
Workflow Patterns in Orc

William R. Cook, Sourabh Patwardhan, and Jayadev Misra

Department of Computer Sciences, University of Texas at Austin
{wcook,sourabh,misra}@cs.utexas.edu

Abstract. Van der Aalst recently proposed a set of workflow patterns to
characterize the kinds of control flow that appear frequently in workflow
processes. These patterns are useful for evaluating the capabilities of
workflow systems and models. In this paper we provide implementations
of the workflow patterns in Orc, a new process calculus for orchestrating
wide-area computations. A key feature of the Orc implementations is
that they are expressed as definitions that can be reused as needed.

1 Introduction

The concept of workflow is familiar to anyone who has worked in an organization:
achieving almost any goal requires coordination of multiple activities involving
multiple participants. These activities are typically subject to many constraints
and dependencies governing the order of activities and the capabilities of par-
ticipants. Exceptional situations, interrupts, and failures must also be handled
without losing sight of the end goal.

Despite the familiar and prosaic nature of workflow, developing formal models
and languages for expressing workflows has proven to be a significant research
challenge. The Workflow Management Coalition defines workflow informally as
“The computerised facilitation or automation of a business process, in whole or
part.” [14] Their reference model defines vocabulary and identifies the interfaces
into and out of a workflow system, but it does not provide a formal model of
workflow.

Formal models of concurrency are being applied to the analysis of workflow.
Petri Nets, which are a variant of finite state automata, have been used to model
workflows for many years [1, 5]. Others have proposed using the π-calculus as a
workflow model [9]. UML activity diagrams, which are a form of flowchart, have
also been used extensively in analysis and design of workflows [4, 6]. There is
as yet no widely-accepted formal model of workflow. The lack of a fundamental
model of workflow makes it difficult to compare different models.

Recently van der Aalst proposed a set of workflow patterns [2] to character-
ize the kinds of control flow that appear frequently in workflow processes. The
patterns facilitate comparison of very different workflow products and models:
products can be compared quantitatively by counting the number of workflow
patterns they can express directly, and qualitatively by examining the complex-
ity of each pattern’s implementation. The patterns have been implemented in a

2 Cook, Patwardhan & Misra

wide range of systems, providing surprising range of solutions to these common
problems [2, 11, 13, 9].

This paper shows how Orc [8], a new orchestration language, can be used to
implement the workflow patterns. Orc is a process calculus in which basic ser-
vices, like user interaction and data manipulation, are implemented by primitive
sites. Orc provides constructs to orchestrate the concurrent invocation of sites
to achieve a goal – while managing time-outs, priorities, and failure of sites or
communication. Orc has already been used to implement a variety of traditional
concurrent programming patterns [8], some of which overlap with the workflow
patterns.

One difficulty in using van der Aalst’s patterns is that the patterns are not
formally defined. The informal descriptions are suggestive but in many cases
admit several interpretations. The implementations in this paper are based on a
study of the original pattern descriptions [2] and their implementation in [11].

2 Overview of Orc

An Orc program consists of a set of definitions and a goal expression which is to
be evaluated. The evaluation of the goal expression calls sites (see below) and
defined expressions, and publishes values. In this section, we give an informal
overview of the programming model. For more a more detailed discussion and a
formal semantics, see [8].

2.1 Syntax

In the following syntax, E is an expression name, M a site name, x a variable,
c a constant, p̄ a list of actual parameters and q̄ a list of formal parameters.

e, f, g, h ∈ Expression ::= M(p̄) || E(p̄) || f >x> g || f | g || f where x :∈ g || x
p ∈ Actual ::= x || M || c || f
q ∈ Formal ::= x || M

Definition ::= E(q̄) ∆ f

An expression can be a site call M(p̄), or a call to a defined expression E(p̄).
There are only three operators: >x> for sequential composition, | for parallel
composition, and where for asymmetric parallel composition. The operators are
listed in decreasing order of precedence, so that f >x> g | h means (f >x> g) | h.
The following sections discuss each kind of expression in turn. The syntax of Orc
is extended here to include expressions as arguments in calls to definitions, using
the same substitution semantics given in [8].

2.2 Site Call

The simplest Orc expression is a site call M(p̄), where M is a site name and
p̄ is a list of actual parameters. A site is a separately defined procedure, like a

Workflow Patterns in Orc 3

web service. The site may be implemented on the client’s machine or a remote
machine. A site call elicits at most one response; it is possible that a site never
responds to a call.

A site call CNN (d), where CNN is a news service and d is a date, may down-
load the newspage for the specified date. Calling Email(a,m) sends message m
to address a, causing permanent change in the state of the recipient’s mailbox,
and returns a signal to the client to denote completion of the operation. Call-
ing an airline flight-booking site returns the booking information and causes a
tentative state change in the airline database.

Site calls are strict, i.e., a site is called only if all its parameters have values.
We define a few sites in Table 1 that are fundamental to effective program-

ming in Orc. Additionally, 0 represents a site which never responds; it may
be used to terminate certain parts of a computation. Orc expressions can use
Rtimer to manage time, although none of the current workflow patterns require
this ability.

let(x, y, · · ·) Returns argument values as a tuple.
if (b) Returns a signal if b is true, and it does not respond if b

is false.
Signal Returns a signal. It is same as if (true).
Rtimer(t) Returns a signal after exactly t time units.

Table 1. Fundamental Sites

We have made very few assumptions about the behaviors of sites because we
want to orchestrate sites which may have unpredictable delays, including infinite
delays, i.e., failing to respond. This generality allows us to regard humans (and
their communication devices) as sites and include them in orchestrations. An
Orc program may act as the director of a coordinated activity, such as 9-11
dispatching, in which it instructs humans (police, medical personnel) and listens
to their responses.

A site M can have multiple entry points, denoted by M.n where n is the
name of a method in the site.

2.3 Composition Operators

As we have described earlier, evaluation of an Orc expression calls some sites and
publishes a set of values. In Section 2.2, we considered simple expressions like
CNN (d); evaluation of this expression calls site CNN and publishes the value,
if any, returned by the site. In this section, we discuss the syntax and semantics
of general Orc expressions in informal terms.

There are three composition operators in Orc to combine expressions. Sym-
metric composition of f and g, written as f | g, evaluates f and g independently.
The sites called by f and g are the ones called by f | g and a value published
by either f or g is a value published by f | g. Expressions f and g are evaluated

4 Cook, Patwardhan & Misra

Condition : set, wait
A condition allows multiple activities to wait until an event happens.
Before set is called, all calls to wait block. When set is called, all
waiting activities are enabled and future calls to wait return imme-
diately.

Buffer : put, get
The result of Buffer is a local buffer site with two operations, put
and get. The put operation adds values to the buffer and publishes
a signal on completion. The get operation returns an item from the
buffer – it blocks until an item is available.

Lock : acquire, release
A lock has exactly one owner. When the lock is created it is not
owned. An expression that acquires the lock becomes its owner, and
all subsequent calls to acquire will block until the owner calls release.
At that point, one of the blocked expressions, if any, will be given
ownership and unblocked.

Fig. 1. Definition of three factory sites used in the workflow implementations.
Each factory site returns a local site that implements one or more methods.
The method names are listed in italics after the factory name.

independently. There is no direct communication or interaction between these
two computations; the computations may interact only by accessing a common
site. For example, f may write into a cell by calling site Write and g may read
that cell by calling Read .

In f >x> g, expression f is evaluated, each value published by it initiates
a fresh evaluation of g as a separate computation, and the value published by
f is called x in g’s computation. Variable x may be a parameter in a site call
in g. Evaluation of f continues while (possibly several) evaluations of g are run.
This is the only mechanism in Orc similar to spawning threads. If f is silent
(i.e. publishes no value), g is never evaluated. If f publishes a single value, there
is strict sequencing in the evaluations of f and g. The values published by the
executions of g are the values published by f >x> g. As an example, the following
expressions calls sites CNN and BBC in parallel to get the news for date d. Any
results from either of these sites are bound to x and then site email is called to
send the information to address a.

(CNN (d) | BBC (d)) >x> email(a, x)

The expression f À g is a short-hand for f >x> g when the variable x is not
needed.

To evaluate (g where x :∈ f), start by evaluating both f and g in parallel.
Evaluation of parts of g which do not depend on x can proceed, but site calls
in which x is a parameter are suspended until it acquires a value. In ((M |
N(x)) where x :∈ R), for example, evaluation M can proceed even before x has

Workflow Patterns in Orc 5

a value. If f publishes a value, then x is assigned this value, f ’s evaluation is
terminated and the suspended parts of g can proceed. This is the only mechanism
in Orc to block and terminate parts of a computation.

2.4 Definitions

Declaration E(q̄) ∆ f defines expression E whose formal parameter list is q̄ and
body is expression f . A call E(p̄) is evaluated by replacing the formal parameters
q̄ by the actual parameters p̄ in the body of the definition f . Sites are called by
value, while definitions are called by name.

2.5 Local Sites

A local site is a site that is created during execution of an expression. A local
site is constructed by a factory site, which publishes a site when called. The
factory sites used in the workflow implementations are defined in Fig. 1. The
sites returned by the factory contain multiple methods. For example, the Buffer
factory returns a site with put and get methods.

The following Orc expression illustrates the use of local sites. It creates a
buffer, then executes three expressions in parallel, two of which insert numbers
into the buffer while the other attempts to read from the buffer:

Buffer >b> (b.put(3) | b.put(5) | b.get)

The value obtained by b.get is either 3 or 5. Expression b.get is blocked until one
of the first two expressions is completed.

2.6 Synchronous Execution

We impose the following constraints on the Orc semantics: (1) a site is called
as soon as possible, and (2) response from a site is processed only if there is no
pending site call to be made. Therefore, initially, Orc calls all sites which can
be called, and then it waits to receive a response. On receiving a response, it
may publish some values and call some sites and waits for the next response. An
expression publishes a (possibly empty) stream of values (position in the stream
depends on the time of publication). The synchronous semantics ensures that in
(g where x :∈ f), the first value published by f is assigned to x.

3 Workflows in Orc

A workflow consists of a set of activities generating output in the form of data
or events which may trigger further actions. These activities can be executed
in sequential or parallel order. A workflow can be represented by a composition
of elementary patterns as discussed in the subsequent sections. These patterns
are modeled by composition of basic Orc expressions and Orc site calls. An Orc
expression or site call may publish (produce) zero or more values as output.

6 Cook, Patwardhan & Misra

We will use the workflow term “activity” to refer to an Orc expression that
publishes at most one value and stops execution after this value is produced: an
activity is complete when it publishes its value. Orc expressions that produce
more then one value, or continue to call sites after producing a value, are not
considered well-formed activities, but they can be converted into proper form by
terminating them after the first value is produced.

Some patterns also use activities to signal events. In this case the event occurs
when the activity publishes its value.

The following sections correspond to the patterns defined by van der Aalst [2].
We assume that f and g represent well-formed activities, unless stated otherwise.

WP 1: Sequence “An activity in a workflow process is enabled after the
completion of another activity in the same process. Example: After the activity
order registration the activity customer notification is executed.”[11]

Sequential execution is a built-in feature of Orc.

Seq(f, g) ∆ f À g

If f and g are activities, then the sequential composition is an activity. Note that
if f is not an activity (i.e. it produces more than one value) g will be executed
more than once.

WP 2: Parallel Split “A point in the process where a single thread of control
splits into multiple threads of control which can be executed in parallel, thus
allowing activities to be executed simultaneously or in any order. Example: After
activity new cellphone subscription order the activity insert new subscription
in Home Location Registry application and insert new subscription in Mobile
answer application are executed in parallel.”[11]

The ability to run activities in parallel is an inherent feature of Orc.

Par(f̄) ∆ f1 | · · · | fn

A bar over an expression x̄ represents a list of items x1, . . . , xn. The expression
created by Par is not a well-formed activity, however, because it produces more
than one value. The Discriminator pattern discussed in Section 3 can be used
to model a well-formed activity by ensuring termination after the first value has
been produced.

WP 3: Synchronization “A point in the process where multiple parallel
branches converge into one single thread of control, thus synchronizing mul-
tiple threads. ... Example: Activity archive is executed after the completion of
both activity send tickets and activity receive payment.”[11]

Workflow Patterns in Orc 7

A

B D

s

j

?

?

+
C

¼

-

?

?
Sync

Sync

Split

Split

(a) Example from [11]

Condition >M>

Sync(A À Par(M.set , B),
Sync(C, M.wait) À D)

(b) Orc implementation of Fig. 2(a)

Condition >M>

Sync(A À M.set À B,
C À M.wait À D)

(c) Simplified form of Fig. 2(b)

Fig. 2. Unstructured workflow example

Synchronization is a standard pattern in concurrent systems; its implemen-
tation in Orc was presented in [8].

Sync(f̄) ∆ let(x1) À · · · À let(xn)
where x1 :∈ f1

· · ·
where xn :∈ fn

This expression uses asymmetric parallel composition to run the expressions fi in
parallel. The output of each expression is captured in a corresponding variable xi,
which is undefined until fi publishes its value. The body of the where expression
calls let on each variable: since site calls are strict, the sequence of calls will block
until all the variables x̄ are defined – that is, it will block until all the activities
fi are complete.

Synchronization of multiple activities is always a well-formed activity, even
if fi may produce more than one value. This is because Sync takes just the first
value of each sub-expression and then terminates the sub-expression.

The previous example is a structured workflow, because the structure of
synchronization matches the control flow structure: the expressions being syn-
chronized are defined within the same composition operator. In an unstructured
workflow, the expressions being synchronized appear in different places in the
flow of control. Unstructured workflows are frequently more difficult to describe
than structured workflows. Van der Aalst gives an example of an unstructured
workflow, reproduced in Fig. 2(a), in which the synchronization path does not
follow the structure of sub-expressions. This workflow cannot be expressed using
only structured workflow constructs. In Orc, it requires a local site to express the
communication between parallel branches, as defined in Fig. 2(b). The expres-
sion first creates a Condition, a local site defined in Section 2.5. The first Sync

8 Cook, Patwardhan & Misra

expression represents the Split/Sync nodes at the top and bottom of Fig. 2(a).
This is a structured synchronization. The left path A/Split/B is implemented
by A À (M.set | B), which executes A and then sets the condition to true and
executes B. The right path C/Sync/D is implemented by Sync(C,M.wait) À D,
which uses Sync to wait for C to complete and the condition to be set. When
these two events have been synchronized, D is executed.

The expression in Fig. 2(b) corresponds closely to the diagram in Fig. 2(a),
but it can be simplified to a more readable from in Fig. 2(c). This simplification
replaces parallel execution with sequential execution. But the overall effect is
the same if set and wait are instantaneous: instead of executing them in parallel
with B or C, they can simply executed sequentially (before B and after C, respec-
tively). Such transformations can be obtained through algebraic manipulation
of Orc expressions.

WP 4: Exclusive Choice “A point in the process where, based on a decision or
workflow control data, one of several branches is chosen. Example: The manager
is informed if an order exceeds $600, otherwise not.”[11]

An exclusive choice is simply a conditional, or “if” statement.

XOR(b, f, g) ∆ if (b) À f | if (¬b) À g

The built-in if site (see Table 1) does not publish a value when the condition is
false, so only one of the two parallel alternatives will execute. Exclusive choice,
like other patterns above, naturally generalizes to a choice between a set of
options, also known as a case statement. Nested conditional constructs can also
be represented using XOR. An example is given below.

XOR(b1, f,XOR(b2, g,XOR(b3, h, i)))

WP 5: Simple Merge A merge is “a point in the workflow process where two
or more alternative branches come together ... Example: After the payment is
received or the credit is granted the car is delivered to the customer.”[2] A simple
merge assumes that only one of the expressions being merged is executing, so
synchronization is not needed. Petri nets represent merges explicitly, while in
Orc a merge is implicit in the structure of an expression. In the following, we
assume that only of the fi expressions will produce a value.

Merge(f̄ , h) ∆ Par(f̄) À h

WP 6: Multi-Choice “A point in the process, where, based on a decision or
control data, a number of branches are chosen and executed as parallel threads.
Example: After executing the activity evaluate damage the activity contact fire
department or the activity contact insurance company is executed. At least one
of these activities is executed. However, it is also possible that both need to be
executed.”[11]

Workflow Patterns in Orc 9

A Multi-Choice is a non-exclusive choice. A separate condition controls the
execution of each choice, and multiple conditions can be true.

MultiChoice(b̄, f̄) ∆ IfDo(b1, f1) | · · · | IfDo(bn, fn)
IfDo(b, f) ∆ if (b) À f

WP 7: Synchronizing Merge “A point in the process where multiple paths
converge into one single thread. Some of these paths are active (i.e. they are
being executed) and some are not. If only one path is active, the activity after
the merge is triggered as soon as this path completes. If more than one path is
active, synchronization of all active paths needs to take place before the next
activity is triggered. ... Example: After either or both of the activities contact
fire department and contact insurance company have been completed (depending
on whether they were executed at all), the activity submit report needs to be
performed (exactly once).”[11]

This pattern is implemented in Orc by modifying the IfDo expression to
always publish a signal when it completes, even if the condition is false. The
resulting conditional activities can then be synchronized.

SyncMerge(b̄, f̄) ∆ Sync(IfSignal(b1, f1), · · · , IfSignal(bn, fn))
IfSignal(b, f) ∆ if (b) À f | if (¬b)

Van der Aalst creates an unstructured example of synchronizing merge by replac-
ing the Split at the top of Fig. 2(a) with a Multi-Choice, and the two Synchronize
nodes with Synchronizing Merges. He says “then the process must somehow keep
track of the activation of the left thread in order to determine whether activ-
ity D should be activated immediately after activity C completes, or whether it
should also wait for activity A to complete.”[11] Assuming that the left and right
conditions for the Multi-Choice are α and β respectively, the resulting workflow
can be expressed by making appropriate changes to workflow can be encoded
easily in Orc:

Condition >M> Sync(XOR(α,A À M.set À B,Signal | M.set),
IfSignal(β,C À M.wait À D))

The call to XOR (see WP 4) either executes the left path A À M.set À B or else
sets the condition M and signals completion, so that the condition is set in both
alternatives. The right-hand path is the same as in Fig. 2(c) with the addition
of the IfSignal (see WP 7) condition for β. This expression cannot be written
using SyncMerge because of the additional call to M.set when α is false. Orc
cannot fully encapsulate this pattern as a definition. Some mechanism would be
needed to track the collection of active synchronization variables, so that they
can be set in the false branch of conditionals.

WP 8: Multi-Merge A multi-merge allows multiple branches to converge
without synchronization. “If more than one branch gets activated, possibly con-
currently, the activity following the merge is started for every activation of every

10 Cook, Patwardhan & Misra

incoming branch.”[11] The sequential composition operator in Orc supports this
behavior directly.

MultMerge(f̄ , h) ∆ (f1 | · · · | fn) À h

≡ Par(f̄) À h

WP 9: Discriminator “A point in the workflow process that waits for one
of the incoming branches to complete before activating the subsequent activity.
From that moment on it waits for all remaining branches to complete and ignores
them. ... Example: To improve query response time a complex search is sent to
two different databases over the Internet. The first one that comes up with the
result should proceed the flow.”[11]

A discriminator returns the first value produced by a set of expressions but
allows the remaining expressions to continue executing. To implement this be-
havior, Orc uses a local channel S created by a Buffer site.

Discr(f̄) ∆ Buffer >S> (Par(f̄) >x> S.put(x) | S.get)

The discriminator publishes only the first value that is placed in the buffer by
f̄ , but allows f̄ to continue running.

When applied to any expression f̄ , First terminates the computation of f̄
after its first value is produced:

First(f̄) ∆ let(x) where x :∈ f̄

First can be used to ensure termination of any expression f after it has produced
its first value.

Van der Aalst uses discriminator to create another variation on the unstruc-
tured workflow in Fig. 2(a), by replacing the synchronize node between C and D
with a discriminator. This means that D can start as soon as A or C completes.
This example is easily defined in Orc, by simply replacing the corresponding
Sync with Discr :

Condition >M> Sync(A À M.set À B,
Discr(C,M.wait) À D)

WP 10: Arbitrary Cycles Workflows with arbitrary cycles and loops are
easily created in Orc using recursive definitions. Fig. 3(a) gives a workflow from
van der Aalst [2]. The diagram is a Petri Net, which can be understood as a
form of flowchart. An XOR node is an exclusive choice in which the outgoing
branches are labeled by a condition. A Merge node is a simple merge (WP 5).

Fig. 3(b) is an implementation of this flowchart in Orc. Each node is trans-
lated to a definition. An arc to a node in the flowchart is translated to a call to
the corresponding definition. These expressions are equivalent to loops, because
Orc is defined to optimize tail calls. Note that the Merge nodes are modelled
implicitly.

Workflow Patterns in Orc 11

A

B D

Merge

Merge

?
-

XOR

F

C

XOR

XOR E

-

¾G

β

¬β

χ

¬χ

α

¬α

-

-

?
-

6

-

?6
¾

(a) Fig. 6 of [2]

P ∆ XOR(α, PB, PA)

PA ∆ A À PC

PB ∆ B À PD

PC ∆ C À PD

PD ∆ D À XOR(β, E, PF)

PF ∆ F À XOR(χ, G, PC)

(b) Orc implementation of (a)

Fig. 3. Arbitrary cycles example

Arbitrary cycles can be difficult to model when computations can only be
structured as iterations with one entry and exit point [7]. Although Orc is highly
structured, this example illustrates the use of recursion to define loops, which
do not suffer from the problems of structured iteration.

Simple while loops can also be easily created. In the following definition, g
publishes a boolean that controls execution of the loop. The call to IfSignal (see
WP 7) evaluates f À Loop(g, f) if b is true, and produces a signal otherwise.

Loop(g, f) ∆ g >b> IfSignal(b, f À Loop(g, f))

WP 11: Implicit Termination “A given subprocess should be terminated
when there is nothing else to be done. In other words, there are no active activ-
ities in the workflow and no other activity can be made active (and at the same
time the workflow is not in deadlock).”[2]

Implicit termination simply means that an expression continues running as
long as there is more work to do, and that no explicit “stop” action is required.
Since there is no explicit stop action in Orc, it supports implicit termination.

WP 12-15: Multiple Instances There are three patterns covering creation
of multiple instances of a workflow, one without synchronization, and two more
with and without a priori design time knowledge.

The use of “process instance” in van der Aalst’s patterns is probably influ-
enced by his work on Petri nets: since Petri nets are (traditionally) understood
as a form of finite state machine, they do not have the concept of block structure
and instantiation as in process calculi like CCS, π-calculus and Orc.

Multiple threads are created using parallel composition Par (WP 12). If the
list of instances is known at design time, then they can be synchronized by using
Sync instead of Par (WP 13). For WP 14, the number of instances is known as
a runtime quantity before the instances are created. We represent this runtime

12 Cook, Patwardhan & Misra

knowledge as a list in Orc, using a notation borrowed from Haskell [3]. An activity
is started for each item in the list, and all the activities are synchronized using
Sync.

SyncList(F, []) ∆ Signal
SyncList(F, a : as) ∆ Sync(F (a),SyncList(F, as))

Finally, WP 15 allows creation of instances where the number of instances
is not known in advance: more instances may be created until some condition is
satisfied. One implementation is a synchronized form of while loop. ParLoop is
the same as Loop (see WP 10) except that iterations of the loop are performed
in parallel and synchronized.

ParLoop(g, f) ∆ g >b> IfSignal(b,Sync(f,ParLoop(g, f)))

WP 16: Deferred Choice “A point in a process where one among several al-
ternative branches is chosen based on information which is not necessarily avail-
able when this point is reached. This differs from the normal exclusive choice, in
that the choice is not made immediately when the point is reached, but instead
several alternatives are offered, and the choice between them is delayed until
the occurrence of some event. Example: When a contract is finalized, it has to
be reviewed and signed either by the director or by the operations manager,
whoever is available first. Both the director and the operations manager would
be notified that the contract is to be reviewed: the first one who is available will
proceed with the review.”[11]

Deferred choice happens when a set of events is used to select an alternative:
the first event that fires causes its corresponding action to be activated. Deferred
choice is called arbitration in [8]. Assume that the events are specified by a set
of Orc expressions ē and that the actions are defined by the Orc expressions f̄ .
Note that, in Orc, the firing of an event is represented in terms of a site call
to the environment. This enables the environment to participate in making a
choice.

In the following definitions, Which produces an index identifying which event
signalled; the call to First terminates the remaining events. The Select expression
then runs the selected action.

DefChoiceTerm(ē, f̄) ∆ Which(ē) >k> Select(k, f̄)
Which(ē) ∆ First(e1 À let(1) | · · · | en À let(n))

Select(k, f̄) ∆ if (k = 1) À f1 | · · · | if (k = n) À fn

WP 17: Interleaved Parallel Routing “A set of activities is executed in
an arbitrary order: Each activity in the set is executed, the order is decided at
run-time, and no two activities are executed at the same moment (i.e. no two
activities are active for the same workflow instance at the same time).”[2]

Workflow Patterns in Orc 13

This pattern is essentially an example of mutual exclusion between concurrent
processes.

Interleave(f̄) ∆ Lock >M> (wait(M,f1) | · · · | wait(M,fn))
wait(M,f) ∆ M.acquire À f >x> M.release À let(x)

WP 18: Milestone “A given activity can only be enabled if a certain milestone
has been reached which has not yet expired. ... Example: After having placed
a purchase order, a customer can withdraw it at any time before the shipping
takes place.”[2]

Consider three Orc activities f , g, and e. The completion of activity f enables
g. Let e be an event that is raised when g is no longer allowed to run. Thus f
precedes g and e, while e can interrupt g.

Milestone(f, g, e) ∆ f À Interrupt(g, e)
Interrupt(g, e) ∆ First(g | e)

This simple definition does not fully express the intent of the pattern: the
intent is for f and e to be part of one workflow, while g is a part of another
workflow. The workflows should communicate through channels, not be defined
in a single expression. An improved definition uses two conditions, S and E.
The S condition signals the start of the milestone, while E signals the end of
the milestone.

Notify(f, S,E, e) ∆ f À S.set À e À E.set
Listener(S,E, g) ∆ S.wait À Interrupt(g,E.wait)
Milestone(f, e, g) ∆ Condition >S> Condition >E>

(Notify(f, S,E, e) | Listener(S,E, g))

Van der Aalst also considers the case where g may be repeated arbitrarily after
f and before e: this is done by replacing g by Loop(true, g).

WP 19/20: Cancel Activity/Case Cancelling can apply to an activity that
is part of a workflow an entire workflow case. The Interrupt operator can be
applied to a part of a workflow or the entire workflow to cancel part or all of the
activity. This will cancel any activity immediately. Interrupt and Condition can
be used in conjunction to model a set of cancellable activities.

4 Related Work

Orc implementations of the workflow patterns are most similar to BPML [11]
and π-calculus. However, BPML is much more verbose than Orc. The mechanism
for creating reusable definitions is also more cumbersome. There does not seem

14 Cook, Patwardhan & Misra

to be a mechanism analogous to local sites, so Interleaved Parallel Routing (WP
17) does not have a clean solution.

The π-calculus [9] versions of the workflow patterns are similar in structure
to the Orc implementations. One significant difference is that π-calculus uses
channels for all communication and synchronization. Orc expressions, on the
other hand, embody structured forms of communication and control, so explicit
channels (local sites) are needed only for unstructured workflows. The π-calculus
explanation of the cancellation pattern is incomplete, because π-calculus does not
provide built-in support for terminating a process, and the proposed encoding
of a “global cancel trigger” is left undefined. The synchronizing merge pattern
also does not specify how it is determined which processes are active.

Van der Aalst et al. defined a new workflow language, YAWL[10, 12], specif-
ically to support the workflow patterns. The language is based on Petri nets,
but is extended with special constructs for creating multiple instances and can-
celling tokens in a group of nodes. The mechanism for multiple instantiation
is analogous to Orc’s sequential composition, but provides built-in synchroniza-
tion. The node grouping and cancellation construct is similar to Orc’s where
operator. Rather than build specific workflow patterns into the language, Orc
provides few fundamental primitives with a mechanism to define new operators
for user-defined composition patterns.

5 Conclusion

We have implemented a set of standard workflow patterns using Orc, a new
orchestration language. The solutions are generally easy to read and understand.

There is no reason to assume that the workflow patterns proposed by van der
Aalst are complete. Orc has already been used to implement common concur-
rency patterns, like Priority and Timeout [8]. The Implicit Termination pattern
suggests a need for an Explicit Termination pattern, in which an activity explic-
itly signals when it is complete. This pattern can also be implemented in Orc,
although the machinery to do so is somewhat more complex.

One novelty of our approach is the encapsulation of pattern as reusable def-
initions. These definitions can be used to create larger programs; this technique
is illustrated many times in this paper. Van der Aalst argues that all the work-
flow patterns should be expressed directly in the workflow language without any
encodings. In his summary of the workflow patterns supported by various com-
mercial systems, a pattern is marked as “not supported” if any form of encoding
is required. In Orc some of the patterns require a combination of operators to
implement – however, the pattern itself can be expressed as a definition, which
can be reused whenever that pattern is required. Thus the pattern becomes an-
other composition operator that can be used in larger programs. The operators
that define patterns are reused extensively in this paper. This demonstrates the
power of a language that can grow by adding new definitions, rather than re-
quiring building a fixed set of primitives that cannot be easily extended by new
definitions.

Workflow Patterns in Orc 15

References

1. W. Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. W. M. P. V. D. Aalst, A. H. M. T. Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

3. R. Bird. Introduction to Functional Programming using Haskell. International Se-
ries in Computer Science, C.A.R. Hoare and Richard Bird, Series Editors. Prentice-
Hall International, 1998.

4. M. Dumas and A. H. ter Hofstede. UML Activity Diagrams as a Workflow Specif-
cation Language. Technical report, Cooperative Information Systems Research
Centre, Queensland University of Technology GPO Box 2434, Brisbane QLD 4001,
Australia, Nov. 2003.

5. R. Eshuis and J. Dehnert. Reactive petri nets for workflow modeling. In W. M. P.
van der Aalst and E. Best, editors, Proceedings of the 24th International Conference
on Applications and Theory of Petri Nets (ICATPN 2003), volume 2679 of Lecture
Notes in Computer Science, pages 296–315. Springer-Verlag, June 2003.

6. R. Eshuis and R. Wieringa. Comparing petri net and activity diagram variants
for workflow modelling - a quest for reactive petri nets. In H. Ehrig, W. Reisig,
G. Rozenberg, and H. Weber, editors, Petri Net Technology for Communication-
Based Systems, volume 2472 of Lecture Notes in Computer Science, pages 321–351.
Springer-Verlag, November 2003.

7. B. Kiepuszewski, A. H. M. ter Hofstede, and C. Bussler. On structured workflow
modelling. In Conference on Advanced Information Systems Engineering, pages
431–445, 2000.

8. J. Misra and W. R. Cook. Computation orchestration: A basis for wide-area com-
puting. To appear in the Journal of Software & Systems Modeling, 2006.

9. F. Puhlmann and M. Weske. Using the π-calculus for formalizing workflow pat-
terns. In Proceedings of the 3rd International Conference on Business Process
Management, volume 3649 of Lecture Notes in Computer Science, 2005.

10. W. van der Aalst and A. ter Hofstede. YAWL: Yet Another Workflow Language.
Technical report, Department of Technology Management, Eindhoven University of
Technology P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands, Nov. 2003.

11. W. M. van der Aalst, M. Dumas, A. H. ter Hofstede, and P. Wohed. Pattern Based
Analysis of BPML (and WSCI). Technical report, Department of Technology
Management Eindhoven, University of Technology, The Netherlands, nov 2003.

12. W. M. P. van der Aalst, L. Aldred, M. Dumas, and A. H. M. ter Hofstede. De-
sign and implementation of the yawl system. In A. Persson and J. Stirna, edi-
tors, CAiSE, volume 3084 of Lecture Notes in Computer Science, pages 142–159.
Springer, 2004.

13. P. Wohed, W. M. van der Aalst, M. Dumas, and A. H. ter Hofstede. Pattern based
analysis of BPEL4WS. Technical Report FIT-TR-2002-04, Queensland University
of Technology, 2002.

14. The Workflow Reference Model. The Workflow Management Coalition, Jan. 1995.

