
A Semantics for Exception Handling in Orc

Andrew Matsuoka and David Kitchin

August 14, 2009

This document describes the semantics for the exception handling capa-
bilities of the Orc programming language. It is split into two parts: the
first introduces the syntax and behavior of exceptions, and the second out-
lines an extension of the Orc calculus, called chromatic Orc, which can be
used to desugar exception handling forms and reason about their behavior.
Chromatic Orc also allows a more compact and stateless implementation
of certain programming idioms, such as routing, that were previously only
implementable using channels.

1 Exceptions in Orc

We introduce two new expressions into the Orc programming language:

throw E: Execute expression E. For each value v published by E, raise
an exception carrying value v. This consumes the publication of v. Since all
publications of E are consumed in this way, throw E is silent.

try E catch (x) H: Execute E, allowing it to publish values as nor-
mal. Whenever an exception is raised by E, the value carried by that excep-
tion is bound to x in a new copy of H. E continues to execute as normal,
and the copy of H executes in parallel with it.

This treatment of exception handling differs from conventional sequen-
tial programming in two important ways. First, throw may raise multiple
exceptions, possibly in parallel. Second, when an exception is caught, its
handler executes in parallel with the continued execution of the expression
that threw the exception; that is, exceptions do not cause termination.

1

1.1 throw

Here are some examples of throw:

throw 3
throw "error"
throw (3 | 4)
throw stop

Exceptions are propagated through the other combinators without any
effect; they are entirely distinct from publications. In the following two
examples, site M is never called:

throw 3 >x> M(x)
M(y) <y< throw 4

1.2 try/catch

Here is a simple example with try and catch:

try
3 | throw 4

catch (x)
(1 - x)

Patterns are allowed within a catch. In fact, multiple catch clauses may
be listed in sequence, which are each tried in order, just like clausal function
definitions. If no clause matches, then the exception is rethrown. Here is an
example:

try (0 | throw 1 | throw 2)
catch (1) "one"
catch (x) x
catch (2) "two"

The following program publishes 0, "one", and 2. Notice that "two"

is not publishes, since the clause catch (x)x is matched first. Here is an
example with a pattern failure:

try (
try (throw 3)
catch (1) "one"

)
catch (x) x+1

2

The outer handler catches the exception and publishes 4.
Note that active exception handlers are subject to termination just like

any other Orc expression. When a try/catch expression is terminated,
the body expression terminates, and all running handlers also terminate.
Consider this example:

stop << (
Rtimer(2000)
| (

try (
Rtimer(1000) >> throw 0
Rtimer(3000) >> throw 1

)
catch (x)
M(x) >> N(x) >> P(x) >> Q(x)

)
)

An exception with value 0 is thrown and caught after 1000 ms, causing
four site calls to execute in series. At 2000 ms, the entire expression is ter-
minated, including the running handler, which may not have finished calling
all of the sites. The expression throw 1 will never even be executed.

1.3 Exceptions and halting

The throw and try/catch expressions halt as one might expect: !throw
E! halts when E does, and try E catch (p) H halts when E has halted
and all active handlers H have also halted. Thus, these expressions may be
combined with the otherwise combinator; for example, throw 0 ; 1 will
throw an exception and subsequently publish 1.

1.4 Exceptions from sites

A site call may also throw an exception, instead of publishing a value; if it
does so, it then halts immediately. In the current Java-based implementation,
sites implemented in Java may even throw exceptions within Java code, which
are then propagated into the Orc program, where they may be caught by an
Orc exception handler.

3

2 Chromatic Orc

One of the fundamental principles in the design of the Orc programming
language is that each new construct should be representable in terms of the
underlying calculus. However, exceptions are very difficult to encode in the
current Orc calculus; such an encoding would require a burdensome, global
program transformation.

So instead, we present a slightly extended version of the Orc calculus, into
which exception handling can be encoded very directly. We do this by giving
colors to publications and to combinators; for example, by giving normal
publications one color, and exceptional publications a different color, we can
allow exceptions to propagate through normal combinator uses.

2.1 Adding Color

Site return events and publications now have an associated color c; they are
written k?cv and !cv respectively. The site let becomes a family of sites
indexed by colors c; the site call let c(v) publishes value v with color c.

We remove the | combinator, and add a subscript s, called a spectrum,
to each of the other combinators: f >x>s g, f <x<s g, f ;s g. A spectrum is
either a color c, or the special marker •, which indicates an absence of color.
A publication with color c is handled by a combinator with spectrum c in the
same way as in the previous Orc semantics. Publications with colors other
than c are allowed through, just as if they were non-publication events. The
marker • is not equal to any color; a combinator with spectrum • allows all
publications through.

The expressions f �s g and f �s g are shorthand for f >x>s g where g
is x-free, and f <x<s g where f is x-free, respectively.

2.2 Embedding the Orc calculus

The conventional Orc calculus, plus exception handling, can be encoded in
chromatic Orc as follows. Distinguish two colors: p (for publications) and e
(for exceptions).

4

f >x> g = f >x>p g
f <x< g = f <x<p g

f ; g = f ;p g
f | g = f �• g

let(x) = letp(x)
throw f = f >x>p lete(x)

try f catch (x) g = f >x>e g

Sites are allowed to choose the color of their return values. Typically the
chosen color will be p, but a site might color its return value as e to throw
an exception directly.

2.3 Alternate semantics for exceptions

Suppose that we chose to use � instead of � in the encoding of try/catch.
Then the semantics of exception handling would be closer to the understand-
ing of exceptions in sequential programming: terminate the expression which
raised the exception, and subsequently execute a handler (or rethrow, if no
handler matches). Since the particular expression from which the exception
originated always halts, the sequential model is simply a conflation of both
of these options: when there is only one thread of control, it is impossible to
distinguish terminating that thread of control from terminating all threads
of control.

In Orc, we have chosen the � interpretation, since it more clearly high-
lights the options available in concurrent exception handling, and because it
is much easier to provoke termination (perhaps by putting a � just outside
the scope of the try/catch) than to prevent termination.

2.4 Alternate semantics for ;

Early in the design of the ; combinator, we considered two possible inter-
pretations. The choice represented by f ;p g is now the canonical one: if
f halts without having published any values, execute g. The other option,
represented by f ;• g, was: run f until it halts and then run g regardless
of whether f published or not. This interpretation is more useful in cer-
tain contexts and may be more intuitive to users of sequential programming
languages. The chromatic combinators allow both interpretations to coexist
with a unified semantics.

5

2.5 Operational Semantics

The operational semantics of chromatic Orc is given in Figure 1. It is quite
similar to the semantics of the non-chromatic calculus.

2.6 Algebraic Laws

(Left zero of �) stop >x>s f = stop

(Left unit of �) signalc �c f = f
(Right unit of �) f >x>c let c(x) = f
(Left unit of �) stop�• f = f
(Right unit of �) f �s stop = f

(Commutativity of �) (f <x<s g) <y<s′ h = (f <y<s′ h) <x<s g,
if h is x-free and g is y-free

(Associativity of �) (f >x>s g) >y>s′ h = f >x>s (g >y>s′ h),
if h is x-free

(Commutativity of � with �) (f <x<c g) >y>c h = (f >y>c h) <x<c g,
if h is x-free

(Distributivity of � over �) (f <x<s g) >y>c h = (f >y>c h) <x<s (g >y>c h),
if h is x-free and s 6= c

There are no rules involving | , since it is now encoded via �• . All of
the | laws are provable from these laws.

2.7 Routing with Chromatic Combinators

Some of the examples of routing in the user guide can be rewritten directly
using chromatic combinators, rather than channels.

However, not all of the examples can be recast. Publication Limit requires
explicit counting, which the chromatic combinators cannot accomplish. Non-
Terminating Pruning does not have a clear analogue, since it actually sup-
presses the terminating behavior of � while preserving its binding behavior,
rather than just redirecting publications.

6

2.7.1 Enhanced Timeout

Execute f , allowing it to publish any number of values, until time limit t is
reached. Assume that f does not publish values of the special color z.

stop�z (f | Rtimer(t) � signalz)

2.7.2 Interrupt

Similar to enhanced timeout, except that we are waiting for some other party
to release the semaphore done, rather than waiting for a timeout.

stop�z (f | done.acquire() � signalz)

2.7.3 Test Pruning

Execute f until it publishes a negative number of color p, and then terminate
it.

x <x<z (f >x>p (if (x < 0) then letz(x) else letp(x)))

7

k fresh

v(v̄)
vk(v̄)→ ?k

(SiteCall)

?k
k?cv→ let c(v) (SiteRet)

?k
k?⊥→ stop (SiteHalt)

let c(v)
!cv→ stop (Let)

(E(x) ∆ f) ∈ D

E(p)
τ→ [p/x]f

(Def)

stop ;s g
τ→ g

(SemiZ)

f
l→ f ′ l is not a !

f ;s g
l→ f ′ ;s g

(SemiN)

f
!cv→ f ′ c = s

f ;s g
τ→ f ′

(SemiC)

f
!cv→ f ′ c 6= s

f ;s g
!cv→ f ′ ;s g

(SemiNC)

f
l→ f ′ l is not a !

f >x>s g
l→ f ′ >x>s g

(SeqN)

f
!cv→ f ′ c = s

f >x>s g
τ→ (f ′ >x>s g) | [v/x]g

(SeqC)

f
!cv→ f ′ c 6= s

f >x>s g
!cv→ f ′ >x>s g

(SeqNC)

f
l→ f ′

f <x<s g
l→ f ′ <x<s g

(PruneL)

g
l→ g′ l is not a !

f <x<s g
l→ f <x<s g′

(PruneN)

g
!cv→ g′ c = s

f <x<s g
τ→ [v/x]f

(PruneC)

g
!cv→ g′ c 6= s

f <x<s g
!cv→ f <x<s g′

(PruneNC)

Figure 1: Operational Semantics of Chromatic Orc

8

