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Abstract

Secure information flow attempts to verify that programs do not leak information to unau-
thorized third parties. Previous approaches to secure information flow have considered classical
sequential languages and concurrent languages based on channels. In this work, we demon-
strate how techniques from secure information flow can be used to verify security properties of
structured concurrent workflows expressed in the Orc calculus. Unlike channel-based concur-
rent languages, Orc imposes structure on the flow of information between processes, enabling
more straightforward analysis of some programs. Orc also relies heavily on non-termination to
manage control flow, requiring a more sophisticated analysis of termination properties.

1 Introduction

It is a given that some computer programs need to process sensitive and confidential data. How
can we ensure that such programs are trustworthy? The most straightforward approach, to totally
isolate these programs from their environment, is not practical; today’s applications are made of
diverse, often distributed, components which process different levels of sensitive information. Totally
isolating any one of these components from the others is impossible. Therefore it is important to be
able to verify that each component shares information securely, only with parties who are authorized
to access it. The approach discussed in this paper, known as secure information flow and popularized
by Denning and Denning [3], attempts to prove that the flow of information in a program is secure
by proving that high-security information never becomes visible on low-security outputs.

Information flow security is applicable not just to computer programs, but to any process which
deals with sensitive information and can be modeled formally. This paper focuses specifically on
the application of information flow security to workflows. Workflows are business processes which
describe the flow of information and delegation of work within an organization. There can be
significant legal and financial penalties if a business process leaks sensitive information. For example,
a company which leaks trade secrets exposes itself to unwanted competition, and a company which
leaks customer information may have to deal with angry customers.

When workflows are carried out manually, it is necessary to rely on the honesty of the individ-
uals involved to obey organizational policies regarding the appropriate use and sharing of sensitive
information. This is practical for workflows on a small scale, where there are legal mechanisms
such as contracts designed to protect information. However workflows are increasingly becoming
automated, in part or in full. The automated portions of these workflows may be too complex or
process too much information for humans to take responsibility for their correct operation on a daily
basis, and it is unclear who is legally responsible if an automated process malfunctions. Therefore it
is important to verify that automated workflows obey organizational policies regarding the sharing
of sensitive information.

We propose using the Orc concurrency calculus as a language for encoding workflows. By verify-
ing the information flow security of an Orc program, we indirectly verify the security of the workflow
it describes. The remainder of the paper is organized as follows. In Section 2, we describe the Orc
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variable name x

callable name M

Orc program := {D, · · ·} E

function declaration D := def M(x, · · ·) = E

Orc expression E :=

site call M(x, · · ·)

parallel | E | E

sequential | E >x> E

pruning | E <x< E

otherwise | E ; E

Table 1: Orc calculus syntax

calculus and argue that it has advantages over other concurrency calculi for describing and analyzing
workflows. In Section 3, we describe informally what it means for an Orc program to be secure.
In Section 4, we sketch a type system for verifying the security of Orc programs. In Section 5, we
discuss related work, and conclude with a summary of our contributions in Section 6.

2 Orc calculus

The Orc concurrency calculus, originally conceived as a language for distributed and concurrent
computing [10], is capable of straightforwardly describing common workflow patterns [2].

The primary advantage of Orc over typical workflow description languages such as BPML [4] is
that Orc has a simple formal semantics [7]. This is possible because the Orc language only has a
few primitive concepts which can be combined to model arbitrary complex behaviors.

Orc’s primary advantage over other concurrency calculi such as CSP [5] or the π calculus [9]
is that the lexical structure of an Orc program constrains the concurrency and communication
structure of its execution. As long as a program uses only the Orc combinators for communication,
it is trivial to prove properties such as freedom from deadlock. Orc programs can also invoke external
services, called sites, which provide arbitrary computation and communication services. Because Orc
makes few assumptions about the behavior of sites, they can be used to model essential features like
channels, mutable memory, and network communication, as well as less common features like web
service invocation and interaction with human agents. By distinguishing structured concurrency
primitives (combinators) from unstructured external services (sites), Orc is easy to analyze in the
common case, but flexible enough to encode arbitrary workflows, without having to shoehorn all
communication into a single primitive such as channels.

In the remainder of this section, we give a brief summary of the version of the Orc calculus used
in this paper. For a more complete description of the calculus, see Kitchin et al [8].

The syntax of the Orc calculus is given in Table 1. We use an ellipsis (· · ·) to indicate that zero
or more of the immediately preceding form is allowed by the syntax. An Orc program consists of
one or more function declarations followed by a goal expression.

The semantics of the Orc calculus is based on the execution of expressions. When executed, an
expression may invoke sites and publish zero or more values. When an execution is complete, we say
that it has halted.
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2.1 Site calls

The simplest Orc expression is a site call of the form M(x, · · ·). Site calls model the invocation of
external services, called sites. Orc assumes nothing about the internal behavior of sites: they may
be stateful or functional, isolated or communicating, local or remote, reliable or unreliable. When
executed, a site call sends the values of its arguments to the site and waits for a single response. If
the site responds with a value, the site call publishes that value. If the site responds that it has no
value to return, the site call halts without publishing a value. If the site fails to respond, the site
call waits forever and does not halt.

Though the Orc calculus itself defines no sites, there are a few fundamental sites which are so
essential to writing useful computations that we always assume they are available. The site let is
the identity site; the call let(x) responds with the value of x. The site if is used for conditional
control flow; the call if(x) responds with a signal (a value which carries no information) if x has
the value True, and otherwise halts. The site Rtimer is used to model the passage of time; the call
Rtimer(x) responds with a signal after x milliseconds have elapsed.

2.2 Combinators

The Orc calculus uses four primitive combinators to structure concurrency and communication
within an expression. Combinators compose two Orc expressions to form a larger combined expres-
sion. In general, the execution of a combined expression halts when the executions of its subexpres-
sions have halted.

Parallel The parallel combinator models simple parallelism without communication. A parallel
expression has the form E | F . When executed, this expression executes both E and F in parallel
and publishes the union of their publications.

Sequential The sequential combinator models sequencing and pipeline communication. A sequen-
tial expression has the form E >x> F . When executed, this expression first executes E. For each
publication of E, F is executed with the variable x bound to the value of the publication. The
sequential expression publishes the union of the values published by executions of F . When x is not
used in F , this form may be abbreviated E >> F .

Pruning The pruning combinator models one-way data-flow communication and forced termi-
nation. A pruning expression has the form F <x< E. When executed, this expression begins by
executing both F and E in parallel. E will provide a value for the data-flow variable x which is
bound in F . If any site call in F attempts to read the value of x before it is available, execution
of that site call is suspended until the value becomes available. As soon as E publishes a value,
that value is assigned to x and execution of E is immediately terminated. The pruning expression
publishes the values published by F . When x is not used in F , this form may be abbreviated
F << E.

Otherwise The otherwise combinator models termination detection and error recovery. An oth-
erwise expression has the form E ; F . When executed, this expression first executes E, publishing
the values published by E. If E halts without publishing any value, then F is executed, and the
otherwise expression publishes the values published by F .

2.3 Function definitions

The Orc calculus includes functions, which provide abstraction and recursion. A function declaration
of the form def M(x, · · ·) = E introduces a function with the name M , formal parameters x, · · ·, and

3



body E. Function names are scoped over the entire Orc program, so functions can call themselves
or other functions recursively.

Functions are called using the site call syntax M(x, · · ·), where M is a function name and x, · · ·
are the arguments to the call. When a function is called, its body is executed with the formal
parameters given in the definition replaced by the arguments to the call. The function call publishes
the values published by the body of the function. This call-by-name strategy means that function
calls, unlike site calls, can begin executing before the values of their arguments are available.

In this presentation of the Orc calculus, function names are syntactically distinguished from
variable names, so functions cannot be used as first-class values and higher-order functions cannot
be defined. This limitation is not fundamental (Kitchin et al [8] describe an implementation of Orc
which includes first-class functions), but it simplifies analysis.

3 Orc information flow security

In this section, we explore what it means informally for an Orc program to be secure. In the broadest
terms, a secure Orc program should only share information with parties who have been authorized
to access it.

3.1 Channels

In the security literature, any mechanism which allows the transmission of information is called a
channel. Channels can be either direct, when they are designed to convey information, or covert,
when the transmission of information is not their intended purpose.

Direct channels Examples of direct channels include shared memory, the file system, inter-process
communication, and network sockets. In Orc, all direct channels are modeled by sites. This is
in contrast to languages which model direct channels as mutable memory locations, such as the
sequential language analyzed by Denning and Denning [3]. While the two approaches are formally
equivalent (a site call can be modeled by writing to one memory location followed by reading from
another), modeling site calls directly has some advantages. When we pass information to a specific
site, the identity of the site may tell us something about how that information will be used. This
knowledge can be used to improve our security analysis. When we write to a memory location, we
don’t know exactly how the information at that location may be used, so our security analysis has
to be more conservative. The distinction will become clearer when we discuss the security properties
of sites in the next section.

Covert channels Examples of covert channels include program control flow, non-termination,
timing, scheduler behavior, cache behavior, and resource consumption. Since our goal is to analyze
workflows described in Orc, independent of any particular implementation, we will not consider
implementation-specific channels such as cache behavior. This leaves program control flow, non-
termination, and timing as the primary covert channels we are concerned with. As we shall see,
the most important property of these covert channels is that they mask the source of information,
but they still need a direct channel to transmit it. Therefore, in order to verify the security of a
program, it is only necessary to check that direct channels are used appropriately.

Control flow In Orc, program control flow and non-termination are intimately related. Orc does
not have explicit control flow statements such as if . . . then . . .else. Instead, conditional branching
is modeled by executing both branches in parallel and expecting the untaken branch to halt before
performing useful work. For example, the following program calls the site M, prints "True" if M()

responds True, and prints "False" otherwise:
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M() >ok >

not(ok) >nok >

(

if(ok) >> print("True")

| if(nok) >> print("False")

)

In this program, both branches of the conditional begin executing, but only one of the calls to
if will return, so only one call to print will execute. This example also illustrates how control flow
can be used as a covert channel for transmitting information. Although the program never directly
transmits the value of M() to the print site, it is clear that the print site can infer the value of
M(). If M() returns sensitive information and the output of print is publicly accessible, then this
program is insecure.

The if site introduces a covert channel because it encodes information about its arguments
in the number of values it publishes (zero or one). In general, any expression which may fail
to publish can use this fact to leak information. In this respect, expressions which halt without
publishing and expressions which neither publish nor halt are equivalent. Any security analysis which
aims to identify these covert channels must account for the general (non-)termination properties of
expressions.

Timing In concurrent programs, the timing behavior of processes can be used to transmit infor-
mation. Consider the following program (the site write updates the value of a memory cell which
is read by read):

write(false) >>

(

Rtimer(n) >> write(true)

| Rtimer (100) >> read() >x> M(x)

)

This program tells the site M whether the value of some variable n is less than 100. If n < 100,
then the value read from the memory cell and sent to M will be True, otherwise it will be False. If n
is sensitive information and M is an insecure site, then this program is insecure.

Zdancewic and Myers [15] propose a distinction between internal and external timing channels.
Internal timing channels use data races to transmit information between different threads in a single
program. External timing channels require that some third party be able to monitor the execution
time of processes or the program as a whole without any explicit action by the program. In our
analysis, we consider only internal timing channels.

3.2 Site security properties

Since all communication between Orc and its environment is mediated by sites, understanding
how sites use information is critical to proving the security of Orc programs. Sites can both send
information to and receive information from third parties. These third parties may be other sites
being used by an Orc program or external entities. Since we wish to restrict the flow of information
in a program, the most relevant properties of a site are what information it shares and who it shares
that information with.

An Orc program can send the following information to third parties via a site call:

• When/whether the site was called

• The value of each argument
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A site call is secure only if it satisfies pre-conditions related to the third parties with whom the
site communicates. For example, if a site is called under certain conditions depending on sensitive
information, it cannot share the fact that it was called with third parties not authorized to access
that information. There is one further pre-condition connected to the availability of the arguments
to the site call. Recall that a site call cannot proceed unless all its arguments are available. Therefore
any party who knows that a site was called can infer that all the arguments to the call were available.
If the availability of any of the arguments depends on sensitive information, then the site cannot
share the fact that it was called with third parties not authorized to access that information. Beyond
this, there is no further information which an Orc program can share through a site call.

An Orc program can receive the following information from third parties via a site call:

• When/whether the site returned

• The value returned

A site call is secure only if the Orc program satisfies post-conditions on how it uses the information
returned by the call. For example, if a site returns under certain conditions depending on sensitive
information, the Orc program cannot share the fact that the site returned with third parties not
authorized to access that information. Because Orc can only share information through site calls,
this means that the post-conditions of a site call must satisfy the pre-conditions of the site calls
which depend on it.

In the next section, we will see how these pre- and post-conditions can be formally described and
checked using security types.

4 Secure type system for Orc

In the previous section we discussed criteria which should be used to decide whether workflows
expressed as Orc programs are secure. Now we address the question of how these criteria may be
implemented. Broadly, there are two main approaches to ensuring that security policies are followed:
dynamic enforcement, and static verification.

Dynamic enforcement means that whenever a program attempts to communicate information
to a third party, the runtime must first check that this communication is authorized based on the
information and third party involved. The HiStar operating system [16] exemplifies this approach.
The main advantage of dynamic enforcement is that little or no support from programming languages
is necessary, as long as all communication goes through a secure kernel. The main disadvantage of
dynamic enforcement, from the point of view of workflow security, is that once a workflow has
started running, it is too late to find out whether it is secure or not. Unlike typical concurrent
programs, workflows run on a human timescale and may take months to complete. Workflows may
also coordinate activities between multiple distributed parties. If a workflow encounters a security
error long after it has been started, it may not be possible to checkpoint the workflow’s state, repair
it, and restart it.

Therefore we believe that static verification is a better approach for ensuring workflow security.
In the remainder of this section, we sketch a type system for statically verifying the information
flow security properties of workflows expressed in the Orc calculus. We argue informally that this
type system encodes the relevant security properties. A formal proof of subject reduction and
non-interference of well-typed programs remains a topic for future work.

4.1 Security labels

In the tradition of Denning and Denning [3], we assume that every piece of information (runtime
value) has an associated security label which signifies the minimum clearance necessary to access it.
Security labels form a lattice, meaning that there is a partial order ⊑ over labels and any two labels
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security label L

variable name x

callable type T := (x[L] ⇐ x[L], · · ·)[L] → ∃x[L], · · · .{E ⇐ E, · · ·}

expression template E := True | False | signal | E ∨ E | E ∧ E | ¬E | x

callable name M

callable type assertion := M : T

Orc expression O

function declaration := def M(x, · · ·) : T = O

secure type judgement := Γ, L ⊢ O : {F ⇐ F, · · ·}

variable context Γ := 〈x 7→ (F ⇐ F ), · · ·〉

expression type F := True | False | signal | F ∨ F | F ∧ F | ¬F | x[L]

Table 2: Secure type syntax

L1 and L2 have a least upper bound (or join) L1 ⊔ L2. We will assume a minimal security label
⊥, which labels unrestricted information, and a maximal security label ⊤, which labels the most
restricted information.

Security labels may be viewed as sets of principals (persons or entities who may try to access
sensitive information), where L = {p, . . .} means that each principle p is not allowed to access
information labeled by L. In this view, the partial order ⊑ is implemented by ⊆, and the join
operation ⊔ is implemented by ∪. The minimal label ⊥ = ∅, and the maximal label ⊤ = D where
D is the domain of principals.

4.2 Secure type syntax

The syntax used by the secure type system is given in Table 2. We use an ellipsis (· · ·) to indicate
that zero or more of the immediately preceding form is allowed by the syntax.

4.2.1 Callable types

Callable types T are used to describe both functions and sites, since the possible behaviors of sites
form a subset of the possible behaviors of functions.

Argument list The first part of the callable type is the argument list: (xv[Lv] ⇐ xp[Lp], · · ·). Each
item xv[Lv] ⇐ xp[Lp], read “xv (labeled Lv) when xp (labeled Lp)”, represents a single argument
to the callable, where xv binds to the value of that argument and xp binds to the conditions under
which that argument is available. The label Lv places an upper bound on the security label of the
corresponding argument’s value; the callable asserts that it will not share the value of the argument
with any entity having security clearance ⊏ Lv. Similarly, the label Lp places an upper bound on
the security label of the corresponding argument’s publication conditions; the callable asserts that
it will not share the availability of the argument with any entity having security clearance ⊏ Lp. It
is always the case that Lp ⊑ Lv, since an argument value cannot be shared without also sharing the
fact that the argument is available. In the case of sites, the Lps must all be equal, since a site is
only called if all arguments are available; knowing that one argument is available implies the others
are as well. As an abbreviation, any label [⊤] in the argument list may be elided, so xv ⇐ xp is
equivalent to xv[⊤] ⇐ xp[⊤].
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Security context Immediately following the argument list is the security context [L]. This places
an upper bound on the conditions under which the callable may be called; the callable asserts that it
will not share the fact that it was called with any entity having security clearance ⊏ L. It is always
the case that L ⊑ Lp ⊑ Lv, since a callable cannot share information about its arguments without
revealing that it was called. In the case of sites, each Lp = L, since the fact that the site was called
implies that all its arguments are available. As an abbreviation, the security context [⊤] may be
elided.

Publication template To the right of → is the publication template. The publication template
begins with existential variable declarations ∃x[L], · · ·. Each existential variable declaration intro-
duces a variable bound to an unknown expression of the given security level. The order of variables
in the declarations is not significant. The applications of existential variables will become clear when
we give examples of site type declarations in the next section. As an abbreviation, the ∃. may be
elided when there are no existential variables, so {Ev ⇐ Ep, · · ·} is equivalent to ∃.{Ev ⇐ Ep, · · ·}.

Following the existential variable declarations is a set representing possible publications. Each
publication Ev ⇐ Ep, read “Ev when Ep”, represents a value, Ev, and the conditions under which
it is published, Ep. Both the value and its publication conditions may be complex expression
templates. Each variable in these expression templates refers either to an argument bound by
the callable’s argument list, or to the unknown expression bound by an existential declaration.
Expression templates may include the constant signal, representing a signal value which contains no
information.

Limitations The syntax imposes two important limitations on the secure type system for the sake
of simplicity. First, since each security label in the type must be named concretely, it is not possible
to parameterize the security labels of existentially-quantified variables in the publications by the
security labels of the arguments. For example, the type of a site like add, which publishes a value
whose label depends on the labels of the inputs, cannot by given in a single declaration; instead one
declaration must be given for every possible combination of input security labels. This limitation is
not fundamental and could be easily corrected, at the expense of slightly more verbose typing rules.

The second limitation is that callable names (sites and functions) are distinct from program
variables, so higher-order functions are not possible. In order to support such a feature, it would be
necessary to track not only the label but also the type (boolean, callable, or other) of each program
value. Since this would significantly complicate the presentation without fundamentally changing
the nature of the secure information flow verification, we have omitted this feature for simplicity.

4.2.2 Secure type judgements

The security of an Orc program is asserted by a secure type judgement together with a set of site
and function type declarations.

Callable type assertions simply assert the callable type (security properties) of a callable used
by the program. For sites, we assume these assertions are correct; it is the responsibility of the
programmer to verify the correctness of each site’s type relative to its implementation.

Function declarations give the callable type of a function together with the function’s implemen-
tation. With this information we can derive a callable type assertion for the function and verify that
the function’s implementation conforms to its type, i.e. it does not violate the security properties
asserted by the type.

Secure type judgements have the form Γ, L ⊢ O : {F ⇐ F, · · ·}. This judgement asserts that the
Orc expression O has the set of publications {F ⇐ F, · · ·}, given variable context Γ and security
context L. Each publication Fv ⇐ Fp, read “Fv when Fp”, represents a value Fv published under
the condition that Fp holds. Fv and Fp are abstract expressions consisting of complex boolean
expressions, signals, and labeled variables x[L]. Each labeled variable is implicitly existentially
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let : (xv ⇐ xp) → {xv ⇐ xp}

if : (xv ⇐ xp) → {signal ⇐ xv ∧ xp}

not : (xv ⇐ xp) → {¬xv ⇐ xp}

or : (xv ⇐ xp, yv ⇐ yp) → {xv ∨ yv ⇐ xp ∧ yp}

plus : (xv[Lx] ⇐ xp, yv[Ly] ⇐ yp) → ∃z[Lx ⊔ Ly].{z ⇐ xp ∧ yp}

writeL : (xv[⊥] ⇐ xp[⊥])[⊥] → {signal ⇐ xp}

readL : () → ∃yv[⊥].{yv ⇐ True}

writeH : (xv ⇐ xp) → {signal ⇐ xp}

readH : () → ∃yv[⊤].{yv ⇐ True}

putL : (xv[⊥] ⇐ xp[⊥])[⊥] → {signal ⇐ xp}

getL : ()[⊥] → ∃yv[⊥], yp[⊥].{yv ⇐ yp}

putH : (xv ⇐ xp) → {signal ⇐ xp}

getH : () → ∃yv[⊤], yp[⊤].{yv ⇐ yp}

Rtimer1 : (xv ⇐ xp) → ∃yp[⊤].{signal ⇐ yp ∧ xp}

Rtimer2 : (xv ⇐ xp[⊥])[⊥] → ∃yp[⊥].{signal ⇐ yp ∧ xp}

Table 3: Example site type assertions

quantified (with scope over the entire proof) and represents some unknown value of the given security
level.

The variable context Γ maps each program variable to a publication (Fv ⇐ Fp), indicating
that the variable has the value Fv if Fp holds. The security context L represents the level of
information which could be inferred by the fact that the Orc expression O is being executed. For
example, in the program if(topSecret) >> M(), if the expression M() executes then we can infer
that topSecret=True, so the security context of M() must be at least as high as the security label
of topSecret’s value.

4.3 Site types

We give some examples of type assertions for representative Orc sites in Table 3. Because Orc
sites are strict and publish no more than one value, site types always have the form (xv [Lv] ⇐
xp[L], · · ·)[L] → ∃y[Ly], · · · .{Ev ⇐ Ep ∧ (xp ∧ · · ·)}.

The first several sites are straightforward. The type of the site let asserts that it accepts one
argument and publishes that argument’s value under the condition that it is available. The type of
the site if asserts that it accepts one argument and publishes a signal contingent on the fact that
the argument was true and available. The sites not and or assert that they perform the expected
operation on their argument’s value.

The site plus returns the sum of its arguments, and provides a good example of functional binary
operators in general. Since information about either argument may be inferred from the return value,
the label of the return value is the least upper bound of the labels of the arguments. This is not
syntactically a site type, but rather represents a family of types, parameterized by the security labels
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label(True) = ⊥

label(False) = ⊥

label(E ∨ F ) = label(E) ⊔ label(F )

label(E ∧ F ) = label(E) ⊔ label(F )

label(¬E) = label(E)

label(x[L]) = L

Table 4: Expression labels

of the arguments. In order to actually analyze a site like plus, it would be necessary to annotate
each application of plus with information that would allow us to identify the appropriate type (or
this information could be inferred automatically).

The sites writeL and readL write to and read from a low-security memory cell. Only low-security
information may be written to a low-security cell, and values read from the cell always have a low-
security label. Since any call writeL may be observed in a low-security context by readL, writeL
can only be called in a low-security context. The high-security equivalents are writeH and readH.
Note that any information in any security context may be written to a high-security cell, but values
read from the cell always have a high-security label.

The sites putL and getL write to and read from a low-security channel. This is an asynchronous
blocking channel, so putL always succeeds but getL blocks if no value is available. The types of
these sites are very similar to those of writeL and readL, with one important difference. Since getL
removes an item from the channel, it may cause the channel to become empty and block some other
call to getL. This would communicate information, so getL can only be called in a low-security
context. Furthermore, getL may or may not return depending on whether putL was called, which is
expressed by the fact that getL’s publication conditions depend on some unknown expression. The
high-security equivalents are putH and getH.

The site Rtimer poses an interesting problem. Without a formal semantics of time, we must
conservatively assume that every call to Rtimer introduces a potential causal dependence (and
therefore communication) with every other possible call to Rtimer. There are two possible ways
to express this fact in our type system. Rtimer1 asserts that Rtimer may be called in any context
(secure or insecure), but its return is potentially contingent upon secure information (from another
call to Rtimer in a secure context). Rtimer2, in contrast, asserts that Rtimer may only be called
in an insecure context, so its return is guaranteed to be contingent only upon insecure information.
Other variations are possible; for example, allowing calls to Rtimer in some intermediate security
context. In any case, only one of these site types should be used in any particular program.

4.4 Secure type semantics

The semantics of a secure type judgement are given by inference rules which allow the judgement to
be proven. These inference rules constitute a formal realization of our intuitions about the properties
a secure program should have.

4.4.1 Expression labels

In order to find the security level of a variable or publication, it is necessary to infer the label of that
variable or publication’s corresponding expression value. The label of an expression is calculated
as defined in Table 4. These rules are straightforward: constants are public, operations are labeled
with the join of their operand labels, and variables are labeled as given. Before finding the label
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{E′

v
⇐ E′

p
, · · ·} = {Ev ⇐ Ep, · · ·}[Fy/y, · · ·]
label(Fy) ⊑ Ly · · ·

{E′

v
⇐ E′

p
, · · ·} instantiates ∃y[Ly], · · · .{Ev ⇐ Ep, · · ·}

(Instantiates)

{Ev ⇐ False, Fv ⇐ Fp, · · ·} = {Fv ⇐ Fp, · · ·}
(False-Elim)

{Ev ⇐ Ep, Ev ⇐ E′

p
, Fv ⇐ Fp, · · ·} = {Ev ⇐ Ep ∨ E′

p
, Fv ⇐ Fp, · · ·}

(Merge)

Table 5: Manipulating publication sets

of an expression, it should be simplified as much as possible using standard boolean identities to
eliminate subexpressions which do not affect the overall value.

These rules do not account for the amount of information leaked by an expression. For example,
an expression such as password = "letmein" can only leak one bit of information about password:
whether it is equal to "letmein" or not. In some cases, such as a password authorization program,
leaking this small bit of information may be acceptable and even necessary. However our approach
will conservatively classify an expression as high-security if there is a chance that it contains even
one bit of high-security information. This limitation is typical of many approaches to verifying
information flow security; the underlying problem and possible solutions are discussed by Zdancewic
[14].

4.4.2 Publication sets

In several places, the secure type system needs to manipulate publication sets which abstractly
represent the possible publications of an expression. For example, the publication set of a parallel
expression is constructed from the publication sets of its constituents. The most important rules
governing publication sets are given in Table 5.

The first rule, Instantiates, states that a publication set instantiates an existentially-quantified
template if there exists some substitution of the existentially-quantified variables (satisfying con-
straints on the variables’ labels) which makes the template equal to the publication set. Intuitively,
the publication set must be a witness to the existentially-quantified template.

The second rule, False-Elim, allows publications which are never available to be removed from
a publication set. This rule reflects the fact that a publication set represents a set of possible
publications. Therefore a value which doesn’t appear in the set is equivalent to a value which
appears in the set but is published under no condition.

The final rule, Merge, allows publication conditions for the same publication value to be com-
bined. Because each item in a publication set represents a possible publication, if the same value
appears twice with different conditions, this is equivalent to the value appearing once under the dis-
junction of those conditions. This rule is necessary to expose opportunities to simplify publication
conditions when computing labels or comparing publication sets.

In addition to the non-standard rules described above, we assume standard set identities such as
equality under reordering and duplication of elements, as well as standard boolean identities for the
expressions within a set.

4.4.3 Secure typing rules

The complete rules for our proposed secure type system are given in Table 6. In these rules we use
ellipses (· · ·) in an intuitive but rigorous manner, inspired by the Scheme macro system [6]. When an
ellipsis appears in a binding context, variables in the form preceding the ellipsis range over zero or
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Γ, L ⊢ F : {Fv ⇐ Fp, · · ·} Γ, L ⊢ G : {Gv ⇐ Gp, · · ·}

Γ, L ⊢ F | G : {Fv ⇐ Fp, · · ·} ∪ {Gv ⇐ Gp, · · ·}
(Parallel)

Γ, L ⊢ F : {Fv ⇐ Fp, · · ·}
Γ[x 7→ (Fv ⇐ Fp)], L ⊔ label(Fp ∨ · · ·) ⊢ G : {Gv ⇐ Gp, · · ·} · · ·

Γ, L ⊢ F >x> G : {Gv ⇐ Fp ∧ Gp, · · ·} ∪ · · ·
(Sequential)

Γ, L ⊢ F : {Fv ⇐ Fp, · · ·}
Γ[x 7→ (signal ⇐ False)], L ⊢ G : {G′

v
⇐ G′

p
, · · ·}

Γ[x 7→ (Fv ⇐ Fp)], L ⊢ G : {Gv ⇐ Gp, · · ·} · · ·

Γ, L ⊢ G <x< F : {G′

v
⇐ G′

p
} ∪ ({Gv ⇐ Fp ∧ Gp, · · ·} ∪ · · ·)

(Pruning)

Γ, L ⊢ F : {Fv ⇐ Fp, · · ·}
F ′

p
= ¬(Fp ∨ · · ·)

Γ, label(F ′

p
) ⊔ L ⊢ G : {Gv ⇐ Gp, · · ·}

Γ, L ⊢ F ; G : {Fv ⇐ Fp, · · ·} ∪ {Gv ⇐ F ′

p
∧ Gp, · · ·}

(Otherwise)

M : (xv[Lv] ⇐ xp[Lp], · · ·)[L′] → ∃y[Ly], · · · .{Ev ⇐ Ep, · · ·}
L ⊑ L′

Γ(x) = (Fv ⇐ Fp) · · ·
label(Fv) ⊑ Lv · · ·
label(Fp) ⊑ Lp · · ·

y′ fresh · · ·

Γ, L ⊢ M(x, · · ·) : {Ev ⇐ Ep, · · ·}[y′[Ly]/y, · · ·][Fv/xv, Fp/xp, · · ·]
(Call)

def M(x, · · ·) : (xv[Lv] ⇐ xp[Lp], · · ·)[L] → ∃y[Ly], · · · .{Ev ⇐ Ep, · · ·} = F
Γ[x 7→ (xv [Lv] ⇐ xp[Lp]), · · ·], L ⊢ F : {E′

v
⇐ E′

p
, · · ·}

{E′

v
⇐ E′

p
, · · ·} instantiates ∃y[Ly], · · · .{Ev ⇐ Ep, · · ·}[xv[Lv]/xv, xp[Lp]/xp, · · ·]

M : (xv [Lv] ⇐ xp[Lp], · · ·)[L] → ∃y[Ly], · · · .{Ev ⇐ Ep, · · ·}
(Def)

Table 6: Secure typing rules

more instances of that form. When an ellipsis appears in a non-binding context, the form preceding
the ellipsis is instantiated once for each instance of its variables. We also assume for clarity some
standard syntactic sugar for variable contexts Γ:

Γ(x) = the left-most E such that Γ = 〈. . . , x 7→ E, . . .〉.
Γ[x 7→ E] = 〈x 7→ E, x′ 7→ E′, · · ·〉 where Γ = 〈x′ 7→ E′, · · ·〉.
The Parallel rule checks expressions of the form F | G. It simply asserts that the publication

set of F | G is the union of the publication sets of F and G. The Merge rule discussed in the
previous section may be used here to combine publications from both branches.

The Sequential rule checks expressions of the form F >x> G. We are given that F publishes
some set of publications. For each of these publications, we bind x to the publication and find the
publications of G in this context. The security context for G is the level of information which can
be inferred simply from knowing that F published, i.e. the join of the current security context with
the label of the disjunction of all possible publication conditions of F . Finally, the overall expression
publishes the union of all the possible publications of G, under the condition that F published.

The Pruning rule checks expressions of the form G <x< F . Since the pruning combinator
executes both sides regardless of whether F publishes any values, we first find the publications of
G assuming that F does not publish anything (binding x to a meaningless value which is never
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available). Next, we assume that F does publish something, and we find the publications of G for
each of these possible publications. Note that the security context of G is not directly affected by
F ; it will only need to be raised if and when G actually checks for the availability of x. Finally, the
overall expression publishes the union of the possible publications of G.

The Otherwise rule checks expressions of the form F ; G. Similarly to Parallel, such an
expression publishes the union of possible publications of F and G. However G only executes if F
does not publish, affecting both the security context of G and the publication conditions of G.

The Call rule checks that a call of the form M(x, · · ·) conforms to the security properties
expected by M . Given a type assertion for M , the rule first checks that the security context is
valid. Then the rule looks up each argument to the call in the variable environment and checks
that the argument’s actual labels conform to the labels required by M . Finally, the publication
set of the call is constructed from the template provided by M , generating unique names for each
existentially-quantified variable in the template and substituting argument expressions for argument
variables in the template.

The Def rule verifies a function type declaration by comparing its declared publications to its
actual publications. Given a function type declaration, the rule first finds the publications of the
function’s body, given the variable context asserted by the argument types. The rule then checks
that the resulting publication set is an instance of the declared publication set template. Argument
variables in the template are replaced by their (abstract) values, while existential variables in the
template are handled by the Instantiates rule from the previous section. If the publication sets
match, then the function satisfies the asserted security properties, and the derived type assertion is
valid.

4.5 Discussion

We will examine two trivial examples to illustrate how the secure type system applies to complete
programs. In these examples, we will make use of the readH, writeH, readL, and writeL sites
defined in Section 4.3.

The first example program P reads a value from a high-security memory cell, inverts it (in a
contrived manner), and then writes a value to a low-security memory cell. By inspection, this
program is secure.

readH() >h>

not(h) >nh>

( if(h) >> writeH(false)

| if(nh) >> writeH(true)

) >>

writeL(true)

Here are the essential parts of the type derivation showing that P is secure:

...
Γ,⊥ ⊢ if(h) . . . : {signal ⇐ h[⊤]}

...
Γ,⊥ ⊢ if(nh) . . . : {signal ⇐ ¬h[⊤]}

Γ,⊥ ⊢ ( if(h) . . . | if(nh) . . . ) : {signal ⇐ h[⊤], signal ⇐ ¬h[⊤]}

Γ,⊥ ⊢ ( if(h) . . . | if(nh) . . . ) : {signal ⇐ True}

...

Γ = 〈h 7→ (h[⊤] ⇐ True), nh 7→ (¬h[⊤] ⇐ True)〉

...
Γ,⊥ ⊢ writeL(true) : {signal ⇐ True}

〈〉,⊥ ⊢ P : {signal ⇐ True}
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The key step in this derivation is the merging of the publication sets of the two if branches.
This step proves that the parallel expression always publishes, so the subsequent writeL can execute
in a low-security context.

The second example program P ′ is the same as P with one seemingly minor change: if h is true,
execution only proceeds if the low-security value l is also true. This program is insecure but this
may not be obvious by inspection.

readL() >l>

readH() >h>

not(h) >nh>

( if(h) >> if(l) >> writeH(true)

| if(nh) >> writeH(false)

) >>

writeL(true)

Here are the essential parts of the type derivation showing that P ′ is insecure:

...
Γ,⊥ ⊢ if(h) >> if(l) . . . : {signal ⇐ h[⊤]}

...
Γ,⊥ ⊢ if(nh) . . . : {signal ⇐ ¬h[⊤]}

Γ,⊥ ⊢ ( if(h) >> if(l) . . . | if(nh) . . . ) : {signal ⇐ (h[⊤] ∧ l[⊥]), signal ⇐ ¬h[⊤]}

Γ,⊥ ⊢ ( if(h) >> if(l) . . . | if(nh) . . . ) : {signal ⇐ l[⊥] ∨ ¬h[⊤]}

...

Γ = 〈l 7→ (l[⊥] ⇐ True), . . .〉 label(l[⊥] ∨ ¬h[⊤]) = ⊤

writeL : (. . .)[⊥] → {. . .}
⊤ 6⊑ ⊥

Γ,⊤ 0 writeL(true) : {signal ⇐ True}

〈〉,⊥ 0 P ′ : {signal ⇐ True}

Comparing the derivations of P ′ and P , you will notice that the parallel expression in P ′ does
not always publish: it publishes only if l[⊥] ∨ ¬h[⊤]. Since this condition depends on high-security
information, subsequent expressions must execute in a high-security context. Since writeL’s type
indicates that it should not be called in a high-security context, the program is insecure.

5 Related Work

The area of information flow security has been thoroughly studied; a survey of recent work is given
by Sabelfeld and Myers [11].

Type systems Our approach follows Volpano et al [13], who were the first to propose using type
systems to analyze secure information flow. Smith [12] later proposed a type system for concurrent
programs which has some important similarities to ours. In Smith’s type system, program statements
have two labels: one gives an upper bound on the security context of the statement, and the other
gives an upper bound on the information which affects the statement’s running time. The first is
equivalent to the security context in our callable types, and the second to the label of publication
conditions in our publication sets. The key difference is that our type system tracks not just the labels
of publication conditions, but also their abstract values. This additional complexity is necessary
because Orc lacks control-flow statements with explicit scope, so we use publication conditions to
detect when the security context can be safely downgraded.

Zdancewic and Myers [15] describe a secure type system for a concurrent language based on the
join calculus. Like Orc, the join calculus does not have explicit control flow statements but instead
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models control flow using communication primitives — in the case of join calculus, channels. This
obscures critical facts about program flow. For example, consider a low-security statement which
is executed as soon as either of two high-security statements complete. If we know that exactly
one of the high-security statements will complete (for example, they correspond to the two possible
values of a boolean variable), then this program is secure, since the low-security statement always
executes regardless of high-security information. To represent knowledge about statements which
always execute exactly once, Zdancewic and Myers introduce the concept of linear channels which
can be statically guaranteed to receive exactly one value. Program authors must use linear channels
explicitly in order to facilitate static analysis. In contrast, our type system for Orc attempts to
automatically infer expressions which are always executed based on an abstract interpretation of the
program.

Compositionality One important consideration in any static security analysis is compositionality:
if two programs are verified independently, will they continue to be secure if they are combined into
a larger program? Bossi et al [1] argue that compositionality is an important property of concurrent
programs, give compositional criteria for concurrent information flow security, and prove their criteria
correct using bisimulation. One advantage of a type system is that, since it constructs the type of
an expression recursively from the types of its subexpressions, it is naturally compositional. For
example, our type system trivially guarantees that verified programs are always secure under parallel
composition.

Dynamic security labels Zheng and Myers [17] describe a secure type system for sequential
programs with dynamic security labels. Dynamic security labels enable the set of security princi-
ples to be open, so that new security principles (and associated security labels) can be added at
runtime. This is very important for workflows, where it is useful to express policies such as “every
supervisor can view their employee’s records” without having to reverify the workflow every time a
new employee joins the company. While Zheng and Myers’ approach is formulated in the context
of a sequential programming language, it appears to be essentially orthogonal to the underlying
programming model. In other words, it should work equally well with a concurrent language such
as Orc. Therefore integrating dynamic security labels along the lines suggested by Zheng and Myers
with our type system is an important piece of future work.

6 Conclusion

We have sketched a formal method for verifying the security of information flow in workflows. Our
approach involves encoding the workflow in the Orc calculus and using a secure type system to
reason about the security of the encoded program. The unique features of Orc result in a somewhat
unconventional type system which incorporates dependent typing and abstract interpretation in
order to reason about termination properties. The resulting combination of language and type
system is not significantly more expressive than previous work, but maintains the advantages of Orc
in terms of cleanly expressing structured concurrency. This serves as a proof of concept that it is
possible to reason about secure information flow properties in Orc programs.

Future work includes proofs of subsumption and non-interference for Orc programs which are
well-typed under the proposed secure type system. Once the type system has been proven correct,
we intend to extend it with features necessary for practical applications, such as dynamic security
labels and limited type inference. The type checker will be implemented as an extension to the Orc
language [8] and integrated with the current Orc compiler and runtime environment, enabling users
to verify and run workflows expressed in Orc.
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