y> d.put(y) >>
collector(d’,d’’,d)

val (in’,in’’) = (Buffer(), Buffer())
val (out’,out’’) = (Buffer(), Buffer())

distributor(in,in’,in’’)
| P(in’,out’) | P(in’’,out’’)
| collector(out’,out’’,out)

We have shown some very simple networks here; in particular, the networks are
acyclic and a-priori bounded in size. See [16] for networks in which arbitrarily many
processes are dynamically initiated, interrupted, resumed or terminated. The net-
works may be structured in a hierarchy where a process itself may be a network
to any arbitrary depth, and connections among network components are established
statically by naming explicit channels as shown, or dynamically by sending a chan-
nel name as a data item.
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5 Quicksort in Orc

The Quicksort algorithm focuses on three core ideas in computing: recursion, mu-
table store, and concurrency. We present an implementation of Quicksort in Orc, in
which we show how Orc expresses all three of these ideas. The program is recursive
and largely functional in its structure. It uses fork-join when partitioning the array
and sorting subarrays, making both the partitioning process and the recursive sub-
sorts implicitly parallel throughout. Furthermore, it manipulates the array elements
in place, avoiding the overhead of maintaining extra copies.

We define a quicksort function, which takes as its only argument an array a,
and sorts that array in place. When the sort is complete, it returns a signal.

def quicksort(a) = ...

Within the body of quicksort, we define an auxiliary function part(p,s,t)

that partitions the subarray of a defined by indices s through t into two partitions,
one containing values≤ p and the other containing values > p. One of the partitions
may be empty. The call part(p,s,t) returns an index m such that a(i) ≤ p for all
s ≤ i ≤ m, and a(j) > p for all m < j ≤ t.

def part(p, s, t) = ...

To create the partitions, part calls two auxiliary functions lr and rl. These
functions scan the subarray from the left and right respectively, looking for the first
out-of-place element. Function lr returns the index of the leftmost item that exceeds
p, or simply t if there is none. Function rl returns the index of the rightmost item
that is less than or equal to p, or simply s-1 if there is none (the value at a(s-1) is
assumed to be ≤ p).

def lr(i) = if i < t && a(i)? <= p then lr(i+1) else i
def rl(i) = if a(i)? > p then rl(i-1) else i

Observe that lr and rl may safely be executed concurrently, since they do not
modify the array elements.

Once two out-of-place elements have been found, they are swapped using the
function swap defined in Section 4.3.1, and then the unscanned portion of the subar-
ray is partitioned further. Partitioning is complete when the entire subarray has been
scanned. Here is the body of the part function:

(lr(s), rl(t)) >(s’, t’)>
( if(s’ + 1 < t’) >> swap(a(s’), a(t’)) >> part(p, s’+1, t’-1)
| if(s’ + 1 = t’) >> swap(a(s’), a(t’)) >> s’
| if(s’ + 1 > t’) >> t’
)

Observe that in the body of part, we use three parallel calls to the if site, with
mutually exclusive conditions, each followed by >> and another expression. This
is a representation of Dijkstra’s guarded commands in Orc, using if to represent
a guard, followed by >> and a consequent. Also observe that the second guarded
command can be eliminated by replacing the first guard by s’ + 1 <= t’; this
incurs a slight performance penalty.
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The main sorting function sort(s,t) sorts the subarray given by indices s

through t by calling part to partition the subarray and then recursively sorting
the partitions concurrently. It publishes a signal on completion.

def sort(s, t) =
if s >= t then signal
else part(a(s)?, s+1, t) >m>

swap(a(m), a(s)) >>
(sort(s, m-1), sort(m+1, t)) >>
signal

The body of quicksort is just a call to sort, selecting the whole array:

sort(0, a.length()-1)

Here is the quicksort program in its entirety.

def quicksort(a) =

def part(p, s, t) =
def lr(i) = if i < t && a(i)? <= p then lr(i+1) else i
def rl(i) = if a(i)? > p then rl(i-1) else i

(lr(s), rl(t)) >(s’, t’)>
( if (s’ + 1 < t’) >> swap(a(s’),a(t’)) >> part(p,s’+1,t’-1)
| if (s’ + 1 = t’) >> swap(a(s’),a(t’)) >> s’
| if (s’ + 1 > t’) >> t’
)

def sort(s, t) =
if s >= t then signal
else part(a(s)?, s+1, t) >m>

swap(a(m), a(s)) >>
(sort(s, m-1), sort(m+1, t)) >>
signal

sort(0, a.length()-1)

6 Why Orc?

Much like other process algebras, the Orc calculus was designed to study the ap-
propriateness of certain combinators for concurrent computing. Unlike most other
process algebras, the calculus relies on external sites to deal with non-concurrency
issues. Many of the lower-level problems, such as management of locks and shared
state, are delegated to sites in Orc. The Orc language was designed to provide a min-
imal base to experiment with the Orc combinators. Therefore, the language includes
only the basic data types and structuring mechanisms. A site library provides addi-
tional capabilities for creating references, arrays, and channels, for example. Such a
combination has proved fruitful, as we have demonstrated in programming a classic
example, Quicksort.
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We hope that designers of future languages will adopt the fundamental princi-
ple we have espoused in the design of Orc: seamless integration of concurrency,
structure and interaction with the external world.
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