
OrcO: A Concurrency-First Approach to Objects

Arthur Michener Peters

The University of Texas at Austin,
USA

amp@cs.utexas.edu

David Kitchin

Google Inc., USA

dkitchin@google.com

John A. Thywissen

The University of Texas at Austin,
USA

jthywiss@cs.utexas.edu

William R. Cook

The University of Texas at Austin, USA

wcook@cs.utexas.edu

Abstract

The majority of modern programming languages provide
concurrency and object-orientation in some form. However,
object-oriented concurrency remains cumbersome in many
situations. We introduce the language OrcO, Orc with con-
current Objects, which enables a flexible style of concurrent
object-oriented programming. OrcO extends the Orc pro-
gramming language by adding abstractions for programming-
in-the-large; namely objects, classes, and inheritance. OrcO
objects are designed to be orthogonal to concurrency, allow-
ing the concurrent structure and object structure of a program
to evolve independently. This paper describes OrcO’s goals
and design and provides examples of how OrcO can be used
to deftly handle events, object management, and object com-
position.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features—Concurrent
programming structures; D.3.2 [Programming Languages]:
Language Classifications—Object-oriented languages

Keywords Composition, futures, language design, mixin
inheritance, object supervision, Orc

1. Introduction

The move to multi-core computers and the rise of network ser-
vices have made concurrent programming ubiquitous. Since
object-oriented programming languages are prevalent today,
concurrent programming in object-oriented languages is in-
creasingly significant. Language designers have developed a

wide range of techniques to combine concurrency and object-
oriented programming, but object-oriented concurrency re-
mains challenging.

The Orc programming language [15, 22] enables a concur-

rency-first style of programming, in which programmers start
with a concurrent program, instead of adding concurrency
only when it is required. While the concurrency-first approach
is unorthodox, it merits consideration for today’s highly
concurrent programs. This paper introduces OrcO, Orc with
concurrent Objects, a language extension which adds object-
oriented programming constructs to Orc while enhancing the
concurrency-first style of programming.

Many popular languages implement concurrency using a
library of primitives, such as threads and locks. This allows
the programmer to choose between many different concur-
rency tools and libraries. However, the explicit encoding of
concurrency also tends to cause problems when concurrency
requirements change, or when multiple different concurrent
libraries need to work together. OrcO offers a similar free-
dom of choice, but provides common underlying concurrency
primitives through which varied styles of concurrent code
can interact and evolve.

Another common approach is to integrate concurrency
into the existing object-oriented abstractions of a language.
This integration ties the concurrent structure of the program
to its object-oriented design and therefore limits where con-
currency can appear in the program. For instance, in pure
active object systems concurrency can only exist between ob-
jects so a new object must be introduced to add concurrency
even if that object will be adversely coupled to other objects.

OrcO objects are designed to be orthogonal to concurrency,
allowing the concurrent structure and the object structure of
a program to evolve independently. Sequential objects, such
as those provided by Java, are not orthogonal to concurrency
because they require sequential execution in many parts of
their semantics. For instance, they use sequential initializa-
tion, and thereby prevent concurrent initialization without a

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

OOPSLA’16, November 2–4, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4444-9/16/11...
http://dx.doi.org/10.1145/2983990.2984022

548



Site call f(e1,. . ., en)

Parallel f | g

Graft val x = f # g

Branch f >x> g

Trim {| f |}

Otherwise f ; g

If–then–else if e then f else g

Function definition def F(e1, . . ., en) = f # g

Anonymous function { f }

Function call f(e1,. . ., en)

(a) The Orc syntax

Class definition class C extends D { . . . } g

Instantiation new C, new { . . . }, or
new C { . . . }

Field access o.x

Mixin C with D

(b) Additional syntax in OrcO

Figure 1. The Orc and OrcO combinators and declarations.
The meta-variables e, f, and g represent an expression.
The meta-variable x represents a variable name. The meta-
variables C and D represent classes.

special encoding. Such manual encodings affect both the ob-
ject being initialized and its clients, preventing independent
evolution.

In this paper, we: (1) Propose a new language, OrcO,
in which objects and concurrency are orthogonal but co-
ordinated (Section 3); (2) Discuss the design of OrcO and
how it relates to previous approaches (Section 4); (3) Show
how OrcO enables new programming techniques and allows
new uses for existing ones (Section 5). This paper does not
address issues related to OrcO’s type system, or advanced
class features such as member visibility, since OrcO is us-
able as a simple untyped language and its type system and
class features will not be novel. We have developed a pro-
totype implementation of OrcO. It is available at https:
//github.com/orc-lang/orc/tree/ODO/OrcScala.

2. Background on Orc

OrcO is based on the Orc programming language. In Orc,
concurrent computations are built by composing primitive
operations using Orc’s concurrency combinators and decla-
rations. Orc is pervasively concurrent, because it replaces
conventional sequential control structures with concurrency
combinators. Figure 1 shows the important elements of the
Orc and OrcO syntax. This section and the next introduce
Orc and OrcO informally. A formal semantics of OrcO is
provided in Appendix A.

Executing an Orc expression results in the expression pub-

lishing values. Expressions may publish zero, one, or multiple
separate values. These publications may occur at different

times, meaning that Orc naturally supports asynchronous
events. An expression’s publications pass to the combinator
enclosing the expression, which handles the publications as
described below. Publication can be viewed as a generaliza-
tion of the conventional notion of an expression returning a
value, or as putting the value in an unordered stream.

The simplest examples of publishing expressions are stop

and signal. The expression stop never publishes, and halts—
finishes executing—immediately. The expression signal

immediately publishes the value signal and halts. The value
signal is used to represent an event with no information
associated with it, similar to unit in functional languages.

Sites The primitive operations in an Orc program are sites.
Sites are callable values whose execution is outside the Orc
semantics and can be implemented in any language. They
can publish any number of values when called, including
zero. Sites allow an Orc program to interact with the outside
world. For example, the site call Prompt("Query:") prompts
the user by displaying the message “Query:” and then pub-
lishes the response, and Rwait(1000) publishes signal after
1000 ms. We discuss the semantics of site calls in more detail
after defining the combinators.

The values published by sites are immutable, but can
reference mutable state, allowing sites to implement mutable
structures such as references or channels. For example, the
site call Ref() publishes a reference r to a mutable value that
can be set with Write(r, v) and read with Read(r). Note
that these site-created values are not Orc objects. They are
opaque values that Orc can pass from one site call to another.
However, Orc can use externally implemented objects which
have fields and methods, such as Java objects. These external
object use an object-like syntax, so the Write call from above
can be written as r.write(v) even though r is not an OrcO
object.

Orc provides common primitive values and types includ-
ing strings, numbers, booleans, and tuples. Orc also supports
standard operators on these primitive types, such as + for
string concatenation and numeric addition. These operators
are treated as site calls with the operands as arguments. In
addition, Orc provides a range of flow-control primitives, in-
cluding if–then–else. These primitives are internally encoded
as site calls [22], but the encoding is omitted for brevity.

Parallel An application of the parallel combinator, f | g,
executes f and g concurrently and publishes all publications
of f and g as they are produced. As a running example,
consider the following expression:

Prompt("Query:") | VoicePrompt("Query")

Prompt will publish responses entered as text by the user and
VoicePrompt will use voice recognition to produce text from
spoken input and publish the result. The overall expression
will publish responses received from either subexpression;
the publications can appear in any order.

549

https://github.com/orc-lang/orc/tree/ODO/OrcScala
https://github.com/orc-lang/orc/tree/ODO/OrcScala


Graft A use of the graft combinator,1 val x = f # g, de-
clares a new variable x whose scope is g and whose value is
the first publication of f. Unlike sequential variable bindings,
graft executes f and g concurrently, resolves x to the first pub-
lication of f, and allows f to continue executing. The variable
x is a transparent future, so accesses to x in g block until x
is resolved. If f halts, meaning all subexpressions finish exe-
cuting, without publishing, so do accesses to x. Publications
of f after the first are silently discarded. The # in the syntax
is optional. It separates f from g in cases when the parsing
is ambiguous. Graft can be used, in the running example, to
prompt the user for multiple inputs at the same time, and then
combine the results when they become available:

val q1 = Prompt("Query:")

val q2 = VoicePrompt("Query")

q1 + ", " + q2

Because q1 (resp. q2) halts without publishing if Prompt (resp.
VoicePrompt) halts without publishing, the final expression
will only publish a value if both prompts publish.

Branch A use of the branch combinator,2 f >x> g, exe-
cutes f immediately, and executes a new copy of g for every
value published by f. In each execution of g, the variable x is
bound to the associated publication. The executions of g are
concurrent with one another and with f. Branch provides a
way to “fan-out” execution to handle many values published
concurrently. The following example performs two concur-
rent queries for a user based on the text and voice inputs
respectively:

(Prompt("Query:") | VoicePrompt("Query")) >s>

PerformQuery(s)

An instance of ProcessQuery begins executing as soon as a
prompt response is received; if no response is received then
PerformQuery never executes. Branch is useful for event
handling, since the publications that trigger executions of g
may be spread over time. When x is not used in g it can be
omitted, simply writing f >> g.

Trim An application of the trim combinator, {| f |}, ex-
ecutes f until it publishes for the first time, and then termi-
nates the execution of f. This first publication of f is the only
publication of the expression {| f |}. Applying trim to the
running example allows it to query based on the text or voice
input, depending on which is provided first:

{| Prompt("Query:") | VoicePrompt("Query") |}

>s> PerformQuery(s)

This code will close both prompts as soon as the user gives
an answer to either.

The trim scope of a trim combinator is f and all its dy-
namic subexpressions, including those in function bodies
called from f. All expressions in a trim combinator’s trim

1 Previous papers on Orc had a related combinator called “prune.” Unlike
prune, graft does not terminate f when it publishes.
2 Branch was called “sequence” in previous papers.

scope will be terminated when the expression in the com-
binator publishes. Trim scopes are nested whenever a trim
combinator appears inside another trim scope.

Implementing complete termination of external site calls
is difficult, if not impossible, so the semantics of trim do not
require external sites to be terminated. Instead if the Orc call
to a site is terminated, any responses from the external site are
ignored. In current Orc implementations, external sites are
notified when the Orc call to them has been terminated. The
site may decide to halt or ignore the termination, depending
on the requirements and capabilities of the external system.
For example, the Prompt site will close the prompt when the
site call is terminated. However, calls into normal Java code
may ignore termination.

Otherwise An application of the otherwise combinator,
f ; g, executes f initially. If f halts without publishing
any value, then f ; g will execute g. If f publishes, then
g will never execute. The publications of f or g become
the publications of f ; g. The otherwise combinator is the
only truly sequential combinator in Orc. It is used to detect
halting of an expression and sometimes to detect failure. In
the running example, the program will halt if the user closes
the prompts or if the query returns no results. With otherwise,
the program can handle these cases by showing a message:

{| Prompt("Query:") | VoicePrompt("Query") |}

>s> PerformQuery(s) ;

Display("No query given!")

Functions Functions in Orc are defined using the syntax:
def f(x1, . . ., xn) = g # h. This defines the, possibly
recursive, function f with a body g in the scope h. The # is an
optional separator. A function can encapsulate our running
example:

def queryRetry() =

{|Prompt("Query:") | VoicePrompt("Query")|} ;

queryRetry() #

. . .

This function prompts for a query repeatedly until it gets
a result either by voice or as text. Functions are first class
values and can be published or stored like any other value.

Orc also provides a syntax for anonymous functions,
{ e }, similar to blocks in Smalltalk [19, p. 31]. These are
used primarily to pass a block of code to another function
to be executed. For instance, a synchronization function
similar to a Java synchronized block can be called as follows:
synchronized({ . . . }).

Calls Calls take the usual form, f(e1, . . ., en) where f

is a site or a function, but calls have concurrent semantics.
Site calls and function calls execute differently. For site calls,
the arguments are executed concurrently and the site is called
once every argument has published a value. So, site calls act
as join points or barriers. For function calls, the arguments
are executed concurrently with the the body of the function.
During function execution, accesses to an argument will

550



def findAirline(name) =

{ Read(Prompt("Enter "+name+"’s price")) }

def askAirline(airline) =

val response =

{| (airline() ; 99999) |

(Rwait(15000) >> 99999)

|}

if ~(response = 99999) then response else stop

def betterPrice(best, airline) =

val price = askAirline(airline)

min(best, price) ; best

betterPrice(

betterPrice(

betterPrice(99999, findAirline("Delta")),

findAirline("United")

), findAirline("Southwest")

)

Figure 2. Finding the lowest-priced airline flight within
time limits and publishing that price.

block until that argument publishes. This is similar to laziness
except that the arguments begin executing concurrently with
the call instead of only as needed.

Mechanically, every argument ei to a call is replaced
with a variable xi which is bound to ei using graft. For
example, f(Prompt("Query:"), VoicePrompt("Query"))

is expanded to:

val x1 = Prompt("Query:")

val x2 = VoicePrompt("Query")

f(x1, x2)

If the called f is a site, the call does not proceed until
all parameters are resolved. If any site call argument halts
without publishing, the whole site call will halt. If the called f

is a function, the body will execute immediately and block as
needed. The function body executes in the same trim scope as
the call, so trim can terminate execution inside the function.

Example Figure 2 shows an example Orc program that gets
price quotes from airlines in parallel, and returns the lowest
price that is received within a time limit. For the purposes of
this example, we define a function findAirline which, given
the name of an airline, returns a function representing that
airline. When the airline function is called, it will simulate
a request for a quote by prompting the user for a quote. The
askAirline function requests a price from an airline, and
concurrently waits for 15 seconds using Rwait. If the airline
function publishes a price within 15 seconds, the enclosing
trim combinator terminates Rwait. If the airline function halts
without publishing, for instance if the airline refuses to pro-
vide a quote, the overall expression publishes a distinguished
value (99999) using the otherwise combinator and terminates
Rwait. However, after 15 seconds with no response from

the airline function, Rwait publishes and the overall expres-
sion publishes a distinguished value. This publication causes
the trim combinator to terminate the request to the airline.
If the distinguished value is published, the subsequent if
causes the askAirline function to halt without publishing.
The betterPrice function is given a current best price, and
an airline. betterPrice calls askAirline and returns the
lower of the airline’s returned price and the current best price.
If askAirline doesn’t publish a result, betterPrice returns
the current best price. Finally, we invoke betterPrice re-
peatedly, starting with our distinguished value as the current
“best” price and passing the result of each betterPrice call
to the next betterPrice call. Each nested betterPrice call
is concurrent with its enclosing call, so by extension, the
entire nested stack of calls will start concurrently. Therefore,
all betterPrice calls are concurrent with one another and
with the findAirline calls.

3. Introduction to OrcO

OrcO introduces objects to Orc in a manner that embraces
the concurrency-first approach of Orc. In particular, object
boundaries are not used to structure concurrency and con-
currency within objects is the same as concurrency among
objects. To introduce and control concurrency, OrcO uses the
Orc combinators. Since objects and concurrency are not con-
trolled using the same constructs, OrcO allows the concurrent
structure and the object-oriented structure of a program to be
orthogonal. Compared to Orc, OrcO adds tools for high-level
program architecture and globally accessible futures. These
differences and their implications are discussed in Section 4.

Objects OrcO objects are recursive, immutable records
with an OrcO expression providing the value for each field.
We call these expressions field bodies instead of initializers
because the latter term is misleading in OrcO. Field bodies
can continue executing after they publish a value. Objects
are implicitly concurrent: all field bodies in an object are
executed concurrently, and any access to a field blocks until
the field’s body publishes a value. This allows fields to
represent ongoing computation, delayed initialization, and
simple values all in one construct without interfering with the
natural concurrency of Orc.

OrcO objects are created using the syntax:

new { val x1 = e1 # . . . # val xn = en }

This creates an object o with fields x1,. . ., xn , and publishes
it immediately. The new expression executes e1,. . .,en and
binds the respective fields x1,. . .,xn to the first publication
of each. Any access to o.xi will block until ei has published
a value, and halt if ei halts without publishing. For fields that
represent ongoing computation, we will write val _ = . . .

to represent an unnamed field, since the value of the field will
never be used. The expressions ei can recursively access the
object o as self. A field access self.x is abbreviated as x as
usual. The # is an optional separator.

551



All the expressions ei are executed in the same trim scope
as the new expression, so a trim can be used to terminate all
of an object’s field bodies. This is similar to the “stop” or
“poison pill” messages supported by many actor systems. Any
field that was already resolved to a value before the object
was terminated will still be accessible, but those that were
not resolved will halt when accessed.

The fields of an OrcO object cannot be modified after they
are resolved. However, a field may be resolved to a mutable
value, such as a Ref as described in Section 2, to allow the
object to have mutable state.

Methods in OrcO are simply fields with function values.
OrcO methods are defined using def f(. . .) = g. This cre-
ates a function value and assigns it to a field named f. Meth-
ods can still be called on a terminated object, but the method
may not be able to complete successfully if it accesses fields
that are were never resolved.

As an example, the following object stores a database
which is loaded at start up, and is reloaded every time the file
changes:

new {

def fileChanged() = . . .

def loadDB() = . . .

val db = Ref(loadDB())

val _ = fileChanged() >> db.write(loadDB())

def query(u) = . . . db.read() . . .

}

The method loadDB loads the database from a file and
publishes it. The method fileChanged publishes signal

every time the data file is modified. The field db contains a
mutable reference to a database that is initialized to the result
of loadDB(). The ongoing computation reloads the database
and updates the value of db every time fileChanged()

publishes, using db.write to set the Ref value. The method
query uses the value of db to perform a query, and hence
will block if it is called before the reference is created and
assigned an initial value.

Classes Classes describe an object implementation that can
be used repeatedly. OrcO’s class mechanism is similar to the
core trait system of the Scala programming language [30]. A
class is defined using the syntax:

class C { val x1 = e1 # . . . # val xn = en }

g

Once C is declared, new C is equivalent to new { . . . }

with the same fields. Classes may recursively instantiate
themselves in their field bodies. The database object from
above can be converted to a class without changing the body
of the object: class DB { . . . }. Now, a new database object
can be created with new DB.

Inheritance OrcO supports class inheritance, which allows
the programmer to build a new subclass by overriding fields
in, and adding fields to, an existing superclass. The subclass

can access the superclass implementation of any field x as
super.x.

A subclass definition is in the form class C extends D

{ . . . }. This defines the class C which inherits from D and
extends and overrides fields. Instances of C will expose all
fields of D in addition to the fields of C. As a convenience, the
programmer can create new objects of anonymous subclasses
using the syntax: new C { . . . }. This form is the same as
creating a subclass of C with the given fields and instantiating
it.

A new class can extend the DB class by inheriting from it:

class RemoteDB extends DB { . . .

def query(u) = {| remoteDB.query(u) |

super.query(u) |}

}

This overrides query with a new implementation that queries
both local and remote databases, and returns the first re-
sponse.

In OrcO, field bodies in the superclass execute concur-
rently with field bodies in the subclass. This also applies to
overridden fields. Any access to a field will wait until the
field is bound, even if the implementation is in a subclass.
Similarly, if the superclass calls a method overridden in the
subclass, the subclass implementation will wait for any re-
quired subclass initialization to complete before publishing
values back to the superclass. This is discussed in more detail
in Section 4.

Mixins OrcO allows a class to inherit from more than
one other class using mixin composition [6, 29]. Mixin
composition combines multiple classes, each implementing
one feature of an object, into a single class. In OrcO, wherever
a class is required, the programmer can provide an expression
D with E which mixes the classes D and E together.

OrcO mixins use a linearization algorithm derived from
Scala’s linearization [28, ch. 5] to align with the Scala-based
class system. This choice is not fundamental to OrcO. A
linearization is a list of classes such that every class appears
after all of its superclasses and no class appears more than
once. In OrcO, the linearization of a class or class expression
is defined by the recursive function L(C).

L(O) = 〈〉

L(E1 with E2) = L(E1)
←−
+ L(E2)

L(C extends E {. . .}) = L(E)
←−
+ 〈C〉

where O is the superclass of classes without a specified
superclass in the program text. Here, A

←−
+ B represents the

concatenation operation where any elements of B that already
appear in A are omitted. As an example, given the code

class A { val field = 0 }

class B extends A { val field = 2 }

class C extends A { val field = 1 }

class D extends B with C { val field = 3 }

552



the linearization of D is L(D) = 〈A, C, B, D〉. The linearization
function is refined and formalized in Appendix A.3.

A reference to super.x in a class E will access x as
implemented by the closest class which implements x before
E in the linearization. This means super will reference
different classes depending on the computed linearization
for self. As an example, consider the object o = new D. If
self is o, then a reference to super.field in D will publish
2, and in B super.field will publish 1.

Like any OrcO object, instances of mixed classes execute
all fields concurrently. This concurrency makes with similar
to the parallel combinator, except that with operates at the
class level. Like parallel, with allows multiple concurrent
computations to be combined without conflict.

Implementation We have implemented a prototype OrcO
interpreter, and used it to develop a few programs. Our current
implementation of OrcO is dynamically typed, since we
have not yet extended Orc’s type system to include objects.
However, we expect to be able to extend the type system,
including Orc’s local type inference, to use an object and
class type system similar to Scala’s. We expect this extended
type system to be expressive enough to statically type all of
the examples in this paper. In addition, we are developing an
optimizing compiler for Orc programs.

4. Design Decisions for OrcO

The goal of OrcO is to provide tools to allow better object-
oriented software engineering in the presence of pervasive
concurrency. To do this, OrcO uses a novel combination of
language design choices:

• OrcO does not restrict the use of concurrency combinators
anywhere in the program.

• OrcO fields are implicit futures and are initialized concur-
rently.

• OrcO objects are controlled using the same primitives
used for any Orc expression.

As in previous work on concurrent objects, OrcO objects
execute concurrently with their environment. We hope these
core design choices will allow better object-oriented and con-
current design by allowing the object-oriented and concurrent
structures of the program to evolve independently of one
another.

Previous approaches to concurrent object-oriented pro-
gramming have focused on using sequential objects to struc-
ture concurrent programs. Briot, Guerraoui, and Lohr [9]
developed a taxonomy describing approaches to concurrent
object-oriented programming. The approaches are divided
into three basic categories: library, integrative, and reflec-
tive. The library approach is the best known approach and
appears in most modern object-oriented languages. It pro-
vides a library of concurrency primitives, such as threads
and locks, represented as objects. This is the approach taken

by languages such as Scala, Java, and C++. The integrative

approach is seen in languages with active objects [23], actors
[1], or any other language structure which is given special
concurrent properties. This approach is used in languages
such as ProActive [11], Encore [7], and Erlang [2]. The re-

flective approach defines the concurrent properties of objects
using meta-programs which modify aspects of specific ob-
jects’ behavior. The programmer can build custom concur-
rency models without changes to the core language. This
approach was used to add concurrency support to Smalltalk
in Actalk [8] and later by Yonezawa [40] and McAffer [24].

OrcO falls between the integrative and the library ap-
proaches and provides some of the advantages of each. OrcO
provides a concurrency model like an integrative language,
but the OrcO concurrency model is less restrictive than most
integrative languages. So, OrcO libraries can implement al-
most any concurrency model using Orc’s combinators (see
Section 5.2). However, for libraries using the Orc combina-
tors, interactions between dissimilar concurrent libraries are
less complicated than in many library concurrent languages.
OrcO does not attempt to provide the level of semantic flexi-
bility of reflexive frameworks.

4.1 OrcO Objects

Prior to the introduction of objects, Orc did not provide any
mechanism for modularizing large programs. This limited
Orc’s usefulness for large programs. OrcO provides objects
that are specifically designed to enable modularization of con-
current programs and hopefully ease large-scale concurrent
programming.

Objects are not the only approach to providing modularity.
We considered using first-class modules as available in ML-
derived languages. However, the object metaphor appears to
be better suited to concurrent programming, because objects
explicitly combine computation and data. Modules provide
similar abstraction, but they don’t encapsulate computation,
represented by the module, with its data, represented by the
values created by the module. This missing encapsulation
would hide the connection between ongoing computation and
data in concurrent programs.

To allow the Orc combinators to control objects, object
field bodies execute in the scope of the instantiation of the
object. This allows the programmer to use the Orc trim
and otherwise combinators to control and monitor object
execution (see Section 5.3). Work on Orc objects prior to
OrcO included a form of objects that executed in their own
protected scope, so that they could not be affected by the rest
of the program. However, protecting objects in this way made
such objects fundamentally different from other expressions
in the language, and prevented the use of Orc’s combinators
to control these objects.

OrcO does not distinguish active and passive objects.
Passive objects simply have no ongoing computation, though
they will generally have concurrent initialization. In addition,

553



terminating an active object using trim turns that object into
a passive object with no associated computation.

OrcO’s uniform object model simplifies the program de-
sign process by insulating the rest of a program from changes
in the amount of ongoing computation and concurrency in an
object. Many integrative languages, such as Encore, have dif-
ferent semantics for calls to active and passive objects which
makes this conversion difficult.

4.2 OrcO Fields and Futures

An OrcO field’s state can only transition from unresolved
(waiting for a value) to halted or resolved to a value, and
cannot change after that, making them monotonic. Fields,
like graft futures, can only be resolved to a publication of
their associated field body. When an object is terminated with
trim, resolved fields retain their value, instead of halting
like unresolved fields. Together these properties simplify
reasoning about the field values, because they can only take
on one value or halt, not both, and the value can only come
from one expression. This is in contrast to futures from
many libraries, such as ECMAScript’s Promise [18, sec.
25.4.3], which can be resolved from any point in the program
which has a reference to the future. OrcO does not guarantee
freedom from data races.

These choices make fields behave the same as Orc’s graft
variables, thus reducing the number of different kinds of
interaction the programmer needs to worry about. There are
several other options that we have considered, however each
introduces complexity for little advantage.

• If fields publish the most recent value published by the
field implementation, then every use of a field would be
the result of a race between the use and the implemen-
tation. This would complicate reasoning about field ac-
cesses.

• If fields publish all values published by the field imple-
mentation after the field read occurs, then fields would no
longer behave like variables. Instead, it would be possi-
ble to miss the value of a variable if the read came too
late. This would result in race conditions even in simple
situations.

• If fields publish all values published by the field imple-
mentation, then the programmer would need to handle
multiple publications in a wider range of locations. We
deemed that requiring the programmer to manually en-
code single value fields using trim or graft was not worth
the added complexity.

These alternative field semantics can be encoded concisely
in OrcO. For instance, the last option above can be encoded
using an auxiliary function AllValues which captures all
publications of it’s argument.

val x = AllValues({ f })

The publications of f are accessed with x.read().

The field futures in OrcO are a new primitive that was
not available in Orc. The graft futures in Orc and OrcO are
dynamically scoped and the future itself cannot escape that
scope, since any access to the future will block until it is
resolved. This prevents graft futures from being blocked on
from other parts of the program. However, OrcO fields are
transparent futures that can be forced from any part of the
program with access to the object. This enables new usage
patterns, such as using fields as flags to notify other parts of
the program of some event (see Section 5.1). These global
futures also directly support lenient data structures—data
structures which are computed eagerly, but concurrently with
their use. Lenient data structure require special encoding in
the original Orc or strict languages, such as Erlang.

OrcO’s use of futures for fields addresses some forms of
uninitialized field access problems which can occur in se-
quential object-oriented languages [31]. Since all field bodies
run concurrently, any access to a field which is not initialized
will block, regardless of which class is providing the value.
Therefore, a superclass can wait for subclass initialization to
compute a value by using a field that the subclass has over-
ridden. No field will ever publish an uninitialized value. It is
possible for initialization to deadlock if several field imple-
mentations mutually block on one another. However, this is
comparatively straightforward to debug since the execution
will be blocked at the exact set of expressions that cause
the problem, unlike null uninitialized values, which often
cause problems that are only apparent later in the program’s
execution.

Finally, OrcO replaced one of the Orc combinators to
avoid unexpected behavior in object-oriented programming.
Previous work on Orc used a combinator called “prune”
equivalent to the following in OrcO:

val x = {| f |} # g

This combination of trim and graft is useful in a functional
programming style since if only one value will be bound to x

then there is no reason to allow f to continue executing. How-
ever, in a concurrent object-oriented setting, the programmer
will generally want objects instantiated by f to continue exe-
cuting since the publication of f may contain references to
them. So, OrcO eliminated the implicit termination of prune
in favor of explicit termination with trim.

4.3 Internal Sites

OrcO adds support for internal sites, which are simply sites
implemented in OrcO. They have the same semantics as sites
implemented outside of OrcO. They can be called and provide
no other interface. Where functions are locally executable
values, sites are references to remote services. Internal sites
are declared in OrcO similarly to functions, but any calls to
them execute where the site is declared, not where it is called.
This means the site body may execute in a different trim
scope than its call. If the declaration of a site is terminated,
all calls to the site halt.

554



Internal sites declared as members of an object will
execute in the same trim scope as the object. Sites can expose
functionality that cannot be invoked once the object has been
terminated or whose execution should be in the trim scope of
the object instead of the caller. Internal sites and functions
coexist because methods of both types are useful and neither
can be easily simulated by the other. Fully exploring the
applications and implications of internal sites is beyond the
scope of this paper.

5. Examples of OrcO

The following four examples demonstrate and discuss a num-
ber of salient characteristics of OrcO. Some of the examples
provide comparisons between an OrcO and a conventional
implementation. We use the Scala programming language as
a state-of-the-art language for comparison purposes. In so
doing, we mean no critique of Scala in particular. Instead,
we use Scala because it is an excellent modern language that
sets a high standard, and has inspired parts of OrcO’s object
model.

5.1 Event Handling

Event handling is a fundamentally asynchronous problem
that appears in almost every application domain. Using the
Orc combinators within an object provides a powerful way to
select and handle events from multiple event streams.

An example of complex event handling is a GUI ap-
plication that performs asynchronous operations such as
database queries. The GUI class, in Figure 3, shows the core
of an application which manages a simple GUI. It performs
database queries based on GUI events and updates the GUI
based on the results. The Database class implements a naïve
“database”, which loads data on start-up and then performs
queries by examining every element of the database. Fig-
ure 4 shows the same classes implemented in Scala. Figure 5
describes two utility functions that simplify the Scala imple-
mentation. These functions are not part of the Scala standard
library but can be implemented in a few lines of code. This
example could be implemented elegantly in an actor system
such as Akka [38] by wrapping the GUI and the database
in actors. Here we compare against a more conventional ap-
proach to show the advantages of OrcO over the library-based
approach to concurrency and asynchrony.

The GUI class, in Figure 3, shows an elegant way to
handle events using Orc’s combinators. Instead of installing a
callback, the GUI class calls a method on the GUI component
that publishes events as they occur. The program waits for
either a button click or a text field activation, and as soon
as either event happens, the GUI stops listening. The trim
combinator guarantees that only one event will be processed,
even if both events happen at the same time. The example
uses an OrcO library function repeat(f) which calls f

immediately and then calls f again each time the previous
call publishes. In this case, repeat restarts the event handling

class GUI {

val db

val queryEntry = TextField()

val queryButton = Button("Query")

val resultsList = ListComponent()

-- GUI event handling

val _ = repeat({

{| queryButton.onAction() |

queryEntry.onAction() |} >>

queryButton.setEnabled(false) >>

resultsList.clear() >>

db.query(queryEntry.getText()) >r>

resultsList.add(r) >> stop ;

queryButton.setEnabled(true)

})

-- Initialization event handling

val _ = queryButton.setEnabled(false) >>

{| db.ready | Rwait(5*seconds) |} >>

queryButton.setEnabled(true)

}

class Database {

val data = new MutableList

val ready =

loadData() >s> data.add(s) >> stop ; signal

def loadData() = . . .

def query(query) =

ready >> data.each() >s> (

if s.matches(query) then s else stop)

}

Figure 3. Event handling example code in OrcO.

once the previous event is handled. In Scala, the GUI needs
to explicitly track when it is making a query, to avoid starting
another query while the previous one is still in progress.
This is because the Scala code cannot detect when the
previous query has finished asynchronously processing the
event without some explicit form of communication.

During database initialization, the GUI class disables the
queryButton. The database provides the field ready, which
is only resolved when the database is initialized. The GUI
accesses this field to wait for the database to initialize, but
also sets a limit on how long it will wait. When either the
database is ready or the timeout occurs, the GUI enables the
queryButton. This pattern uses local concurrency to express
the start-up pattern concisely. The Scala implementation must
register a callback to be called in both the ready and timeout
cases and make sure the action does not occur twice by using
a flag variable.

The Database class loads and queries data in parallel
using the branch combinator on the multiple publications
from loadData(), which publishes records as it loads them,
and data.each(), which publishes all the records in data.
This approach makes loading data and returning results
into asynchronous events. These events are handled in the
GUI class, which displays query results as they become

555



class GUI(db: Database) {

val queryEntry = new JTextField()

val queryButton = new JButton("Query")

val resultsList = new JList()

// GUI event handling

var isQuerying = false

val queryActionListener = new ActionListener {

def actionPerformed(e: ActionEvent): Unit = {

if(isQuerying) return

isQuerying = true

queryButton.setEnabled(false)

listModel.clear()

db.query(queryEntry.getText()) { r =>

onEDT { resultsList.addElement(r) }

}.onComplete { _ =>

onEDT {

queryButton.setEnabled(true)

isQuerying = false

}

}

}

}

queryButton.addActionListener(

queryActionListener)

queryEntry.addActionListener(

queryActionListener)

// Initialization event handling

queryButton.setEnabled(false)

var isButtonEnabledFirstTime = false

def initialEnableButton() = {

onEDT {

if (!isButtonEnabledFirstTime) {

isButtonEnabledFirstTime = true

queryButton.setEnabled(true)

}

}

}

onDelay(5000) { initialEnableButton() }

db.ready.onComplete{_ => initialEnableButton()}

}

class Database {

val data = new mutable.ArrayBuffer[String]()

val ready = Future {

for (s <- loadData()) { data += s }

}

def loadData() = . . .

def query(query: String)(k: (Result => Unit))={

Future {

Await.ready(ready, Duration.Inf)

for (s <- data if s.matches(query)) {

k(Result(s))

}

}

}

}

Figure 4. Event handling example code in Scala.

// Run a block on the GUI event dispatch thread

def onEDT(f: => Unit) = . . .

// Run a block after a timeout (on the EDT)

def onDelay(ms: Int)(f: => Unit) = . . .

Figure 5. Utilities for Scala event handling example.

available. The Scala implementation uses a thread spawned
with the Scala Future library to load and query the data, and
callbacks to send the data to the application. Some degree of
concurrency is lost relative to the OrcO implementation, since
the matching is not performed in parallel or concurrently with
the callback. An actor-based implementation would also lose
this concurrency. The Scala GUI implementation handles
query completion using a callback as well.

This example has two independently asynchronous sys-
tems: the GUI and the database. The OrcO implementation
can use all events and operations homogeneously because
OrcO abstracts the scheduling of the various systems. The
OrcO wrapper for the GUI components integrates the GUI
calls into OrcO’s scheduling system. This is analogous to
integrating a concurrent library into a Scala framework’s
scheduling system. However, a framework integration is spe-
cific to the framework, while an OrcO integration is usable in
any OrcO program.

5.2 Embedding Other Concurrency Models

OrcO’s flexibility allows programmers to embed other con-
currency models in a way similar to library-based concurrent
languages, such as Scala. This section shows an OrcO im-
plementation of active objects and its use. This demonstrates
that other concurrency models can be concisely embedded in
OrcO, without being restricted by the underlying concurrency
model as can happen in integrative languages. In addition,
OrcO’s transparent futures simplify usage of the resulting
concurrent objects in cases where a Scala implementation
would require explicit future handling.

Figure 6a shows a complete implementation of a sequen-
tial executor and its use to implement active object method
dispatch. SequentialExecutor contains a queue object to
manage the execution requests, which are represented as
functions, and a schedule method which adds a function
to the queue. The ongoing computation repeatedly takes a
function out of the queue, calls it, and waits for it to com-
plete. Once the otherwise combinator detects that the func-
tion has halted, signal publishes a value to cause the next
function in the queue to execute. The function may be in-
ternally concurrent. ActiveObjectBase contains an execu-
tor representing the unique thread of control of the active
object. The scheduleMethod method handles scheduling a
method to execute and forwarding the publications of the
call using a Channel. The function submitted to the sched-
uler puts each publication of the method into the channel
and closes the channel when the method halts. The parallel
repeat(c.get) expression at the end of ActiveObjectBase

556



class SequentialExecutor {

val queue = BlockingQueue()

def schedule(f) = queue.put(f)

val _ = repeat({

val f = queue.take()

f() >> stop ; signal

})

}

class ActiveObjectBase {

val exec = SequentialExecutor()

def scheduleMethod(f) =

val c = Channel()

exec.schedule({

f() >x> c.put(x) >> stop ; c.close()

}) >> stop | repeat(c.get)

}

(a) A mixin for active objects and the scheduler used to execute method
bodies.

class Counter extends ActiveObjectBase {

val v = Ref(0)

def incr(x) = scheduleMethod({

v.write(v.read() + x)

})

def read() = v.read()

}

(b) An active object implemented using the above library.

Figure 6. Implementing active objects in OrcO.

publishes each item added to the channel and halts once the
channel is closed. This implementation may seem to only
implement synchronous calls to methods, but the caller can
continue executing while waiting for the result, because of
the concurrent semantics of Orc.

Figure 6b shows an atomic counter implemented as
an active object. Active object style methods are imple-
mented by scheduling their body for later execution using
scheduleMethod. The method incr uses this technique to
guarantee sequential execution of updates to the Ref. How-
ever, the method read does not use sequential execution since
the underlying read operation of Ref is already atomic.

OrcO also allows similar implementations of the actor
model and monitors, among others. The out of order message
processing allowed by the actor model requires a more com-
plicated “mailbox” in place of the queue. However, the exe-
cution scheduling is very simple regardless of whether actors
are allowed to receive messages synchronously as in Erlang
or must provide a continuation as in Akka. For monitors, crit-
ical sections are implemented similarly to scheduleMethod

above except using a lock instead of a scheduling queue.
Condition notification in the monitor is implemented using
standard techniques.

5.3 Controlling Objects

The Orc combinators and the semantics of OrcO objects al-
low OrcO libraries to control and monitor objects without
restricting the range of concurrency patterns that the program-
mer can use in the objects. This is an example of the use of
the trim and otherwise combinators on objects as discussed
in Section 4. In addition, this example shows how these tools
enable useful program control patterns developed for other
programming models.

As an example, we present a simple supervisor library in-
spired by Erlang/OTP [39]. Erlang/OTP allows the program-
mer to construct a hierarchy of supervisors which manage
failures in their subordinate objects. Figure 7a shows a simple
OrcO supervision library, which provides superclasses for
two different restart policies: AllForOneSupervisor, which
restarts all supervised objects if any one of them fails, and
OneForOneSupervisor, which only restarts the failed object.

The SubordinateRef class implements an object man-
ager that creates the object and provides access to it. The
SubordinateRef class calls its constructor method to cre-
ate new instances. SubordinateRef.current is a Clear-
ableRef which can be set to a value or cleared to make all
subsequent read() calls block until it is set again. The def

SubordinateRef defines a constructor function for Subordi-
nateRef to simplify its use. The Supervisor class declares
the common interface for supervisors. In this case, the inter-
face is just a list of subordinates to supervise. AllForOne-
Supervisor and OneForOneSupervisor implement their
distinct supervision strategies using ongoing computation.
AllForOneSupervisor runs all the objects using branch
and if any halts, as detected with the otherwise combinator,
terminates the objects with trim. This process is repeated
indefinitely. OneForOneSupervisor runs all the objects inde-
pendently and uses the same technique to restart each object
if it halts.

Figure 7b shows a small group of servers that are managed
by two nested supervisors. If the database server fails, all the
web servers will be shutdown and restarted; but if a single web
server fails, it will be restarted without affecting other objects.
This whole process can be started by simply instantiating App.
DbServer and WebServer are constructor functions for the
database and web servers.

This implementation has some interesting properties that
distinguish it from Erlang/OTP:

• The objects in the supervisors can directly reference other
objects in related supervisors.

• The use of transparent futures means that any dependent
objects will block for their dependencies to be created
exactly when that dependency is needed.

• The managed objects can be any OrcO expression with
ongoing computation.

A Scala implementation of supervision would be compli-
cated, because Scala lacks universal halt detection and termi-

557



class SubordinateRef {

val constructor

val current = ClearableRef()

def get() = current.read()

def run() = (current.write(constructor()) >>

stop) ; current.clear()

}

def SubordinateRef(c) =

new SubordinateRef { val constructor = c }

class Supervisor { val subordinates }

class AllForOneSupervisor extends Supervisor {

val _ = repeat({ {|

subordinates.each() >m>

(m.run() >> stop ; signal)

|} })

}

class OneForOneSupervisor extends Supervisor {

val _ = subordinates.each() >m> repeat({

m.run() >> stop ; signal

})

}

(a) An implementation of object supervision.

class App extends AllForOneSupervisor {

val subordinates = [webServers, dbServer]

val webServers = SubordinateRef({

new OneForOneSupervisor {

val subordinates = [webSv1, webSv2]

val webSv1 = SubordinateRef({

WebServer(dbServer.get()) })

val webSv2 = SubordinateRef({

WebServer(dbServer.get()) })

}

})

val dbServer = SubordinateRef({ DbServer() })

}

(b) Using the above classes to manage the execution of objects.

Figure 7. Object management example code in OrcO.

nation. Every manageable object would need to provide an
API to terminate it and to notify the SubordinateRef when
it halts. In many cases these termination and halt monitoring
tools would need to be custom written for each object to
support the object’s internal structure and concurrency. This
requirement of a common interface would complicate using
supervisors on objects not implemented with supervision in
mind.

5.4 Composing Objects and Behaviors

The combination of objects with Orc’s combinators in OrcO
allows mixins to extend classes with concurrent or asyn-
chronous behavior. This can be used to implement super-
posed computations [13, sec. 7.3] on top of an underlying

class Handler {

val db

def handle(r)

def sendQuery(q) =

val msg = new Query { val query = q }

db.query(msg) >> stop |

msg.reply.read()

}

class Query {

val query

val reply = Cell()

}

class Database {

val queryChannel = Channel()

def query(q) = queryChannel.put(q)

val _ = repeat(queryChannel.get) >q>

q.reply.write(doQuery(q))

def doQuery(q) = . . .

}

val database = new Database

onRequest() >r> {|

r.reply((new HandlerImpl {

val db = database

}).handle(r)) |

r.onDisconnect()

|}

(a) A request handling framework with a database.

class HandlerImpl extends Handler {

def extractQuery(r) = . . .

def displayResults(r) = . . .

def handle(r) =

val res = sendQuery(extractQuery(r))

displayResults(res)

}

(b) An implementation of Handler.

Figure 8. A set of classes that implement a request handler
and framework in OrcO.

computation. A superposed computation monitors, controls,
or augments an underlying computation without interfering
with its execution. To superpose computation over a group
of interacting classes, the programmer can extend each class
and communicate between the extensions.

One example of a superposed computation is logging
in a web server. For each request, the server instantiates a
Handler and calls its handle method. If the client closes the
connection, the Handler object is killed. This is shown in
Figure 8a along with the definitions of the Handler, Query,
and Database classes. The specific example Handler, Hand-
lerImpl, handles the request by parsing it, then dispatching
a command to a database, and then formatting the result.
The database command is handled by sending a message,
so that terminating the HandlerImpl does not terminate the

558



class LogRecord {

def add(v) = . . .

}

class LoggingQuery extends Query {

val logRec

}

class LoggingDatabase extends Database {

def doQuery(q) =

q.logRec.add(q) |

(val v = super.doQuery(q)

q.logRec.add(v) >> stop | v)

}

class LoggingHandler extends Handler {

val logRec = new LogRecord

val _ = Logger.submit(logRec)

def handle(r) =

logRec.add(r) >> stop |

(val v = super.handle(r)

logRec.add(v) >> stop | v)

def sendQuery(q) =

val msg = new LoggingQuery {

val query = q

val logRec = LoggingHandler.self.logRec

}

db.query(msg) >> stop |

msg.reply.read()

}

(a) Logging superposed onto the handler and database.

class Timeout extends Handler {

def handle(r) = {|

super.handle(r) |

Rwait(timeout) >> TimeoutError()

|}

}

(b) A selection of features added to handlers.

class LoggingHandlerImpl extends HandlerImpl

with Timeout with LoggingHandler {}

val database = new LoggingDatabase

onRequest() >r> {|

r.reply((new LoggingHandlerImpl {

val db = database

}).handle(r)) |

r.onDisconnect()

|}

(c) Using logging, timeout, and asynchrony mixins.

Figure 9. A set of classes that extend the OrcO request
handler (Figure 8) with logging, timeouts, and asynchronous
initialization.

database operation. This can be implemented more clearly
with internal sites as described in Section 4.3. The message
includes a Cell object to hold the reply from the database.
A Cell is a write-once reference. The Handler will wait for
the reply by reading the Cell and the database will send it by
writing to the Cell. This is shown in Figure 8b.

To improve log comprehensibility, information about a
single request and its database query are logged together in
a single log record. To do this, the programmer superposes
logging computation on top of Handler, DB, and Query. The
superposed computation does not interfere with the execution
of the handler or the database.

As shown in Figure 9a, the mixin class LoggingHandler
creates a logging record and submits it to the logging frame-
work without completing it. This guarantees that the re-
quest will be logged if any part of it was actually processed.
LoggingHandler.handle adds the relevant values to the log-
ger. LoggingHandler also overrides sendQuery to pass the
log record to the Query object when it is created. LoggingDB’s
doQuery method logs the query and the results using the log
record added to LoggingQuery. Figure 9c shows how to in-
stantiate and use the logging version of the database and
handler.

In other cases, the developer may need to control the
execution of the original class’s code. Figure 9b shows
Timeout which controls the execution of the superclass.
The call super.handle(r) is wrapped in a trim combinator
which is triggered to kill the handler and report a timeout
after a specific amount of time. Timeout builds on other
Handler classes, without needing to know anything about
the concurrency or scheduling requirements of the superclass.
Therefore, Timeout can be applied to any Handler as shown
in Figure 9c.

To implement superposition and control of this kind in
Scala, the programmer would need to explicitly implement
concurrency support in almost every object. HandlerImpl
and the objects it uses would need to provide support for
termination at any point in their execution. Many methods
would need to be written in an asynchronous style to avoid
blocking the framework.

Superposition similar to this example can be implemented
using an actor system such as Akka. An actor implementation
would use a wrapper actor that represented the superposed
computation. The wrapper would need to intercept and
process messages both entering and leaving the underlying
actor. This precludes the use of the automatic routing facilities
Akka provides, such as message forwarding. The termination
of Timeout would also be difficult to implement, because in
Akka termination only affects one actor at a time not a group.
So, while an Akka implementation would be manageable, the
OrcO implementation shows some notable advantages.

559



6. Related Work

Active Objects Many integrative languages require sequen-
tial execution inside objects or groups of objects. Examples
of this model include Asynchronous Sequential Processes
[10], E [27], JCoBox [32], Panini [3], and ProActive [11].
ProActive and Asynchronous Sequential Processes provide
transparent futures. In all of these languages, futures are only
introduced at asynchronous calls to active or remote objects.
This limits the flexibility of programming in these languages
because asynchrony cannot be introduced without an object
to support it. These languages focus on enabling interactions
between sequential processes.

Emerald [4, 5], like OrcO, enables concurrency both be-
tween and within objects. Like many active object languages,
all concurrency in Emerald is provided by a single sequential
process attached to each object. However, Emerald allows
concurrency within objects by allowing multiple operations
on an object to be invoked at the same time and allowing
these invocations to execute concurrently with the object’s
process. Shared data inside an object is protected with mon-
itors. All invocations in Emerald are synchronous, which
limits concurrency between objects.

Encore [7] is an active object language which tries to solve
many of the limitations of the active object model by integrat-
ing other techniques without changing the core model. While
OrcO and Encore seek to solve related programs, Encore’s
approach is very different. Encore includes multiple ways
to express concurrency each suited to a different use case,
unlike OrcO which uses the same concurrency primitives
in all cases. For instance, Encore makes a strong distinc-
tion between object parallelism and data parallelism, using
active objects for object parallelism and parallel types and
Orc-inspired combinators for data parallelism. Encore lacks
transparent futures.

Several object-oriented languages have actor libraries
which allow actors to be used along with objects in various
ways. These libraries are often used to emulate, loosely
or strictly, the restrictions and properties of active object
languages. A notable example is the Akka actor library [38].

Extended Actors Parallel actor monitors [33] provide a
way to describe allowable concurrency within a single actor.
This is implemented as a separate monitor that dispatches
messages to the actor. The parallel actor monitor is allowed
to dispatch messages to execute concurrently with other
messages in the same actor. This addresses the lack of
concurrency and parallelism within an actor, but does not
allow the level of flexibility that OrcO provides.

Several projects have addressed the limitations of pure
message passing models by introducing a safe shared memory
model. Domains [16] provide an abstraction of memory
regions which can be shared in various ways between actors.
Accesses to domains enforce the use of locks to prevent race
conditions. Domains do not change the execution limitations

of the actors involved, and hence do not enable pervasively
concurrent programming.

ABCL/1 [41] extends actors with non-transparent futures
and new message passing capabilities that utilize them. This
eliminates the need to split actor bodies for message receipt
in the midst of a computation. AmbientTalk [17] uses the
ABCL/1 object model as the basis of a distributed language.

Transparent Futures Multilisp [20] extends Scheme with
explicitly created transparent futures and asynchronously exe-
cuting expressions to resolve those futures. Multilisp does ad-
dress some of the same adaptability problems as OrcO. How-
ever, Multilisp does not attempt to address object-orientation
and does not encourage concurrency-first programming since
concurrency is never the default.

Object-Oriented Distributed Computation X10 [14] and
the derived Habanero-Java [12] provide tools for location-
aware distributed programming over distributed data. These
languages are not designed for concurrent asynchronous
computing so much as parallel computing over large data-
sets. They provide a range of mutual exclusion and signaling
primitives, but those primitives are limited with respect to
nested concurrency. For instance, atomic code blocks cannot
contain parallelism. OrcO does not have these restrictions
and targets higher-level concurrency control and orchestration
instead of parallel computation.

Concurrency Control Languages Several languages have
focused on expressing the concurrency constraints of objects
or programs. This helps alleviate some of the problems
with using concurrent patterns in object-oriented languages,
especially in the presence of inheritance. Jeeg [26] uses
a temporal-logic-based language to describe concurrency
constraints of Java programs. Jeeg and related approaches
provide a language for restricting concurrency, but they do
not enable flexible concurrent programming and generally
still require the use of explicit threads.

Asynchrony Extensions Several modern languages have
added asynchronous programming support, including F# [36],
C# [25], and Python [34]. The asynchrony support comes in
the form of a future type and a way to return control to
a scheduler without losing the state of the local execution.
These features allow the program to perform blocking tasks
without blocking the event or request handling thread, as
long as the blocking code is written with asynchrony in
mind. Specifically, asynchronous functions return a future
to represent their eventual result and other asynchronous
functions block on the future using a special construct that
allows other tasks to run until the future is resolved. F# and
C# also provide tools for scheduling tasks to run on another
thread to allow true parallelism.

Asynchronous programming addresses the problems of
manual event-based programming, such as inversion of con-
trol [36]. Specifically, it avoids the need for the programmer
to manually construct the continuation to be invoked when a

560



value becomes available. However, asynchronous program-
ming does not address the general problem of writing concur-
rent or parallel systems. These asynchronous features are not
needed in OrcO, because concurrency obviates the need for
special handling of asynchronous events.

Concurrent Logic Programming Oz [35] provides concur-
rent object-oriented programming in a constraint logic pro-
gramming language. All variables in Oz—including fields—
are logic variables and assignment is bidirectional unification.
These logic variables take the place of futures in other concur-
rent languages. However, logic variables can be assigned from
anywhere in the program instead of a single position, which
complicates reasoning about future resolution. In addition,
bidirectional unification complicates efficient concurrent and
distributed implementations of Oz. Oz is not concurrency-
first, since to introduce concurrency an Oz program must
execute a special thread construct and Oz method and func-
tion calls are synchronous by default.

7. Conclusion

OrcO provides an approach to concurrent object-oriented
programming that occupies the space between the traditional
integrative and library approaches. It eases concurrency-first
programming through its novel pervasively concurrent de-
sign. This design may simplify reasoning about concurrency
compared to the library approach while not limiting or hiding
the concurrency of the program. OrcO provides potential ad-
vantages in event handling and asynchronous programming
compared to traditional thread-based programming. It also
enables the use of actor-style supervision in heterogeneous
environments where different objects may have different con-
currency properties. Finally, the concurrent semantics of in-
heritance in OrcO enable new uses for inheritance, such as
superposition and execution control.

Orc and, by extension, OrcO have potential for transparent
distributed execution [37]. This would allow OrcO objects
to provide all of their flexibility and power in a distributed
environment without the programmer needing to explicitly
manage the distribution. Just as OrcO decouples concurrency
from objects, it also decouples distribution from objects.

The techniques and tools provided by OrcO are applica-
ble in a wide range of areas, including GUI programming,
web programming, and even robotics. Concurrency-first pro-
gramming will be more and more attractive as the number
of purely sequential elements of programming and operating
environments dwindles. Because of this, the pervasive con-
currency of Orc and the flexible objects of OrcO may be very
useful as the state of the art adjusts to the new requirements
of modern applications.

We do not expect OrcO to replace all other languages for
concurrent object-oriented programming. However, because
OrcO uses a standard class model and is not tied to any type
system, the important elements of its design could be used in

a wide range of contexts. We hope that OrcO’s design will
inform the development and design of future languages.

Acknowledgments

Thanks to the anonymous reviewers for their useful and in-
sightful comments. Special thanks to Jayadev Misra and Don
Batory for their guidance, advice, and insights throughout
this work.

References

[1] G. Agha. Actors: A Model of Concurrent Computation in

Distributed Systems. MIT Press, Dec. 1986. ISBN 0-262-
01092-5.

[2] J. Armstrong. Erlang – A survey of the language and its
industrial applications. In The Ninth Exhibition and Symposium

on Industrial Applications of Prolog (INAP), 1996. URL
http://www.erlang.se/publications/inap96.pdf.

[3] M. Bagherzadeh and H. Rajan. Panini: A concurrent pro-
gramming model for solving pervasive and oblivious in-
terference. In 14th International Conference on Modu-

larity (MODULARITY 2015), pages 93–108. ACM, 2015.
doi:10.1145/2724525.2724568.

[4] A. Black, N. Hutchinson, E. Jul, and H. Levy. Object struc-
ture in the Emerald system. In OOPSLA ’86: Object-Oriented

Programming Systems, Languages, and Applications: Con-

ference Proceedings, pages 78–86, New York, 1986. ACM.
doi:10.1145/28697.28706.

[5] A. P. Black, N. C. Hutchinson, E. Jul, and H. M. Levy. The
development of the Emerald programming language. In Pro-

ceedings: The Third ACM SIGPLAN History of Programming

Languages Conference (HOPL-III), pages 11–1–11–51, New
York, 2007. ACM. doi:10.1145/1238844.1238855.

[6] G. Bracha and W. Cook. Mixin-based inheritance. In OOP-

SLA/ECOOP ’90: Proceedings of Joint Conference on Object-

Oriented Programming Systems, Languages, and Applications /

European Conference on Object-Oriented Programming, pages
303–311. ACM, 1990. doi:10.1145/97945.97982.

[7] S. Brandauer, E. Castegren, D. Clarke, K. Fernandez-Reyes,
E. B. Johnsen, K. I. Pun, S. L. T. Tarifa, T. Wrigstad, and
A. M. Yang. Parallel objects for multicores: A glimpse at the
parallel language Encore. In M. Bernardo and B. E. Johnsen,
editors, Formal Methods for Multicore Programming: 15th

International School on Formal Methods for the Design of

Computer, Communication, and Software Systems, SFM 2015,
pages 1–56, Cham, 2015. Springer International Publishing.
doi:10.1007/978-3-319-18941-3_1.

[8] J.-P. Briot. Actalk: A testbed for classifying and designing
actor languages in the Smalltalk-80 environment. In ECOOP

89: Proceedings of the Third European Conference on Object-

Oriented Programming, pages 109–129. Cambridge University
Press, 1989. ISBN 0-521-38232-7.

[9] J.-P. Briot, R. Guerraoui, and K.-P. Lohr. Concurrency and
distribution in object-oriented programming. ACM Comput.

Surv., 30(3):291–329, Sept. 1998. doi:10.1145/292469.292470.

[10] D. Caromel and L. Henrio. A Theory of Distributed Objects:

Asynchrony — Mobility — Groups — Components, chapter

561

http://www.erlang.se/publications/inap96.pdf
http://dx.doi.org/10.1145/2724525.2724568
http://dx.doi.org/10.1145/28697.28706
http://dx.doi.org/10.1145/1238844.1238855
http://dx.doi.org/10.1145/97945.97982
http://dx.doi.org/10.1007/978-3-319-18941-3_1
http://dx.doi.org/10.1145/292469.292470


Asynchronous Sequential Processes, pages 69–74. Springer,
2005. doi:10.1007/3-540-27245-3_4.

[11] D. Caromel, C. Delbé, A. Di Costanzo, M. Leyton, and
Others. ProActive: An integrated platform for program-
ming and running applications on grids and P2P sys-
tems. Comput. Methods Sci. Technol., 12(1):69–77, 2006.
doi:10.12921/cmst.2006.12.01.69-77.

[12] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-Java:
The new adventures of old X10. In Proceedings of the

9th International Conference on Principles and Practice of

Programming in Java (PPPJ 2011), pages 51–61. ACM, 2011.
doi:10.1145/2093157.2093165.

[13] K. M. Chandy and J. Misra. Parallel Program Design: A

Foundation. Addison-Wesley, 1988. ISBN 0-201-05866-9.

[14] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. In OOP-

SLA ’05: 20th Annual ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages
519–538. ACM, 2005. doi:10.1145/1094811.1094852.

[15] W. Cook and J. Misra. Structured interacting computa-
tions. In Software-Intensive Systems and New Computing

Paradigms: Challenges and Visions, volume 5380 of Lecture

Notes in Computer Science, pages 139–145. Springer, 2008.
doi:10.1007/978-3-540-89437-7_9.

[16] J. De Koster, S. Marr, T. Van Cutsem, and T. D’Hondt. Do-
mains: Sharing state in the communicating event-loop ac-
tor model. Comput. Lang. Syst. Struct., 45:132–160, 2016.
doi:10.1016/j.cl.2016.01.003.

[17] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and
W. De Meuter. Ambient-oriented programming in Ambi-
entTalk. In D. Thomas, editor, ECOOP 2006 – Object-Oriented

Programming: 20th European Conference, Nantes, France,

July 3-7, 2006. Proceedings, volume 4067 of Lecture Notes

in Computer Science, pages 230–254, Berlin, 2006. Springer.
doi:10.1007/11785477_16.

[18] Ecma International. ECMAScript 2015 language specification.
Standard ECMA-262, 6th Edition, Ecma International, Geneva,
June 2015.

[19] A. Goldberg and D. Robson. Smalltalk-80: The Language

and Its Implementation. Addison-Wesley, 1983. ISBN 0-201-
11371-6.

[20] R. H. Halstead. Multilisp: A language for concurrent symbolic
computation. ACM Trans. Program. Lang. Syst., 7(4):501–538,
Oct. 1985. doi:10.1145/4472.4478.

[21] D. Kitchin, W. R. Cook, and J. Misra. A language for task
orchestration and its semantic properties. In CONCUR 2006

– Concurrency Theory: 17th International Conference: Pro-

ceedings, volume 4137 of Lecture Notes in Computer Science,
pages 477–491. Springer, 2006. doi:10.1007/11817949_32.

[22] D. Kitchin, A. Quark, W. Cook, and J. Misra. The Orc program-
ming language. In Formal Techniques for Distributed Systems:

Joint 11th IFIP WG 6.1 International Conference FMOODS

2009 and 29th IFIP WG 6.1 International Conference FORTE

2009: Proceedings, volume 5522 of Lecture Notes in Computer

Science, pages 1–25. Springer, 2009. doi:10.1007/978-3-642-
02138-1_1.

[23] R. G. Lavender and D. C. Schmidt. Active Object: An object
behavioral pattern for concurrent programming. In Pattern

Languages of Program Design 2 (PLoP’95), pages 483–499.
Addison-Wesley, 1996. ISBN 0-201-895277.

[24] J. McAffer. Meta-level programming with CodA. In M. Tokoro
and R. Pareschi, editors, ECOOP ’95 — Object-Oriented Pro-

gramming: 9th European Conference, pages 190–214, Berlin,
Heidelberg, 1995. Springer Berlin Heidelberg. doi:10.1007/3-
540-49538-X_10.

[25] Microsoft Corp. Asynchronous programming with async and
await (C# and Visual Basic), 2015. URL https://msdn.

microsoft.com/en-us/library/hh191443.aspx.

[26] G. Milicia and V. Sassone. Jeeg: A programming language for
concurrent objects synchronization. In JGI’02: Proceedings

of the 2002 Joint ACM-ISCOPE Conference on Java Grande,
pages 212–221. ACM, 2002. doi:10.1145/583810.583834.

[27] M. S. Miller, E. D. Tribble, and J. Shapiro. Concurrency
among strangers: Programming in E as plan coordination.
In Trustworthy Global Computing: International Symposium,

TGC 2005: Revised Selected Papers, volume 3705, pages 195–
229. Springer, 2005. doi:10.1007/11580850_12.

[28] M. Odersky. The Scala language specification: Version 2.9,
June 2014. URL http://www.scala-lang.org/docu/

files/ScalaReference.pdf.

[29] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal
theory of objects with dependent types. In ECOOP 2003 –

Object-Oriented Programming: 17th European Conference:

Proceedings, volume 2743 of Lecture Notes in Computer

Science, pages 201–224. Springer, 2003. doi:10.1007/978-
3-540-45070-2_10.

[30] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Mich-
eloud, N. Mihaylov, M. Schinz, E. Stenman, and M. Zenger.
An overview of the Scala programming language. Technical
Report IC/2004/64, EPFL, Lausanne, Switzerland, 2004.

[31] X. Qi and A. C. Myers. Masked types for sound object initial-
ization. In POPL’09: Proceedings of the 36th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’09, pages 53–65, New York, NY, USA,
2009. ACM. doi:10.1145/1480881.1480890.

[32] J. Schäfer and A. Poetzsch-Heffter. JCoBox: Generalizing
active objects to concurrent components. In ECOOP 2010 –

Object-Oriented Programming: 24th European Conference:

Proceedings, volume 6183 of Lecture Notes in Computer

Science, pages 275–299. Springer, 2010. doi:10.1007/978-
3-642-14107-2_13.

[33] C. Scholliers, É. Tanter, and W. De Meuter. Parallel actor
monitors: Disentangling task-level parallelism from data parti-
tioning in the actor model. Sci. Comput. Program., 80:52–64,
Feb. 2014. doi:10.1016/j.scico.2013.03.011.

[34] Y. Selivanov. PEP 492 — Coroutines with async and await
syntax, 2015.

[35] G. Smolka, M. Henz, and J. Würtz. Object-oriented concurrent
constraint programming in Oz. In Grundlagen und Anwendun-

gen der Künstlichen Intelligenz: 17. Fachtagung für Künstliche

562

http://dx.doi.org/10.1007/3-540-27245-3_4
http://dx.doi.org/10.12921/cmst.2006.12.01.69-77
http://dx.doi.org/10.1145/2093157.2093165
http://dx.doi.org/10.1145/1094811.1094852
http://dx.doi.org/10.1007/978-3-540-89437-7_9
http://dx.doi.org/10.1016/j.cl.2016.01.003
http://dx.doi.org/10.1007/11785477_16
http://www.ecma-international.org/ecma-262/6.0/
http://dx.doi.org/10.1145/4472.4478
http://dx.doi.org/10.1007/11817949_32
http://dx.doi.org/10.1007/978-3-642-02138-1_1
http://dx.doi.org/10.1007/978-3-642-02138-1_1
http://dx.doi.org/10.1007/3-540-49538-X_10
http://dx.doi.org/10.1007/3-540-49538-X_10
https://msdn.microsoft.com/en-us/library/hh191443.aspx
https://msdn.microsoft.com/en-us/library/hh191443.aspx
http://dx.doi.org/10.1145/583810.583834
http://dx.doi.org/10.1007/11580850_12
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://dx.doi.org/10.1007/978-3-540-45070-2_10
http://dx.doi.org/10.1007/978-3-540-45070-2_10
https://infoscience.epfl.ch/record/52656/files/ScalaOverview.pdf
http://dx.doi.org/10.1145/1480881.1480890
http://dx.doi.org/10.1007/978-3-642-14107-2_13
http://dx.doi.org/10.1007/978-3-642-14107-2_13
http://dx.doi.org/10.1016/j.scico.2013.03.011
https://www.python.org/dev/peps/pep-0492/


Intelligenz, pages 44–59. Springer, 1993. doi:10.1007/978-3-
642-78545-0_3.

[36] D. Syme, T. Petricek, and D. Lomov. The F# asynchronous
programming model. In Practical Aspects of Declarative

Languages: 13th International Symposium, PADL 2011: Pro-

ceedings, volume 6539 of Lecture Notes in Computer Science,
pages 175–189. Springer, 2011. doi:10.1007/978-3-642-18378-
2_15.

[37] J. A. Thywissen, A. M. Peters, and W. R. Cook. Implicitly dis-
tributing pervasively concurrent programs: Extended abstract.
In First Workshop on Programming Models and Languages

for Distributed Computing, PMLDC ’16, pages 1:1–1:4, New
York, NY, USA, 2016. ACM. doi:10.1145/2957319.2957370.

[38] Typesafe Inc. Akka, 2016. URL http://akka.io/.

[39] S. Vinoski. Reliability with Erlang. IEEE Internet Computing,
11(6):79–81, Nov. 2007. doi:10.1109/MIC.2007.132.

[40] A. Yonezawa. A reflective object oriented concurrent language
ABCL/R. In T. Ito and R. H. Halstead, editors, Parallel

Lisp: Languages and Systems: US/Japan Workshop on Parallel

Lisp: Proceedings, pages 254–256, Berlin, Heidelberg, 1990.
Springer Berlin Heidelberg. doi:10.1007/BFb0024158.

[41] A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented
concurrent programming in ABCL/1. In OOPSLA ’86: Object-

oriented Programming Systems, Languages, and Applications:

Conference Proceedings, pages 258–268, New York, 1986.
ACM. doi:10.1145/28697.28722.

A. Formal Semantics

We have extended the formal semantics of Orc without
objects [21] to include the additional features of OrcO. The
semantics are included here to demonstrate, through their
relative brevity, that OrcO’s expressiveness does not come
at the cost of high complexity. The formal semantics are
divided into two parts: an internal semantics, in Figure 11,
which describes the behavior of OrcO programs, and an
external semantics, in Figure 13, which describes how OrcO
programs interact with the global store and the external
environment. Figure 10 defines the abstract syntax of each
of the constructs used in the internal and external semantics.
Expression halting is formally defined in Figure 12 and used
in the internal semantics.

A.1 Internal Semantics

The internal semantics defines how an OrcO expression f
transitions to a new expression f ′ by emitting the label l;

denoted f
l
−→ f ′. The most important of these labels

is !v, a publication of the value v, with which many of
the combinators interact. Labels other than publications are
denoted by n and are emitted by expressions in the internal
semantics, but do not interact with OrcO expressions. Instead,
the (PROPAGATE) rule propagates these labels up to the top-
level expression, where they are interpreted by the external
semantics. Expressions can transition to a new form without
side effects using a special label τ .

x, y, z ∈ Variable

V ∈ Value

k ∈ Handle

q ∈ Object

F ∈ Function ::= def y(x̄) = f
D ∈ Declaration ::= F

val x = f

f, g ∈ Expression ::= p Bare parameter
p.x Object member
p(p̄) Call
k? Call handle
f | g Parallel
f >x> g Branch x to g
f <−x− g Graft x from g
f ; g Otherwise
{| f |} Trim
D # f Scoped declaration
k ⊳ p Store
new {z D̄}New object

v ∈ Orc value ::= V F q
w ∈ Response ::= v stop

p ∈ Parameter ::= w x

Future ::= w k
Σ ∈ Variable → Future

n ∈ Non-pub Label ::= k ⊲ V (v̄)
k ⊳ w
new Σ
τ

l ∈ Label ::= !v n

E ∈ Execution context ::= �

E | g
f | E
E >x> g
E <−x− g
f <−x− E
E ; g
{| E |}

D # E

E[f ] ≡ [� 7→ f ]E

Figure 10. Formal syntax of OrcO.

563

http://dx.doi.org/10.1007/978-3-642-78545-0_3
http://dx.doi.org/10.1007/978-3-642-78545-0_3
http://dx.doi.org/10.1007/978-3-642-18378-2_15
http://dx.doi.org/10.1007/978-3-642-18378-2_15
http://dx.doi.org/10.1145/2957319.2957370
http://akka.io/
http://dx.doi.org/10.1109/MIC.2007.132
http://dx.doi.org/10.1007/BFb0024158
http://dx.doi.org/10.1145/28697.28722


f
n
−→ f ′

E[f ]
n
−→ E[f ′]

(PROPAGATE)

v
!v
−→ stop (PUBLISH)

k fresh

V (v̄)
k ⊲ V (v̄)
−→ k?

(SITECALL)

F = def y(x̄) = g
FV (F ) = ∅

F # f
τ
−→ [y 7→ F ]f

(DEFCREATE)

F = def y(x̄) = g

F (p̄)
τ
−→ [y 7→ F ][x̄ 7→ p̄]g

(DEFCALL)

(val x = g) # f
τ
−→ f <−x− g (VAL)

f
!v
−→ f ′

f | g
l
−→ f ′ | g

(PARL)

g
!v
−→ g′

f | g
l
−→ f | g′

(PARR)

f
!v
−→ f ′

f >x> g
τ
−→ f ′ >x> g | [x 7→ v]g

(BRANCH)

f
!v
−→ f ′

f <−x− g
!v
−→ f ′

<−x− g
(GRAFTL)

g
!v
−→ g′

f <−x− g
τ
−→ [x 7→ v]f | stop <−x− g′

(GRAFTV)

g halted

f <−x− g
τ
−→ [x 7→ stop]f

(GRAFTSTOP)

f
!v
−→ f ′

f ; g
!v
−→ f ′

(OTHERV)

f halted

f ; g
τ
−→ g

(OTHERSTOP)

f
!v
−→ f ′

{| f |}
!v
−→ stop

(TRIM)

dom(D̄) = {y0, . . . , yn}
{k0, . . . , kn} fresh

q fresh
f = D̄ # (k0 ⊳ y0 | . . . | kn ⊳ yn)
Σ = {q.y0 7→ k0, . . . , q.yn 7→ kn}

new {z D̄}
new Σ
−→ q | [z 7→ q]f

(NEW)

k ⊳ w
k ⊳ w
−→ stop (STORE)

Figure 11. Internal semantics of OrcO.

f halted D 6= val x = g

D # f halted
(HALTDEF)

f halted g halted

f | g halted
(HALTPAR)

f halted

f >x> g halted
(HALTBRANCH)

f halted

{| f |} halted
(HALTTRIM)

stop(p̄) halted (HALTCALL)

V (..., stop, ...) halted (HALTARG)

stop.x halted (HALTMEMBER)

stop halted (HALTSTOP)

Figure 12. Definition of halted expressions.

564



The rule (SITECALL) implements site calls by notifying
the environment and waiting for a response. The rule emits
a site call label, attaching a unique handle k to the label
that indicates where the response to the site call should go.
The call transitions to the expression k?, which waits for the
response. Note that this rule only applies if the entity being
called is an external value V ; functions F are handled by
(DEFCALL), and objects q cannot be called. The arguments
to the call must be values as site calls are strict.

The rules (DEFCREATE) and (DEFCALL) implement
function definition and invocation. (DEFCREATE) takes a
scoped function definition and turns it into a closure F ,
substituting the closure for each occurrence of the defined
name y in the scoped expression. (DEFCALL) calls a closure,
replacing the call expression with the function body, replacing
the arguments x̄ with the call parameters p̄ and replacing
the function name y with a copy of the closure itself to
allow recursion. Unlike site calls, function calls are lenient:
the arguments to a function call may be any parameters p,
including unbound variables or stop.

The rule (VAL) defines the semantics of the val definition
by transforming it into a graft combinator. Normally this
would be syntactic sugar, but because of the way objects are
interpreted in the semantics, it must be transformed explicitly
using a transition rule.

The eight combinator rules define how publication and
halting are handled inside subexpressions. The rules (PARL)
and (PARR) allow publications to propagate from either side
of a parallel combinator. (BRANCH) captures a publication
!v from the left side of a branch combinator, consumes the
publication, and creates a parallel copy of the right expression
g where x has been replaced by v. (GRAFTL) allows publi-
cations to propagate from the left side of a graft combinator.
The rule (GRAFTV) captures a publication !v from the right
side of a graft combinator, consumes the publication, and
then splits the graft combinator into two parallel expressions:
the left expression with x replaced by v, and the right expres-
sion with all subsequent publications suppressed by >> stop.
The rule (GRAFTSTOP) detects that the right side of a graft
combinator has halted with no publications, discards the right
side, and replaces x with stop in the left side to indicate that
the variable x will never be bound. The rule (OTHERV) drops
the right side of an otherwise combinator when the left side
publishes. The rule (OTHERSTOP) executes the right side of
an otherwise combinator when the left side halts. The rule
(TRIM) replaces the trim combinator with stop (terminating
all subexpressions) when the contained expression publishes,
and emits the publication.

The object semantics are defined using rules for object
instantiation, and field binding. Classes are defined in Sec-
tion A.3 as a translation to pure objects. The rule (NEW)
instantiates an object defined by a set of declarations. It de-
termines the field names yi of the object to be created; these
are just the domain of the definitions D̄. It then creates a

unique handle ki corresponding to each field yi, and a unique
object value q to represent the new object. The instantiation
emits the object store Σ, and transitions to the object value
q, with the object body f executing in parallel. The object
body expression f waits, in parallel, for each defined field yi
to become bound, and stores its value to the corresponding
future ki. In f , all occurrences of the object’s self reference z
have been replaced by q. The object store Σ associates each
field on the object with its corresponding future. (STORE)
handles a resolved field value by emitting a storage event
when a response w is available to be stored to a handle k.
This storage event will replace k with w in the global store.

A.2 External Semantics

The external semantics defines how the environment η, the
global store Σ, and the OrcO expression f all transition to
their new counterparts η′, Σ′, and f ′; denoted η,Σ, f →֒
η′,Σ′, f ′. Unlike the internal semantics, this is not a labeled
transition. The external semantics rules are given in Figure 13.

The store Σ is a map from a field of an object to a either
a response w if the field is resolved, or a handle k if it is not
resolved. The environment η is an abstract representation of
all behavior outside of the OrcO program.

Five rules allow the internal semantics to execute the OrcO
program and use the label to update the environment and
store. The rule (STEP) allows an expression to make a silent
transition. This has no effect on the environment or store.
(STEPV) allows an expression to make a transition and emit
a publication. The publication is added to the environment,
perhaps as console output, but it has no other effect. (CALL)
allows an expression to send a site call to the environment.
(ALLOC) allows an expression to append a newly instantiated
object Σ′, represented as a store containing its fields, to the
global store. (STORE) allows an expression to bind k to a
value, replacing all occurrences of k in the store with w.

The rules (MEMBER) and (RETURN) transfer information
from the environment and store into the program. (MEMBER)
allows an expression to retrieve a resolved future from the
store by substitution into the expression. The execution con-
text E allows the substitution to occur on any subexpression
that is currently executing. (RETURN) allows the environment
to report the result of a site call by mapping its associated
handle k to some response w. The expression accepts this
response from the environment by replacing k? with w.

The rule (EXTERNAL) allows the environment to make
arbitrary transitions of its own. This represents the externally
implemented semantics of sites.

The rule (NOSENDER) allows the store to detect that a
handle k referenced in the store has disappeared from the
program. This occurs when an expression containing an
executing object is trimmed before all of the object’s futures
are resolved. In this case, the handle k resolves to stop in the
store, so that field accesses do not block forever on an object
that is no longer executing.

565



f
τ
−→ f ′

η,Σ, f →֒ η,Σ, f ′
(STEP)

f
!v
−→ f ′

η,Σ, f →֒ η ∪ {!v},Σ, f ′
(STEPV)

f
k ⊲ V (v̄)
−→ f ′

η,Σ, f →֒ η ∪ {k ⊲ V (v̄)},Σ, f ′
(CALL)

η(k) = w

η,Σ, f →֒ η,Σ, [k? 7→ w]f
(RETURN)

η → η′

η,Σ, f →֒ η′,Σ, f
(EXTERNAL)

f
new Σ′

−→ f ′

η,Σ, f →֒ η,Σ ∪ Σ′, f ′
(ALLOC)

f
k ⊳ w
−→ f ′

η,Σ, f →֒ η, [k 7→ w]Σ, f ′
(STORE)

Σ(q.x) = w

η,Σ, E[q.x] →֒ η,Σ, E[w]
(MEMBER)

k ∈ FV (Σ) k /∈ FV (f)

η,Σ, f →֒ η, [k 7→ stop]Σ, f
(NOSENDER)

Figure 13. External semantics of OrcO.

FF(〈〉, z) = new {w }
FF(〈L,C{D̄}〉, z) = new {w val s = FF(L, z) # S̄(L, D̄, s) # [super 7→ s][self 7→ z]D̄ }
FC(〈L,C{D̄}〉) = def newC() = new {z val s = FF(L, z) # S̄(L, D̄, s) #

[new C 7→ newC()][super 7→ s][self 7→ z]D̄ }
S̄(L, D̄, s) = {val x = s.x where x ∈ dom(L) ∧ x 6∈ dom(D̄)}

where dom(L) =
⋃

C{D̄′}∈L
dom(D̄′)

Figure 14. Translation functions for OrcO classes.

A.3 Class Semantics

The underlying OrcO calculus does not support inheritance
or mixins. Instead, classes are converted into constructor
functions which create instances based on the linearization
of the class. The super reference is a specialized instance
of the superclass which uses self from the subclass object
instead of its own self. This technique would not work for
sequential objects, because superclass initialization and sub-
class initialization would be ordered preventing the superclass
from observing the subclass initialization or visa-versa. OrcO
objects are initialized concurrently, so the superclass and sub-
class can block on any fields they need without affecting the
rest of the initialization.

Formally, class inheritance in OrcO is defined as a trans-
lation from surface language class constructs (Figure 1) into
the abstract syntax (Figure 10). The translation replaces each
class definition class C { . . . } with a function newC and
each instantiation new C with a call newC().

A class E expression can be one of three forms: a sub-
class C extends E {D̄} where C is a class name, two mixed
classes E1 with E2, or the empty class O. A surface lan-
guage class class C extends E { . . . } is translated to a

subclass C extends E {. . .}. A surface language class with
no subclass is treated as a subclass of O. Mixins translate
directly.

A class expression E is translated into a sequence of sets
of fields labeled with the class in which they are declared.
This sequence is called the linearization L(E) and written as
〈C1{D̄1}, C2{D̄2}, . . .〉. This is a refinement of the lineariza-
tion function in Section 3. L(E) is defined as a recursive
function on class expressions:

L(O) = 〈〉

L(E1 with E2) = L(E1)
←−
+ L(E2)

L(C extends E {D̄}) = L(E)
←−
+ 〈C{D̄}〉

Here A
←−
+ B represents the concatenation operation where

any elements of B that already appear in A are omitted.

A
←−
+ 〈B, b〉 = 〈(A

←−
+ B), b〉 if b 6∈ A

= A
←−
+ B if b ∈ A

As an example, the class class C extends A with B { }

(assuming A and B have no superclasses) has linearization
〈A{. . .}, B{. . .}, C{}〉.

566



From a linearization, we can build an instantiation expres-
sion in the OrcO calculus. Building this expression takes two
functions defined in Figure 14: FF(〈L,C{D̄}〉, z) (flatten
fragment) translates a linearization (where L is the prefix of
the linearization) into an expression that instantiates a flatten
variant of C and all classes in L with a given self reference z;
and FC(C) (flatten class) which performs the same translation
using its own self reference and building a recursive function.
S̄(L, D̄, s) is an auxiliary function (also defined in Figure 14)
which constructs a set of fields which forwards every field
in L which is not present in D̄. The function FF recursively
builds a chain of nested superclass instances all sharing the

given self reference. FF does not use the self reference w
of the object it creates. The function FC builds a recursive
class constructor, using FF to construct the super reference.
Each object forwards any fields it does not define to its super
reference.

The translation for a surface language expression class

C extends E { D̄ } # e is:

FC(L(C extends E{D̄})) # [new C 7→ newC()]e

with any class names in E resolved to the appropriate class
expressions. This translation supports recursive classes by
using recursive functions.

567


	Introduction
	Background on Orc
	Introduction to OrcO
	Design Decisions for OrcO
	OrcO Objects
	OrcO Fields and Futures
	Internal Sites

	Examples of OrcO
	Event Handling
	Embedding Other Concurrency Models
	Controlling Objects
	Composing Objects and Behaviors

	Related Work
	Conclusion
	Formal Semantics
	Internal Semantics
	External Semantics
	Class Semantics


