
1

Workflow Patterns in Orc

William Cook

Sourabh Patwardhan

Jayadev Misra

Department of Computer Sciences

University of Texas at Austin

2

Overview of Orc

• Orchestration language

–Invoke services

–Manage time-outs, priorities, and failures

• Structured concurrent programming

–Implicit “result” channel, also explicit channels

–Easy to create and terminate processes

• Simple calculus with formal semantics

–Labeled transition system & traces

–Needs to be extended for time, etc.

• Prototype implementation available

3

Pipe: f >x> g

CNN >n> Email(user, n)

–call CNN, bind result (if any) to n

–then call Email to send news to user

• CNN and Email are sites

–Perform basic computations

–Return at most one value, or never return

4

Parallel: f | g

(CNN | BBC) >n> Email(user, n)

–CNN | BBC may produce 0, 1, or 2 values

• Pipe also acts as “for each”

–Email is sent for each value

–Instances of g are executed in parallel

• Use f � g if no variable is needed

–if f returns 1 value, acts as f; g

5

Where: f where x :∈ g

Email(user, n)
where n :∈ (CNN | BBC)

–Binds n to first value of CNN | BBC

–then terminates CNN | BBC

6

Some Basic Sites

Sites, for basic operationsor(a, b)
a + b

never returns0

Returns a signal if b is true;
it does not respond if b is false

if(b)

Relative Timer: returns a signal after exactly t
time units

Rtimer(t)

Returns argument values as a tuplelet(x, …, z)

7

Definitions: E(x1,…,xn) ∆ f

• Definitions

First(g) ∆ let(x) where x :∈ g

• Using a definition

First(CNN | BBC) >n> Email(user, n)

8

Subtleties: f where x :∈ g

• f and g are executed in parallel

• Site calls are strict

–not called until arguments are defined

• Example

(M | N(x)) where x :∈ P
–M and P called immediately

–N is called after P returns

9

A larger example: Priority

• If M responds in 10 time units, take its
response, otherwise take first response

Delay(N) ∆

(Rtimer(10) � let(u)) where u :∈ N

Priority(M, N) ∆ First(M | Delay(N))

• Concise notation for

–communication, blocking, and termination

10

Another example: Parallel Or

• Return true if either M or N return true

POr(M, N) ∆ let(z)

where z :∈ if(x) | if(y) | or(x, y)

where x :∈ M

where y :∈ N

11

Orc Summary

e, f, g ::= c constant

x variable

x(e1, …, en) call

f >x> g pipe (also f � g)

f | g parallel

f where x :∈ g asymmetric

x(x1, …, xn) ∆ f definition

• See web site for semantics, implementation
www.cs.utexas.edu/~wcook/projects/orc

12

Workflow Patterns

• Workflow products

–use pictures to define workflows

–resemble Petri nets, Statecharts, concurrent

flowcharts

• No formal model of workflow

• Alternative: identify common Patterns

–20 patterns have been proposed

• We show that Orc can implement the workflow

patterns

13

Simple Workflow Patterns

1. Sequence

Seq(f, g) ∆ f � g

2. Parallel

Par(f*) ∆ f1 | … | fn

3. Synchronization (fork-join):

Sync(f, g) ∆ let(x, y) where x :∈ f
where y :∈ g

14

Unstructured Workflows

Condition >M>
Sync(A � M.set � B,

C � M.wait � D)

Condition creates a local

object with two methods,
set and wait, which blocks

until set is called.

Split

A C

Split Merge

B D

Sync

15

Choices

4. Exclusive Choice (arbitration):

XOR(b, f, g) ∆ (if(b) � f) | (if(¬b) � g)

6. Multi-choice:

Multi(b*, f*) ∆ Par(XOR(bi, fi, 0))

7. Synchronizing Merge:

SyncMerge(b*, f*) ∆
Sync(XOR(bi, fi, Signal))

16

9. Discriminator

• Produce result when first fi completes

–Continue other computations

Discr(f*) ∆ Buffer >S>
S.get | (Par(f*) >x> S.put(x))

–Buffer creates a local object with two methods,

put and get, which blocks until put is called.

17

Modular Composition

Condition >M>
Sync(A � M.set � B,

Discr(C, M.wait) � D)

D runs after C or A completes

Split

A C

Split Discr

B D

Sync

18

10. Arbitrary Cycles

P ∆ XOR(α, PB, PA)
PA ∆ A � PC

PB ∆ B � PD

PC ∆ C � PD

PD ∆ D � XOR(β, E, PF)

PF ∆ F � XOR(χ,G, PC)

19

12-15: Instantiation

• Creating multiple instances of workflows

12. No synchronization

13. Design-time knowledge

14. Run-time knowledge

15. No knowledge

• These can be hard with Petri nets, but easy

with a process calculus

20

16 Deferred Choice

• Let the environment make a choice by

signaling an event

DefChoiceTerm(e*, f*) ∆

Which(e*) >k> Select(k, f*)

Which(e*) ∆

First(e1 � let(1) | ��� | en � let(n))

Select(k, f*) ∆

if(k = 1) � f1 | ��� | if(k = n) � fn

21

17: Interleaved Parallel Routing

• Order is decided at run-time, and no two

activities are executed at the same moment

Interleave(f*) ∆ Lock >M>

(wait(M, f1) | ��� | wait (M, fn))

wait(M, f) ∆

M.acquire � f >x> M.release � let(x)

–Lock creates a local object with two methods,

acquire and release. Only one process may
acquire the lock at a time

22

19/20: Cancel Activity/Case

• Interrupt f when event e occurs

Interrupt(f, e) ∆ First(f | e)

• Interrupt f after t time units, if it is not
complete

Timeout(f, t) ∆ Interrupt(f, Rtimer(t))

23

Evaluation

• Van der Aalst’s concern with encoding is

legitimate

–Encodings are fine for theory

–But don’t help programmers

–Require manual, global program rewrites

• Orc uses definitions, not encodings

24

Orc patterns are not fully compositional

Condition >M>
SyncMerge(

〈α, A � M.set � B〉,
〈β, C � M.wait � D〉)

–Does not work, because M.set
is not called if α is false

–Problem: interaction between

non-structured control and

synchronizing merge

Multi

A C

Split Merge

B D

Sync

αααα ββββ

25

Related Work

• van der Aalst

–Defined initial set of 20 patterns

– not claimed to be complete

–Yet Another Workflow Language (YAWL)

– Add constructs to Petri nets until they can model the workflow
patterns without “encoding”

• Business Process Markup Language (BPML)

–Pattern solutions similar to Orc

–More verbose, features missing

• Workflow in ππππ-Calculus (Puhlmann, Weske)
–Uses explicit channels to signal start/end of workflows

–Incomplete model: termination requires encoding 26

Conclusions

• Orc can implement all the workflow patterns

• Used definitions, avoids encoding

–Still work to do: not completely compositional

• Need to formalize more patterns

–Parallel Or

–Priority

–Barrier syncrhonization

