
Formal Methods in Systems Design manuscript No.
(will be inserted by the editor)

QoS-Aware Management
of Monotonic Service Orchestrations

Albert Benveniste · Claude Jard ·
Ajay Kattepur · Sidney Rosario ·
John A. Thywissen

Received: date / Accepted: date

Abstract We study QoS-aware management of service orchestrations, specifi-
cally for orchestrations having a data-dependent workflow. Our study supports
multi-dimensional QoS. To capture uncertainty in performance and QoS, we
provide support for probabilistic QoS. Under the above assumptions, orches-
trations may be non-monotonic with respect to QoS, meaning that strictly
improving the QoS of a service may strictly decrease the end-to-end QoS of
the orchestration, an embarrassing feature for QoS-aware management. We
study monotonicity and provide su�cient conditions for it. We then propose a
comprehensive theory and methodology for monotonic orchestrations. Generic
QoS composition rules are developed via a QoS Calculus, also capturing best
service binding—service discovery, however, is not within the scope of this
work. Monotonicity provides the rationale for a contract-based approach to
QoS-aware management. Although function and QoS cannot be separated in
the design of complex orchestrations, we show that our framework supports
separation of concerns by allowing the development of function and QoS sep-
arately and then “weaving” them together to derive the QoS-enhanced orches-
tration. Our approach is implemented on top of the Orc script language for
specifying service orchestrations.

A. Benveniste and A. Kattepur
DistribCom team at INRIA Rennes,
Campus Universitaire de Beaulieu, 35042 Rennes CEDEX, France.
E-mail: Firstname.Lastname@inria.fr

C. Jard
Department of Computer Science, Université de Nantes, LINA-Atlanstic
rue de la Houssinière, 44322 Nantes CEDEX 3, France
E-mail: Claude.Jard@univ-nantes.fr

J.A. Thywissen
Department of Computer Science, The University of Texas at Austin,
1 University Station, Austin, Texas 78712, USA.
This work started when S. Rosario was with U.T. Austin.
E-mail: sidney.rosario@gmail.com, jthywiss@cs.utexas.edu

John Thywissen

John Thywissen

John Thywissen

John Thywissen

John Thywissen

John Thywissen
This is an author's version of an accepted article. For the definitive version, please see Formal Methods in Systems Design. The final publication is available at http://link.springer.com/article/10.1007/s10703-013-0191-7

2 Albert Benveniste et al.

Keywords Web Services · QoS · Algebra · Probabilistic Models

1 Introduction

Service Oriented Computing is a paradigm suited to wide area computing,
where services can be dynamically selected and combined to o↵er a new ser-
vice [16]. To enable service selection and binding, services expose both func-
tional and Quality of Service (QoS) properties. Service selection can thus occur
on the basis of both types of properties. In particular, service selection among
a pool of functionally substitutable services can be performed based on QoS.
Therefore, models of composite services should involve policies for QoS-based
service selection [16].

Quite often, several dimensions for QoS must be handled (e.g., timing per-
formance, availability, cost), leading to the consideration of multi-dimensional
QoS. Consequently, QoS domains should be partially, not totally ordered. For
simple policies, QoS guarantees exposed by the service or expected by the user
are typically stated as fixed bounds. QoS is, however, generally subject to un-
certainties, due to the numerous hidden sources of nondeterminism (servers,
OS, queues, and network infrastructure). Therefore, a number of authors have
agreed that QoS should be characterized in probabilistic terms [25,39,40,53].

To illustrate the issues behind the QoS aware management of composite
services, consider the following toy example, for which we first present a simple
form and then develop some variations. Fig. 1(a) depicts a simple orchestration
for a travel agent. The user enters the location of a place to visit. Two Airline
services are invoked in parallel with the one o↵ering “best” cost being selected.
Next, two Hotel reservation services are invoked and selection occurs on the
basis of cost and category, seen both as QoS dimensions. The selection on
cost/category may be done through lexicographic or weighted ordering. The
results are presented as an invoice. This orchestration exhibits a control flow
that is independent from the circulated data. It has a two-dimensional QoS,
with the two dimensions being cost and hotel category. Observe that the two
QoS dimensions in this example are correlated.

This diagram is reformulated into that of Fig. 1(b), to be interpreted as a
Petri net, where rectangles represent transitions and rounded rectangles repre-
sent places. Each query to the orchestration is modeled by a token traversing
the input transition. Upon entering the first place, the transition to traverse
must be chosen. This choice is based on best cost among o↵ers by airline com-
panies. Subsequently, the token enters the second place, where choice among
di↵erent hotel booking services (shown as transitions) occurs based on both
cost and category. This alternative Petri net description is a formalization of
the previous description. We shall follow this Petri net modeling style here-
inafter.

Fig. 2 shows a variation of Fig. 1(b) with a control flow dependent on both
returned data and QoS values. A loop is introduced in the decision process
that checks if the total Cost is within the budget and can ask the user to

QoS-Aware Management of Monotonic Service Orchestrations 3

(a)

Present Invoice

best(cost)

best(cost, category)

AirlineCompany1 AirlineCompany2

HotelBookingA HotelBookingB

Submit Order (location)

(b)

Present Invoice

AirlineCompany1 AirlineCompany2

Submit Order (location)

HotelBookingA HotelBookingB

best(cost)

best(cost,category)

Fig. 1 TravelAgent1: Simple travel agent; (a) informal diagram, and (b) Petri net form,
where rectangles figure transitions and rounded rectangles figure places. This orchestration
has a data-independent workflow.

specify preferences again. The presentment of the Invoice is guarded by a timer.
The choice at the place labeled with “best(response time)” depends on which
subsequent transition fires first. Thus, if the Invoice is ready before Timeout
occurs, then it is emitted, otherwise a “timeout” message is returned. This
timeout mechanism ensures that the loop terminates within a pre-specified
time bound, possibly with a failure. This orchestration has a three-dimensional
QoS, with the dimensions being cost, hotel category, and response time (due to
timers). We now review some important issues in Service Oriented Computing.

Monotonicity and Consequences for Management: A basic assumption under-
pinning the management of composite services is that QoS improvements in
component services can only be better for the composite service. For exam-
ple, once service selection in QoS-based design has been performed, a selected

4 Albert Benveniste et al.

HotelBookingA HotelBookingB

AirlineCompany1 AirlineCompany2

Present InvoiceTimeout

best(cost)

best(latency)

best(cost,category)

Submit Order (location, budget)

Resubmit (budget)

Budget ?AirlineCost
+HotelCost

Yes

No

Fig. 2 TravelAgent2: A variation of TravelAgent1 having a data-dependent workflow.

service is not expected to get deselected if it improves its QoS performance.
Similarly, once services have been selected on the basis of QoS performance,
reconfiguration will not occur unless some requested service’s performance
degrades or some non-selected service’s performance improves. Finally, QoS
monitoring consists of checking components for possible degradations in QoS.
It is commonly understood that the term“Quality of Service”presupposes that
“better QoS is indeed better overall”. In other words, the better the involved
services1 perform, the better the composite service performs. This general
property is important, so we give it a name—monotonicity. If a composite
service fails to be monotonic, the common understanding of QoS is no longer
valid and negotiations between the service provider and service requester re-
garding QoS issues become nearly unmanageable. We see monotonicity as a
highly desirable feature, so we make it a central topic of this work.

Monotonicity always holds for orchestrations having a data-independent
workflow—the orchestration shown in Fig. 1 is an example. A careful inspec-
tion shows that the orchestration of Fig. 2, which possesses a data-dependent
workflow, is also monotonic.

However, monotonicity is not always satisfied. Consider the example in
Fig. 3. This orchestration performs late binding of service by deciding on-
line and based on the cost of the airline ticket, which company to select.
The two companies then propose di↵erent sets of hotels, shown by the two
steps HotelBookingA/B. Let c

1

and c

2

be the cost of ticket for Companies 1
and 2, and h(c) be the optimum cost of the hotel booking if company c was

1
Involved services include all services that can potentially be requested by the composite

service. For example, if the composite service involves an if-then-else branch, only one branch
will actually be executed, but both are involved in the composite service.

QoS-Aware Management of Monotonic Service Orchestrations 5

HotelBookingA HotelBookingB

AirlineCompany1 AirlineCompany2

Present InvoiceTimeout

best(cost)

best(latency)

Submit Order (location, budget)

Resubmit (budget)

Budget ?AirlineCost
+HotelCost

Yes

No

Fig. 3 TravelAgent3: A variation of TravelAgent2 lacking monotonicity.

selected. Suppose c
1

< c

2

and h(c
1

) < h(c
2

) both hold. Then, the left branch is
preferred and yields a total cost QoS for the orchestration equal to c

1

+ h(c
1

).
Now, suppose Company 2 improves its o↵er beyond Company 1: c

2

< c

1

.
Then, the right branch will be selected and total cost c

2

+ h(c
2

) will result.
Now, it may very well be that c

2

+ h(c
2

) > c

1

+ h(c
1

) still holds, meaning
that the improvement in QoS of Company 2 has resulted in a degradation
of total QoS. The orchestration of Fig. 3 is thus non-monotonic, despite it
being a quite minor modification of TravelAgent2. Di↵erences in “local” versus
“global” optimization due to lack of monotonicity were identified in [7,10,51]—
“monotonicity” was not mentioned in the referred works but the concept was
identified.

Examples such as TravelAgent3 can be easily specified using the standard
language BPEL for orchestrations and business processes. To summarize, this
issue of monotonicity is essential. However, it seems underestimated in the
literature on Web services, with the exception of [7, 10, 51], as our discussion
of related work will show.

Assume that monotonicity is addressed, either by enforcing it, or by dealing
with the lack of it. Then, new avenues for composite service management can
be considered, by taking advantage of monotonicity:

(a) A called service that strictly improves its QoS cannot strictly worsen the
QoS of the orchestration. Therefore, it is enough for the orchestration to
monitor QoS degradations for each called service. Negotiations and penal-
ties occur on the basis of understandable rules. If suitable, relations be-
tween the orchestration and its called services can rely on QoS contracts.
It is then the duty of the orchestration (or of some third party) to monitor
such contracts for possible violation.

6 Albert Benveniste et al.

(b) Since we build on a contract-based philosophy, the orchestration itself must
be able to o↵er QoS contracts to its customers. This necessitates relating
the contracts the orchestration has with its involved services to the overall
contract it can o↵er to its customers. We refer to this as contract composi-
tion.

(c) Thanks to monotonicity, it is possible to perform QoS-based late binding
of services by selecting, at run time, the best o↵er among a pool of compli-
ant candidates—by “compliant” we mean candidates satisfying some given
functional property.

Handling Probabilistic QoS: To handle uncertainty in QoS, probabilistic frame-
works have been favored by a number of authors [17,24,25,32,39,40,44,50,51,
52,53]. When the workflow of the orchestration is statically defined regardless
of data, rules for composing QoS probability distributions of the called services
have been proposed for various QoS domains [5,7,8,9,10,18,49]. Optimal ser-
vice selection among di↵erent options has been solved by e�cient optimization
methods, by using, for example, Markov models [5, 17].

For orchestrations exhibiting data-dependent workflow or QoS values, how-
ever, such methods do not apply. The QoS-aware model of the orchestration
combines probability and non-determinism — non-determinism arises from
the data-dependent selection among alternatives. Markov models do not ap-
ply, and Markov Decision Process models must be considered instead. The
successive data-dependent choices performed are referred to as the scheduler
of the MDP. Optimization can then be stated in two di↵erent ways. In most
approaches [17, 24, 25, 32, 44, 53], the scheduler itself is also randomized, thus
resulting in a larger Markov model (assuming that sources of randomness are
all independent). Alternatively, a max-min optimization can be performed,
where the min is computed among the di↵erent service alternatives for a given
fixed scheduler, and then the max over schedulers is computed. These methods
have been widely used for o↵-line orchestration design. Optimal on-line ser-
vice selection or binding is much more demanding. Mathematically speaking,
this activity amounts to solving a stochastic control problem [6], in which, at
each decision step, the expected remaining overall QoS is optimized and best
decision is taken. Stochastic control is computationally demanding unless the
considered orchestration is very small—this approach has not been considered
in the literature.

In the previous paragraph, we have advocated the importance of mono-
tonicity and have discussed its (good) consequences for QoS-aware manage-
ment of composite services. Can we lift these considerations to probabilistic
QoS? To compare random variables, stochastic ordering has been proposed
in various forms and extensively used in the area of economics and opera-
tions research [34, 35, 46]. Using this concept, monotonicity was lifted to the
probabilistic setting for the particular case of response time in [14]. Assuming
that monotonicity can be lifted to the probabilistic setting for general QoS,
the approach outlined in (a), (b), and (c) above becomes applicable and sim-
ple techniques can be developed for QoS aware service management based on

QoS-Aware Management of Monotonic Service Orchestrations 7

contracts. This agenda was developed by a subgroup of authors of this paper
in [14,39,40], for the restricted case of response time.

Our Contribution: In this paper we extend our previous work on response
time-aware management of composite services to generic, possibly multi-dimensional,
QoS. In particular, QoS domains are no longer totally but only partially or-
dered, which causes significant increase in di�culty. Also, we take advantage of
our formal approach to QoS management in developing a technique of weaving
QoS aspects in the functional specification of a composite service. Our ap-
proach proceeds through the three steps (a), (b), and (c). Overall, we see our
main contribution as being a comprehensive and mathematically sound frame-
work for contract-based QoS-aware management of composite services, relying
on monotonicity. This framework consists of the following.

An Abstract Algebraic Framework for QoS composition: As QoS composi-
tion is the primary building block of QoS-aware management, it is of interest
to develop abstract algebraic composition rules. We propose such an abstract
algebraic framework encompassing key properties of QoS domains and cap-
turing how the QoS of the orchestration follows from combining QoS con-
tributions by each requested service. This algebraic framework relies on an
abstract dioid2 (D,max,�), where D is the (possibly multi-dimensional) QoS
domain. The abstract addition of the dioid identifies with the “max” opera-
tion associated with the partial order of the QoS domain; it captures both the
preference among services in competition and the cost of synchronizing the
return of several services requested in parallel. The increment in QoS caused
by the di↵erent service calls is captured by the abstract multiplication of the
dioid, here denoted by �. A dioid framework for QoS was already proposed
in [11,12,13,15,16,48]. With comparison to the above references, we propose in
addition a new competition operator that must be considered when perform-
ing late binding; this competition operator captures the additional cost of the
on-line comparison of the QoS within a pool of competing services. We show
how our abstract algebraic framework can be specialized to encompass known
QoS domains.

A Careful Handling of Monotonicity: We then study monotonicity in this
generic QoS context, by proposing conditions enforcing it for both non-probabilistic
and probabilistic QoS frameworks. Guidelines for how to enforce monotonicity
are derived and ways are proposed to circumvent a lack of monotonicity. The
mathematical justification of the extension required to deal with probabilistic
QoS domains that are only partially, not totally ordered, is non-trivial.

Support for Separation of Concerns: QoS-aware management of compos-
ite services requires developing a QoS-aware model of a service orchestration,
which can be cumbersome. It is thus desirable to o↵er means to develop func-
tion and QoS in most possible orthogonal ways. We have developed an im-
plementation of our mathematical approach in which QoS-aware orchestration
models are automatically generated, from a specification of the function only,

2 A dioid is a semi-ring with idempotent addition.

8 Albert Benveniste et al.

augmented with the declaration of the QoS domains and their algebra. This
model can be executed to analyze the orchestration and perform QoS contract
composition. We have implemented this technique on top of the Orc language
for orchestrations [30,33].3

Managing QoS by Contracts: By building on top of monotonicity, we advo-
cate the use of contract-based QoS-aware management of composite services,
in which the considered orchestration establishes QoS contracts with both its
users and its requested services. Contract-based design amounts to performing
QoS contract composition [40], which is the activity of estimating the tight-
est end-to-end QoS contract an orchestration can o↵er to its customer, from
knowing the contract with each requested service. QoS composition is devel-
oped in Section 3.2. Late service selection or binding is performed on the basis
of run-time QoS observations, by simply selecting, among di↵erent candidates,
the one o↵ering best QoS. Monotonicity ensures that this greedy policy will
not lead to a loss in overall QoS performance of the orchestration. Best service
binding is a built-in mechanism in our model, see Procedure 1 in Section 3.2.
To ensure satisfaction of the QoS contract with its users, it is enough to mon-
itor the conformance of each requested service with respect to its contract,
since a requested service improving its QoS can only improve the overall QoS
of the orchestration. This was developed in [40] for the case of response time
and the techniques developed in this reference extend to multi-dimensional
QoS. To account for uncertainty in QoS, soft probabilistic QoS contracts were
proposed in [39, 40] for the case of response time and are extended in this
paper to multi-dimensional QoS. Such contracts consist of the specification
of a probability distribution for the QoS dimensions. Performing this requires
formalizing what it means, for a service, to perform better than its contract.
We rely for this on the notion of stochastic ordering [34, 35, 46] for random
variables, a concept that is widely used in econometrics. All our results re-
garding monotonicity extend to the case in which ordering of QoS values is
replaced by stochastic ordering. We can thus apply statistical testing [40] to
detect at run time the violation of contracts in this context. To illustrate our
approach, we use this tool in performing contract composition for the example
TravelAgent2.

The paper is organized as follows. Our QoS calculus is developed in Sec-
tion 2; it provides the generic basis for QoS composition. Section 3 develops
our theory of QoS for services orchestrations. Algebraic rules for QoS composi-
tion and best service binding are developed. Monotonicity is studied. Support
for probabilistic QoS is presented. In Section 4 we present the implementation
of our approach on top of the Orc language. Evaluation of this implementation
on the TravelAgent2/3 is discussed in Section 5. Related work is discussed in
Section 6.

3 http://orc.csres.utexas.edu/

http://orc.csres.utexas.edu/

QoS-Aware Management of Monotonic Service Orchestrations 9

2 QoS Calculus

In this section we develop our QoS calculus as a basis for QoS composition. A
toy example is used to motivate our abstract algebra. Then we illustrate how
this algebra can encompass concrete QoS domains. Finally the algebra itself
is formalized in a way similar to [11,15,16,37].

2.1 An Informal Introduction

In dealing with multi-dimensional QoS, several approaches can be taken. First,
one can see QoS as only partially, not totally ordered. In this case QoS out-
comes q and q

0 satisfy qq

0 if and only if q(i)q

0(i) holds for all dimensions
i = 1 . . . n of the QoS. Alternatively, one could prioritize dimensions and then
take the lexicographic (total) order q<q

0 i↵ there exists some i such that
q(j)=q

0(j) for j < i and q(i)<q

0(i). Finally, di↵erent dimensions could be
weighted by considering

P
i

w

i

q(i) with its total order, where the w

i

’s are
weights to be selected, e.g., by using AHP (Analytical Hierarchy Process) [47].
Finally, recall that dealing with uncertainty is by regarding QoS outcomes as
random variables.

We use colored Petri nets to model the executions of a service orchestration.
Queries are represented by tokens that circulate throughout the net and service
calls are represented by transitions. To represent QoS measures and how they
evolve while the query is being processed by the orchestration, we equip the
tokens with a color, consisting of a pair

(v, q) = (data, QoS value). (1)

Fig. 4 shows such a net. Each query is represented by a token entering the net
at the top place. The marking shown figures the reception of such a query by
the net: it results in the launching of three sub-queries in parallel. The first
two sub-queries re-synchronize when calling t

2

. The third sub-query branches
toward either calling t

0
1

or calling t

00
1

and then confluences. The processing
of the query ends when the token reaches the exit place. With reference to
this figure, the di↵erent operators needed to compute the evolution of QoS
measures are introduced next. In the following discussion, we only consider
choices governed by QoS (data-driven choices play no role in QoS evaluation).

We begin by giving the basic abstract operators for use in QoS manage-
ment. The objective is to capture, via generic operators, how QoS measures
get modified when calling a service (traversing a transition), when synchroniz-
ing the responses of services (figured by several tokens consumed by a same
transition), or when di↵erent services compete against each other (such as t0

1

and t

00
1

in Fig. 4).

10 Albert Benveniste et al.

t

1

t

0
1

t

0
2

�q

1

q

0
0

�q

2

q

2

q

0
2

q

0
1

q

00
0

_ q

1

t

00
1

q

00
1

q

00
0

q

1

t

2

q

0

�q

0
1

�q

0
2

�q

00
1

Fig. 4 A simple example. Only QoS values are mentioned — with no data. Each place
comes labeled with a QoS value q which is the q-color of the token if it reaches that place.

Incrementing QoS: When traversing a transition, each token gets its QoS value
incremented, which is captured by operator �. For example, the token in the
left most place has initial QoS value q

0

, which gets incremented as q
1

= q

0

��q
1

when traversing transition t

1

.

Synchronizing tokens: A transition t is enabled when all places in its preset
have tokens. For the transition to fire, these tokens must synchronize, which
results in the “worst” QoS value, denoted by the supremum _ associated to a
given order , where smaller means better. For example, when the two input
tokens of t

2

get synchronized, the resulting pair of tokens has QoS q

00
0

_ q

1

.
This is depicted in Fig. 4 by the shaded area.

QoS policy: Focus on the conflict following place q0
0

. The QoS alters the usual
semantics of the conflict by using a QoS policy that is reminiscent of the clas-
sical race policy [31]. The competition between the two conflicting transitions
in the post-set is solved by using order  also used for token synchronization:
test whether q

0
o

� �q

0
1

 q

0
o

� �q

00
1

holds, or the converse. The smallest of the
two wins the competition—nondeterministic choice occurs if equality holds.

However, comparing q

0
o

� �q

0
1

and q

0
o

� �q

00
1

generally requires knowing the
two alternatives, which in general can a↵ect the QoS of the winner. This is
taken into account by introducing a special operator “C”: If two transitions t
and t

0 are in competition and would yield tokens with respective QoS values
q and q

0 in their post-sets, the cost of comparing them to set the competition
alters the QoS value of the winner in that—assuming the first wins—q is
modified and becomes q C q

0, where C denotes a new operator called the

QoS-Aware Management of Monotonic Service Orchestrations 11

competition function. For the case of the figure, we get

if (q0
o

� �q

0
1

)  (q0
o

� �q

00
1

)
then t

0
1

fires and q

0
1

= (q0
o

� �q

0
1

)C (q0
o

� �q

00
1

)
if (q0

o

� �q

0
1

) � (q0
o

� �q

00
1

)
then t

00
1

fires and q

00
1

= (q0
o

� �q

00
1

)C (q0
o

� �q

0
1

)

(2)

2.2 Some Examples of QoS Domains

We now instantiate our generic framework by reviewing some examples of QoS
domains, with their associated relations and operators �,, and C.

Response time: QoS value of a token gives the accumulated response time d,
or “age” of the token since it was created when querying the orchestration.
Corresponding QoS domain is R

+

, equipped with �
d

= +, and 
d

= the usual
order on R

+

. Regarding operator C
d

, for the case of response time with race
policy [31], comparing two dates via d

1


d

d

2

does not impact the QoS of the
winner: answer to this predicate is known as soon as the first event is seen, i.e.,
at time min(d

1

, d

2

). Hence, for this case, we take d

1

C
d

d

2

= d

1

, i.e., d
2

does
not a↵ect d

1

. This is the basic example of QoS measure, which was studied
in [14].

Security level: QoS value s of a token belongs to ({high, low},
s

), with high
s

low. Each transition has a security level encoded in the same way, and we take
�

s

= _
s

, reflecting that a low security service processing a high security data
yields a low security response. Regarding operator C

s

, again, comparing two
values via s

1


s

s

2

does not impact the QoS of the winner: QoS values are
strictly “owned” by the tokens, and therefore do not interfere when comparing
them. Hence, we take again s

1

C
s

s

2

= s

1

, i.e., s
2

does not a↵ect s

1

. More
complex partially ordered security domains can be handled similarly.

We do not claim that this solves security in orchestrations. It only serves a
more modest but nevertheless useful purpose, namely to propagate and com-
bine security levels of the requested services to derive the security level of the
orchestration. How security levels of the requested services is established is
a separate issue, e.g., by relying on reputation or through the negotiation of
security contracts.

Reliability: Reliability is captured similarly as follows. The QoS attribute of
a token takes its value in the ordered set ({in operation, failed},

r

), with
in operation

r

failed. Other operators follow as for the case of Security level.
By equipping this QoS domain with probability distributions we capture reli-
ability in our setting.

12 Albert Benveniste et al.

Cost: QoS value c captures the total cost of building a product by assembling
its parts. Referring to Fig. 4, costs are accumulated when tokens get synchro-
nized. When a token traverses a transition, its cost is incremented according to
the cost of the action being performed. A natural definition for the correspond-
ing QoS domain would thus be (D

c

,
c

,�
c

) = (R,,+) or (Z,,+). Unfor-
tunately, when taking this definition, synchronizing tokens using _

c

amounts
to taking the worst cost, which is not what we need. We need instead the sum
of the costs of incoming tokens, an operation di↵erent from _

c

.
The right idea is to encode the cost by using multi-sets. The overall cost

held by a token is obtained by adding the costs of the constituting parts plus
the costs of successive assembly actions. Parts and actions are then handled as
“quanta of cost”and the token collects them while traversing the orchestration.
This leads to defining the QoS domain as a multi-set of cost types: D

c

= Q 7!
N, whereQ is a set of cost types equipped with a cost labeling function � : Q 7!
R

+

. Each q 2 Q corresponds to either a part or an assembly action and has
a unique identifier. Domain D

c

is equipped with the partial order of functions
and _

c

follows as the corresponding least upper bound. Recall that operator
_
c

is used to synchronize tokens, see Fig. 4. In this context, it makes sense to
assume that cost types held by the tokens for synchronization are di↵erent. For
this case, _

c

coincides with the addition of multi-sets and costs get added as
wished. Traversing a transition amounts to adding the corresponding quantum
in the set, hence, identifying singletons with the corresponding element, �

c

is
again the addition of multi-sets. Finally, (D

c

,
c

,�
c

) = (Q 7! N,✓,+). As
before, the competition function is c

1

C
c

c

2

= c

1

when c

1


c

c

2

, i.e., c
2

does
not a↵ect c

1

.

Composite QoS, first example: Wemay also consider a composite QoS measure
consisting of the pair (s, r), where s is as above and r is some Quality of Re-
sponse with domain D

r

, equipped with 
r

and C
r

. Since the two components
s and r are similar in nature, we simply take =

s

⇥ 
r

and C = (C
s

, C
r

).

Composite QoS, second example: So far the special operator C did not play
any role. We will need it, however, for the coming case, in which we consider
a composite QoS measure (s, d), where s and d are as above. We want to give
priority to security s, and thus we now take  to be the lexicographic order
obtained from the pair (

s

,
d

) by giving priority to s.
Focus on operator C. Consider the marking resulting after firing t

1

and t

0
1

in
Fig. 4, enabling t

2

and t

0
2

, which are in conflict. Let the QoS value of the token
in postset of t

2

, i.e. q
2

= (low , d

2

). (Recall that q
2

= (q00
o

_ q

1

)��q
2

.) Similarly,
let q0

2

= (low , d

0
2

) where d0
2

>

d

d

2

. From the competition rule, transition t

2

wins
the conflict and the outgoing token has QoS value q

2

= (low , d

2

). However,
the decision to select t

2

can only be made when q

0
2

is known, that is, at time
d

0
2

. The reason for this is that, since at time d

2

a token with security level low
is seen at place following t

2

, it might be that a token with security level high
later enters place following t

0
2

. The latter would win the conflict according
to our QoS policy — security level prevails. Observing that the right most

QoS-Aware Management of Monotonic Service Orchestrations 13

token indeed has priority level low can only be seen at time d0
2

. Thus it makes
little sense assigning q

2

= (low , d

2

) to the outgoing token; it should rather be
q

2

= (low , d

0
2

). This is why a non-trivial operator C is needed, namely, writing
 for short instead of 

d

:

(s, d)C (s0, d0) = if d  d

0 and s = low then(s, d0) else (s, d) (3)

2.3 The QoS Calculus

In this section we formalize the discussion of Section 2.1. We introduce alge-
braic QoS domains. Our framework is a mild modification of the one proposed
by [11, 15, 16, 37], based on semi-rings. Besides some minor adaptations, the
main di↵erence lies in the consideration of the “competition function”.

Definition 1 (QoS domain) A QoS domain is a tuple Q = (D,,�,C)
where:

– (D,) is a partial order that is a complete upper lattice, meaning that every
subset S ✓ D has a least upper bound denoted by

W
S. For any S ✓ D,

min(S) denotes the set of all q 2 S such that no q

0 2 S exists such that
q

0
< q, with a symmetric definition for max(S).

– Operator � : D⇥D ! D is a commutative semi-group with neutral element
0 and such that:

monotonicity:
q

1

 q

0
1

q

2

 q

0
2

�
=) (q

1

� q

2

)  (q0
1

� q

0
2

) (4)

8q, q0 2 D, 9q00 2 D =) q  q

0 � q

00 (5)

– The competition function C : D⇥ 2D ! D satisfies:

q C ✏ = q where ✏ denotes the empty set (6)

q  q

0

q

1

 q

0
1

...
q

n

 q

0
n

9
>>>=

>>>;
=) q C {q

1

. . . q

n

}  q

0 C {q0
1

. . . q

0
n

} (7)

q

0

< q

1

=) q

0

C {q
1

, q

2

. . . q

n

}  q

1

C {q
0

, q

2

. . . q

n

} (8)

8i = 1 . . . n : q
i

q =) q C {q
1

. . . q

n

}=q (9)

Referring to our motivating discussion: D is the set in which QoS takes its
values; qq

0 is interpreted as “ q is better than (or preferred to) q

0 ”; partial
order  gives raise to the least upper bound _, interpreted as the worst QoS;
operator � is used to accumulate QoS quanta from causally related events;
its condition (5) will play an important role in the study of monotonicity.
The competition function C accounts for the additional cost of comparing
the QoS of competing events, additional cost induced on the winning event.
The special monotonicity conditions (8) and (9) for the competition function

14 Albert Benveniste et al.

ensure that taking into account the cost of comparing will not revert the QoS-
based ordering of the events under comparison. The actual size of the second
component of C depends on the considered event, this is why the domain of C
is D⇥ 2D. Examples were given in Section 2.1. It is easily checked that axioms
are met by these examples.

If some QoS measure q of the orchestration is irrelevant to a service it
involves, we take the convention that this service acts on tokens with a 0
increment on the value of q. With this convention we can safely assume that
the orchestration, all its requested services, and all its tokens use the same
QoS domain. This assumption will be in force in the sequel.

3 A QoS framework for composite services

This section collects the technical material in support of our theory and devel-
opments. We first recall the needed background on Petri nets as a supporting
framework for service orchestrations—to simplify our presentation we restrict
ourselves to safe free choice nets, see below. On top of this framework, we
define priority rules for QoS based selection of competing services and we de-
velop OrchNets as a model of QoS-sensitive composite services. We then study
monotonicity. The above material is subsequently lifted to probabilistic QoS.
We conclude by some methodological discussion.

3.1 Petri Nets, Occurrence Nets, Orchestration Nets

A Petri net [36] is a tuple N = (P, T ,F ,M

0

), where: P is a set of places, T is
a set of transitions such that P \ T = ;, F ✓ (P ⇥ T) [(T ⇥ P) is the flow
relation. For x 2 P [T , we call •

x = {y | (y, x) 2 F} the preset of x and
x

• = {y | (x, y) 2 F} the postset of x. A marking is a map M : P ! N; in
the tuple defining N , M

0

is the initial marking. Firing transition t at marking
M requires M(p) > 0 for every p 2 •

t and yields the new marking M

0 such
that M 0(p) = M(p) � 1 for p 2 •

t \ t•, M 0(p) = M(p) + 1 for p 2 t

• \ •
t, and

M

0(p) = M(p) otherwise.
For a net N = (P, T ,F ,R,M

0

) the causality relation � is the transitive
and reflexive closure of F and we set � = � \ 6=. For a node x 2 P [T , the
set of causes of x is dxe = {y 2 P [T | y � x}. Say that two transitions t, t

0

are in conflict, written t#t

0, if •
t\ •

t

0 6= ; or t and t

0 possess some causes that
are in conflict. Say that net N is free choice if the relation {(t, t0) | •t\ •

t

0 6= ;}
forms a partition of T . If N is free choice, a cluster [36] is a minimal set c of
places and transitions of N such that

8t 2 c =) •
t ✓ c

8p 2 c =) p

• ✓ c
(10)

Any two distinct transitions of a same cluster are in conflict and clusters form
a partition of the set of all nodes of a free choice net.

QoS-Aware Management of Monotonic Service Orchestrations 15

Occurrence nets: A Petri net is safe if all its reachable markings M satisfy
M(P) ✓ {0, 1}. A safe net N = (P, T ,F ,M

0

) is an occurrence net (O-net) i↵

1. � is a partial order and dte is finite for any t 2 T ;
2. for each place p 2 P, |•p|  1;
3. for each t 2 T , ¬#dte holds;
4. M

0

= {p 2 P|•p = ;} holds.

A configuration of N is a subnet  of nodes of N such that: 1)  is causally
closed, i.e, if x � x

0 and x

0 2  then x 2 ; and, 2)  is conflict-free. For
convenience, we require that the maximal nodes in a configuration are places.
A configuration 

2

is said to extend configuration 
1

(written as 
1

� 

2

) if


1

✓ 

2

and @t 2 

2

\ 
1

, t

0 2 

1

such that t % t

0. Two configurations  and


0 are said to be compatible if 1)  [0 is a configuration, and 2)  �  [0
and 0 �  [0. Node x is called compatible with configuration  if dxe and
 are compatible. Transition t is enabled by  if t 62  and  [{t} [t

• is a
configuration. For  a configuration, its future N

 is defined as

N

 = maxPlaces() [
{x 2 P [T | x 62  and x is compatible with } (11)

where maxPlaces() is the set of maximal nodes of  (which are all places).
Two nodes x and y are said to be concurrent if they are neither in conflict nor
causally related.

Unfoldings and Orchestration nets: The executions of a safe Petri net N can
be represented by its unfolding U

N

, which is an occurrence net collecting all
executions of N in such a way that common prefixes are represented once. For
example, Fig. 4 shows a net, the unfolding of which is obtained by removing
the maximal (exit) place and attaching a di↵erent copy of this exit place to
each exit transition. Formally, unfolding U

N

is derived from N [22] in the
following way. For N = (P, T ,F ,R,M

0

) and N

0 = (P 0
, T 0

,F 0
,R0

,M

0
0

) two
safe Petri nets, a morphism ' : N ! N

0 is a function from P [T to P 0 [T 0,
mapping P to P 0 and T to T 0, preserving the initial marking: '(M

0

) = M

0
0

,
and preserving the flow relation: '(•t) = •

'(t) and '(t•) = '(t)•. If N 0 is
another occurrence net and 0 : N 0 ! N is a morphism, then there exists a
third morphism : N 0 ! U

N

such that 0 factorizes as 0 = ' � , where � is
the composition of functions. This property characterizes the unfolding U

N

. If
net N is free choice, then so is its unfolding U

N

.

Definition 2 (orchestration net) Call Orchestration net any free choice
safe Petri net possessing a finite unfolding.

We insist that Petri nets with loops can still possess a finite unfolding. An
example of this is the Petri net modeling the examples TravelAgent of Fig. 2
and Fig. 3, which involve successive retries guarded by a timeout. Hereafter, we
only consider Petri nets that are orchestration nets. Examples of Orchestration
nets are the loop-free and 1-safe WorkFlow nets (WFnets). WF-nets were
proposed by van der Aalst [1, 3, 4] and are Petri nets with a special initial

16 Albert Benveniste et al.

place (where the initial tokens are provided) and a special final place (from
which tokens exit the net).

3.2 OrchNets

The OrchNets we propose as a model to capture QoS in composite services are
a special form of colored occurrence nets (CO-nets). Executions of Workflow
Nets [1, 2] are also CO-nets. The reader can compare our approach with the
graph-based approach of [48].

Throughout this section we assume a QoS domain (D,,�,C). OrchNets
formalize the notion of an orchestration with its QoS. The mathematical se-
mantics of OrchNets formalizes QoS contract composition, i.e., the process
of deriving end-to-end QoS of the orchestration from the QoS of its involved
services.

Definition 3 (OrchNet) An OrchNet is a tuple N = (N,V,Q,Q

init

) con-
sisting of

– A finite free choice occurrence net N with token attributes

c = (v, q) = (data, QoS value)

– A family V = (⌫
t

)
t2T of value functions, mapping the data values of the

transition’s input tokens to the data value of the transition’s output token.
– A family Q = (⇠

t

)
t2T of QoS functions, mapping the data values of the

transition’s input tokens to a QoS increment.
– A family Q

init

= (⇠
p

)
p2min(P)

of initial QoS functions for the minimal
places of N .

Value and QoS functions can be nondeterministic.

The nondeterminism of a function can be resolved by introducing an explicit
daemon ! making choices explicit. As a result, ⌫

t

(!), ⇠
t

(!), and ⇠
p

(!) are all
deterministic functions of their respective inputs. We denote by ⌦ the set of
all daemons.4

We now explain how the presence of QoS values attached to tokens af-
fects the semantics of OrchNets. Any place p of occurrence net N has a pair
(v

p

, q

p

) = (data, QoS value) assigned to it, which is the color held by a token
reaching that place. In the following QoS policy, the role of data in the se-
mantics has been abstracted—taking it into account would only increase the
notational burden without introducing changes worth the study.

Procedure 1 (QoS aware semantics) Let ! 2 ⌦ be any value for the dae-
mon. The continuation of any finite configuration (!) is constructed by per-
forming the following steps, where we omit the explicit dependency of (!),
⌫

t

(!), and ⇠
t

(!), with respect to !:

4 The schedulers introduced for probabilistic automata by Lynch and Segala [45] are a
special case of daemon.

QoS-Aware Management of Monotonic Service Orchestrations 17

1. Choose non deterministically a �-minimal cluster c in the future of .
2. For every t 2 c, compute:

q

t

=
�W

p

02•
t

q

p

0
�
� ⇠

t

(v
p

0 | p0 2 •
t) (12)

3. Competition step: select non deterministically a minimal transition t⇤ of c
such that no other minimal transition t of c exists with q

t

< q

t⇤ . The set
⌦ of daemons is extended to resolve this additional nondeterminism.

4. Augment  to 0 = [{t⇤}[t

•
⇤, and assign, to every p 2 t

•
⇤, the pair (v, q),

where

v = ⌫

t

(v
p

0 | p0 2 •
t)

q = q

t⇤ C {q
t

| t 2 c, t 6= t⇤}
(13)

Competition step 3 formalizes on-line service binding based on best QoS. Step
4 of QoS policy simplifies for all examples of Section 2.1 by not needing the sec-
ond formula of (13), except for the last one, see formula (3). Observe that the
augmented configuration 0 as well as the pair (v, q) depend on !. We are now
ready to formalize what the set ⌦ of all daemons should be for Procedure 1.

Defining the set ⌦ of all daemons: The nondeterminism of a function mapping
X to Y can be resolved by introducing an explicit daemon making choices
explicit. For X and Y two sets, call (X,Y)-daemon (or simply daemon if no
confusion can result) any total function

! : X⇥2Y ! Y (14)

The set of all (X,Y)-daemons is denoted by ⌦
XY

or simply ⌦. Determinizing
a nondeterministic function � : X!2Y consists in selecting a daemon ! 2 ⌦,
which fixes the (deterministic) function

�

!(x) =
def

!(x,�(x)).

This construction is implicitly invoked each time a daemon is mentioned. To
explicit what the set ⌦ of all daemons should be, for Procedure 1, we first
identify the di↵erent sources of nondeterminism arising in this procedure. First
of all, the nondeterminism in the choice of the minimal cluster c in Step 1 does
not need to get resolved since it yields a confluent evaluation of the end-to-
end QoS of configurations, because all minimal clusters are concurrent and �
is commutative and associative. Consequently, sources of nondeterminism for
consideration are 1) the ⌫

t

and ⇠

t

for every t 2 T (the set of transitions of
N), and 2) the nondeterministic selection of the optimal transition in Step 3.
Denoting by C the set of all clusters of N , we apply construction (14) with

X

0 = T and Y

0 = D ⇥ D which yields ⌦0

X

00 = C and Y

00 = T which yields ⌦00

where D is the domain of data, and set

⌦ =
def

⌦

0 ⇥⌦

00 (15)

18 Albert Benveniste et al.

Component !0 resolves the nondeterminism of ⌫
t

and ⇠
t

, whereas component
!

00 resolves the nondeterminism in selecting the optimal transition in Step 3.
Since occurrence net N is finite, the QoS policy terminates in finitely many

steps when N

(!) = ;. The total execution thus proceeds by a finite chain
of nested configurations: ; = 

0

(!) � 

1

(!) . . . � 

n

(!). Hence, 
n

(!) is a
maximal configuration of N that can actually occur according to the QoS
policy, for a given ! 2 ⌦. We generically denote this maximal configuration
by

(N ,!). (16)

For the example of response time, our QoS policy boils down to the classical
race policy [31]. In general, our QoS policy bears some similarity with the“pre-
selection policies”of [31], except that the continuation is selected based on QoS
values in our case, not on random selection. We will also need to compute the
QoS for any configuration of N , even if it is not a winner of the competition
policy. We do this by modifying Procedure 1 as follows:

Procedure 2 (QoS of an arbitrary configuration) Let 
max

be any max-
imal configuration of N and  � 

max

a prefix of it. With reference to Proce-
dure 1, perform: step 1 with c any �-minimal cluster in 

max

\ , step 2 with
no change, and then step 4 for any t as in step 2. Performing this repeatedly
yields the pair (v

p

, q

p

) for each place p of 
max

. ⇤
We are now ready to define what the QoS value of an OrchNet is:

Definition 4 (End-to-end QoS) For  any configuration of occurrence net
N , and ! any value for the daemon, the end-to-end QoS of  is defined as

E

!

(,N) =
W
p2maxPlaces()

q

p

(!) (17)

The end-to-end QoS E

!

(N) and pessimistic end-to-end QoS F

!

(N) of Orch-
Net N are respectively given by

E

!

(N) = E

!

((N ,!),N) (18)

F

!

(N) = max{E
!

(,N) |  2 V (N)} (19)

where function max picks one of the maximal values in a partially ordered set,
(N ,!) is defined in (16), and V (N) is the set of all maximal configurations
of net N .

Observe that E
!

(N)  F

!

(N) holds and E

!

(N) is indeed observed when the
orchestration is executed. The reason for considering in addition F

!

(N) will
be made clear in the next section on monotonicity.

So far formulas (18) and (19) provide the composition rules for deriving
the end-to-end QoS for each individual call to the orchestration. Monte-Carlo
simulation techniques can then be used on top of (18) and (19) to derive
the end-to-end probabilistic QoS contract from the contracts negotiated with
the requested services [39, 40]. See also [26] for fast Monte-Carlo simulation
techniques.

QoS-Aware Management of Monotonic Service Orchestrations 19

3.3 Monotonicity

The monotonicity of an orchestration with respect to QoS is studied in this
section, for the non-probabilistic setting. Extension to the probabilistic setting
is discussed in Section 3.4. We provide su�cient and structurally necessary
conditions for monotonicity, when QoS is measured in terms of tight end-to-end
QoS—missing proofs are deferred to Appendix A. When these conditions fail
to hold, then pessimistic end-to-end QoS can be considered when dealing with
contracts, as monotonicity is always guaranteed when using it. Monotonicity
is assumed in the rest of the paper. Also, to simplify the presentation, the
following assumption will be in force:

Assumption 1 QoS functions ⇠
t

can be increased at will within their respec-
tive domain of values, independently for each transition t.

This is only a technical assumption. This assumption rules out cases in which
one requires, e.g., that QoS functions ⇠

t

and ⇠
t

0 can be modified at will, but
subject to the constraint ⇠

t

= ⇠

t

0 . The general case yields the same results, at
the price of more complex notations. The reader interested in the general case
is referred to [41].

For two families Q and Q

0 of QoS functions, write Q0 � Q and Q

0
init

� Q

init

to mean:

8! 2 ⌦, 8t 2 T) ⇠

0
t

(!) � ⇠

t

(!)
respectively 8t 2 T) Q

init

(t) � Q

init

(t)
(20)

For N 0 = (N,V,Q

0
, Q

0
init

) (observe that N and V are unchanged), write

(i) : N 0 � N ; (ii) : E(N 0) � E(N); (iii) : F (N 0) � F (N)

to mean, respectively:

(i): Q

0 � Q and Q

0
init

� Q

init

both hold;
(ii): 8! 2 ⌦, E

!

(N 0) � E

!

(N) holds;
(iii): 8! 2 ⌦, F

!

(N 0) � F

!

(N) holds.

Definition 5 Call OrchNet N monotonic if

8N 0 : N 0 � N =) E(N 0) � E(N)

Call OrchNet N pessimistically monotonic if

8N 0 : N 0 � N =) F (N 0) � F (N)

The following immediate result justifies considering also the pessimistic end-
to-end QoS:

Theorem 1 Any OrchNet is pessimistically monotonic.

20 Albert Benveniste et al.

Consequently, it is always sound to base contract composition and contract
monitoring [40] on pessimistic end-to-end QoS. This, however, has a price,
since pessimistic end-to-end QoS is pessimistic compared to (actual) end-to-
end QoS. The next theorem gives conditions enforcing monotonicity:

Theorem 2 OrchNet N = (N,V,Q,Q

init

) is monotonic if and only if:

8! 2 ⌦, 8 2 V (N) =) E

!

(,N) � E

!

((N ,!),N) (21)

where V (N) is the set of all maximal configurations of net N and (N ,!) is
defined in (16).

Condition (21) expresses that Procedure 1 implements globally optimal service
selection. It is costly to verify and may not even be decidable in general.

Thus, we develop a structural condition for monotonicity for Orchestra-
tion nets N (Definition 2). Orchestration net N induces an OrchNet N

N

=
(U

N

, ⌫

N

, Q

N

, Q

init

) by attaching, to each transition t of the unfolding U

N

of
N , the value and QoS inherited from N through the unfolding N 7! U

N

.

Theorem 3 A su�cient condition for the OrchNet N
N

= (U
N

, ⌫

N

, Q

N

, Q

init

)
to be monotonic is that every cluster c of N satisfies the following condition:

8t
1

, t

2

2 c, t
1

6= t

2

=) t

•
1

= t

•
2

. (22)

If, in addition, every transition of N is reachable and partial order (D,) is
such that for every q 2 D, there exists q

0 2 D such that q0 > q, then (22) is
also necessary.

In words, a su�cient condition for monotonicity is that, each time branching
has occurred in net N , a join occurs right after. The additional condition
ensuring necessity is a reinforcement of condition (5).

3.4 Probabilistic Monotonicity

To account for uncertainties in QoS performance, soft probabilistic contracts
were proposed in [39], with associated composition and monitoring procedures,
for the particular case of response time. In [40,42] the above approach was ex-
tended to more general QoS. In this section, we describe the corresponding
model of probabilistic OrchNets, an extension of OrchNets supporting proba-
bilistic behavior of QoS measures. Details are found in [41].

In probabilistic OrchNets, the nondeterministic QoS functions ⇠
t

are now
random, and so are the non-deterministic selections of minima in competition
step of Procedure 1. Equivalently, the set ⌦ for the values of the daemon is
equipped with some probability P. To define monotonicity, we need to give
a meaning to (20) when ⇠

t

is random. This is achieved by considering the
stochastic partial order [46] induced by partial order  defined on D. We
briefly recall this notion next. Consider ideals of D, i.e., subsets I of D that
are downward closed: x 2 I and y  x =) y 2 I. Examples of ideals are:

QoS-Aware Management of Monotonic Service Orchestrations 21

for R
+

, the intervals, [0, x] for all x; for R
+

⇥ R
+

equipped with the product
order, arbitrary unions of rectangles [0, x] ⇥ [0, y]. Now, if ⇠ has values in D,
we define its distribution function by F (I) = P(⇠ 2 I), for I ranging over the
set of all ideals of D. For ⇠ and ⇠0 two random variables with values in D, with
respective distribution functions F and F

0, define

⇠ �s

⇠

0 i↵ for any ideal I of D, F (I)  F

0(I) holds. (23)

With this new interpretation of the order, we will now show that Theorems 1–
3 remain valid. We first define probabilistic OrchNets, which are OrchNets in
which the QoS of the di↵erent services are randomized.

Definition 6 (probabilistic OrchNet) A probabilistic OrchNet is a pair
(N ,P) consisting of an OrchNet N following Definition 3 and a probability
distribution P over the set ⌦ of daemons of N equipped with its Borel �-
algebra.

We further assume that the random variables ⌫
t

(!), ⇠
t

(!), where t ranges
over the set T of all transitions of the OrchNet, and the di↵erent random
selections of an optimum in Step 3 of Procedure 1 are all mutually independent.

How can we lift monotonicity to this probabilistic setting? We first make pre-
cise what the set ⌦ of all daemons is. For t a generic transition, let (⌦

t

,P
t

)
be the set of possible experiments together with associated probability, for
random response time ⇠

t

; and similarly for (⌦c,Pc), where c ranges over the
set C of all clusters of N . Thanks to the assumption stated at the end of
Definition 6, setting

⌦ =
�Y

t2T
⌦

t

�
⇥
�Y

c2C

⌦c

�
and P =

�Y

t2T
P

t

�
⇥
�Y

c2C

Pc

�
(24)

yields the probabilistic part of Definition 6. In the nondeterministic framework
of Section 3.3, we said that

⇠ � ⇠

0 if ⇠(!) � ⇠

0(!) holds 8! 2 ⌦ (25)

Clearly, if two random latencies ⇠ and ⇠

0 satisfy condition (25), then they
also satisfy condition (23). That is, ordering (25) is stronger than stochas-
tic ordering (23). Unfortunately, the converse is not true in general. For ex-
ample, condition (23) may hold while ⇠ and ⇠

0 are two independent random
variables, which prevents (25) from being satisfied. Nonetheless, the following
result holds [46], which will allow us to proceed:

Theorem 4 Assume condition (23) holds for the two distribution functions
F and F

0. Then, there exists a probability space ⌦, a probability P over ⌦,
and two real valued random variables ⇠̂ and ⇠̂0 over ⌦, such that:

1. ⇠̂ and ⇠̂0 possess F and F

0 as respective distribution functions, and
2. condition (25) is satisfied by the pair (⇠̂, ⇠̂0) with probability 1.

The proof of this result is immediate if (D,) is a total order. It is, however,
highly nontrivial if  is only a partial order. This theorem is indeed part
of theorem 1 of [46].5 Theorem 4 allows to reduce the stochastic comparison

5 Thanks are due to Bernard Delyon who pointed this reference to us.

22 Albert Benveniste et al.

of random variables to their ordinary comparison as functions defined over
the same set of experiments endowed with a same probability. This applies in
particular to each random QoS function and each random initial QoS function,
when considered in isolation. Thus, when performing construction (24) for two
OrchNets N and N 0, we can take the same pair (⌦

t

,P
t

) to represent both
⇠

t

and ⇠

0
t

, and similarly for ⇠
p

and ⇠

0
p

. Applying (24) implies that both N
and N 0 are represented using the same pair (⌦,P). This leads naturally to
Definition 6.

In addition, applying Theorem 4 to each transition t and each minimal
place p yields that stochastic ordering N �s N 0 reduces to ordinary ordering
N � N 0. Observe that this trick does not apply to the overall QoS E(N) and
E(N 0) of the two OrchNets; the reason for this is that the space of experiments
for these two random variables is already fixed (it is ⌦) and cannot further
be played with as theorem 4 requires. Thus we can reformulate probabilistic
monotonicity as follows—compare with Definition 5:

Definition 7 Probabilistic OrchNet (N ,P) is called probabilistically mono-
tonic if, for any probabilistic OrchNet N 0 such that N � N 0, we have
E(N) �s

E(N 0).

Note the careful use of � and �s. The following two results establish a relation
between probabilistic monotonicity and monotonicity.

Theorem 5 If OrchNet N is monotonic, then, probabilistic OrchNet (N ,P)
is probabilistically monotonic for any probability P over the set ⌦. Vice-versa,
if probabilistic OrchNet (N ,P) is probabilistically monotonic, then N is mono-
tonic with P-probability 1.

As a consequence, Theorem 3 enforcing monotonicity extends to the proba-
bilistic setting.

3.5 Enforcing Monotonicity

Theorem 3 in Section 3.3 provides guidelines regarding how to enforce mono-
tonicity. Consider again the workflow of Fig. 4 and the two alternative branches
beginning at the place labeled with QoS q

0
0

and ending at the place labeled
with the QoS q

0
2

. This pattern is a source of non-monotonicity as we have seen.
One way of enforcing monotonicity is by invoking Theorem 3. Aggregate the
two successive transitions in each branch and regard the result as a single tran-
sition (t0

12

for the left branch and t

00
12

for the right branch). The QoS increments
of t0

12

and t

00
12

are equal to �q0
12

= �q

0
1

� �q

0
2

and �q00
12

= �q

00
1

� �q

00
2

, respectively.
The resulting Orchestration net satisfies the condition of Theorem 3 and thus
is monotonic. This process of aggregation is illustrated on Fig. 5, mid diagram.

An alternative to the above procedure consists in not modifying the orches-
tration but rather changing the QoS evaluation procedure. Referring again to

QoS-Aware Management of Monotonic Service Orchestrations 23

t

0
1

t

0
2

t

00
2

q

0
0

q

0
2

q

0
1

t

00
1

q

00
1

�q

0
1

�q

00
1

�q

00
2

�q

0
2

t

0
12

t

00
12

q

0
0

q

0
2

�q

00
12

�q

0
12

q

0
0

q

0
2

t

12

�q

12

Fig. 5 Enforcing monotonicity through service aggregation, mid diagram, with �q012 = �q01�
�q02 and �q0012 = �q001 ��q002 . Pessimistic QoS evaluation, right diagram, with �q12 = �q012_�q0012.

Fig. 4, isolate the part of the workflow that is a source of non-monotonicity,
namely the subnet shown on Fig. 5, left. For this subnet, use pessimistic for-
mula (19) to get a pessimistic but monotonic bound for the QoS of this subnet.
For this example, the pessimistic bound is equal to �q

12

= �q

0
12

_�q00
12

. We then
plug the result in the evaluation of the QoS of the overall orchestration, by ag-
gregating the isolated subnet into a single transition t

12

, with QoS increment
�q

12

. This is illustrated on Fig. 5, right diagram.
The above two procedures yield di↵erent results. By aggregating service

calls performed in sequence, the first procedure delays the selection of the best
branch. The second procedure does not su↵er from this drawback. In turn,
it results in a pessimistic evaluation of the end-to-end QoS. Both approaches
restore monotonicity.

4 Implementing our approach in Orc

We have implemented our approach on top of the Orc orchestration language
and we now present two aspects of this implementation: we explain how our
approach supports separation of concerns in QoS-aware orchestration model-
ing; we also illustrate contract composition as a method for QoS-based design
of composite services. Before presenting this, we briefly summarize how the
technical developments of Section 3 contribute to our approach to contract
based QoS aware management of composite services. For this, the reader is
referred to the overview, in the introduction, of our approach to QoS manage-
ment using contracts.

4.1 Practical use of the QoS framework

Our framework of Probabilistic OrchNets developed in Section 3.4 supports
soft probabilistic QoS contracts expressed as probability distributions over
(possibly multi-dimensional) QoS metrics. Probability distributions can be
specified either as a parameterized family of distributions, or as a finite set of

24 Albert Benveniste et al.

quantiles. Such contracts are part of SLA (Service Level Agreement) declara-
tion. They can either be agreed as part of negotiation or estimated by remotely
observing how a service responds in terms of QoS performance. See [39,40] for
details. The theory developed in Section 3.3–3.5 provides the needed founda-
tions for handling monotonicity properly. Criteria ensuring monotonicity are
provided. Techniques to overcome the lack of monotonicity were developed,
thus providing support for managing arbitrary orchestrations. QoS aware de-
sign of composite services requires relating the QoS sub-contracts between the
orchestration and its called services, and the end-to-end QoS contract between
the orchestration and its clients. This task is not within the scope of this pa-
per and the reader is referred to our previous work [39, 40], where statistical
on-line detection of the violation of a probabilistic contract is also developed.
On-line dynamic service selection based on QoS is a central task in QoS aware
management of composite services. Procedure 1 specifying the semantics of an
OrchNet o↵ers dynamic service selection as a built-in feature.

How should we adapt an orchestration language so that it naturally sup-
ports the above concepts and techniques? This orchestration language should
be enhanced with features allowing: 1) To take the proper decision based on
QoS regarding competing events, actions, or service calls while executing an
orchestration; key here is to identify which events, actions, or service calls are
in competition when making this decision. 2) To compute the end-to-end QoS
of a given execution of an orchestration by composing the QoS of the di↵erent
services.

To perform the above, we only need to support the following four tasks:

Causality Tracking: Since the QoS algebra relies on the knowledge of causal-
ity relations between events, actions, or service calls, we need to keep track
of causal dependencies while executing the orchestration.

Competition Tracking: We must identify which events or service calls are
in competition at each stage of a given execution of the orchestration.

QoS Tracking: We need to implement the QoS algebra with its relations and
operators
– � (incrementing QoS),
–  (comparing QoS), and
– C (resolving competition based on QoS).

End-to-End QoS: Then, we need to be able to compute the end-to-end QoS
of an execution of the orchestration, following Section 2.3 and Section 3.2.

Once these four tasks are supported, QoS aware management follows as a
byproduct. This provides the foundations for a separation of concerns and
opens the way to an orthogonal development of QoS and functional aspects of
an orchestration. This important contribution is detailed next.

4.2 Weaving QoS in Orchestrations

Separation of concerns has been advocated as a recommended design discipline
in the development of complex software systems. The consideration of QoS

QoS-Aware Management of Monotonic Service Orchestrations 25

in composite services is a source of significant increase in complexity. Tight
interaction between QoS and the function performed makes QoS a crosscut-
ting concern. Aspect Oriented Programming (AOP) has been advocated as
a solution to support separation of crosscutting concerns in software devel-
opment [28, 29]. In AOP, the di↵erent aspects are developed separately by
the programmer. Their weaving is performed using joinpoints and pointcuts,
and by having advice refining original pointcuts. In this section we develop a
compile-time weaving of QoS aspects in composite services. Observe first that
our formal model of OrchNets o↵ers by itself support for separation of concerns
in QoS management. Once the involved QoS domains have been specified with
their algebraic operations, the execution policy of OrchNets (Procedure 1) en-
tirely determines how QoS interferes with the execution of the orchestration,
see the discussion of the example of Fig. 4 in Section 2.1.

Van der Aalst’s WF-nets (WFnets) [1, 3, 4] are a Petri net formalism and
are thus closely related to the functional part of our OrchNets. The compile-
time weaving of QoS into WF-nets is best illustrated by the example of Fig. 6,
where the XML-like specification explains how a functional description of a
composite service can be complemented with its QoS specification. The orig-
inal functional specification is BPEL-compliant and is written in boldface.
Add-ons for QoS are written in italics and consist of the WSLA [27] spec-
ification of the Interface, playing the role of a rich SLA specification. Two
QoS domains are declared: RTime (for ResponseTime) and Cost. These do-
mains come up with the declaration of their associated operators following
Section 2.2, namely Cost.leq, Cost.oplus, Cost.vee, Cost.compet and simi-
larly for RTime—this is not shown on the figure since such QoS domains should
be predefined and available from a library. The Interface also contains, for each
called service, the declaration of the QoS measures that are relevant to it—
service1 knows only RTime whereas service2 knows the two. The functional
part of this specification (shown in boldface) collects four service calls or re-
turns, each of which constitutes a pointcut.

The QoS-enhanced orchestration is automatically generated from the spec-
ification shown in Fig. 6—to save space, we do not show it but we only
discuss the steps performed in generating it. The added code is written in
roman. The first step is to initialize the metrics relevant to the orchestration,
see Fig. 7. The sequence begins with the initialization of the response time car-
ried by the token using the <assign> declaration. Concurrent invocation of the
service(-) and clock = service.clock.store follow, using the <flow></flow>

declaration. Once the service(-) returns, the di↵erence between the current
clock and service.clock.store is assigned to service.RTime. Resulting weav-
ing is obtained by applying the generic rewriting rule shown on Fig. 8. The
same mechanism is used for the response time of service2 and the end-to-
end response time of the orchestration follows by adding the above two. Each
pointcut shown in boldface in this figure is refined by the corresponding advice
(in roman) following it.

The end-to-end evaluation of Cost for the orchestration is computed in a
di↵erent way, because this kind of QoS is individually carried by the tokens

26 Albert Benveniste et al.

<SLA>
<SLAParameter name = "ResponseTime"
type = "float" unit = "milliseconds">

<Metric>ResponseTime</Metric>
<Function>

<Metric>ResponseTimeOplus</Metric>
<Metric>ReponseTimeCompare</Metric>
<Metric>ReponseTimeCompete</Metric>

</Function>
</SLAParameter>
<SLAParameter name = "Cost"
type = "integer" unit = "euro">

<Metric>Cost</Metric>
<Function>

<Metric>CostOplus</Metric>
<Metric>CostCompare</Metric>
<Metric>CostCompete</Metric>

</Function>
</SLAParameter>
<ServiceDefinition name="orch">
<MetricURI http://orch.com/getMetric
?ResponseTime />
<MetricURI http://orch.com/getMetric?Cost />
</ServiceDefinition>
<ServiceDefinition name="service1">
<MetricURI http://service1.com/getMetric
?ResponseTime />
</ServiceDefinition>
<ServiceDefinition name="service2">
<MetricURI http://service2.com/getMetric
?ResponseTime />
<MetricURI http://service2.com/getMetric?Cost />
</ServiceDefinition>

</SLA>

<process>

<sequence>

<invoke name = "service1(-)" ... />

<receive name = "service1(-)" ... />

<invoke name = "service2(-)" ... />

<receive name = "service2(-)" ... />

</sequence>

</process>

Fig. 6 Separation of concerns in QoS-aware specification. The functional specification is
depicted last in boldface, whereas the QoS part is shown in italics on top in the form
of a rich SLA specification.

<assign>
<$orch.RTime = 0 />
<$orch.Cost = 0 />

</assign>

Fig. 7 Initialization step

QoS-Aware Management of Monotonic Service Orchestrations 27

<sequence>

<invoke name = "service(-)" />

...

<receive name = "service(-)" />

</sequence>

rewrites as:

<sequence>

<flow>
<invoke name = "service(-)" />

<sequence>
<invoke "clock()"/>
<receive "clock()"
outputVariable = "clock"/>
<assign>

<$service.clock.store = $clock />
</assign>

</sequence>
</flow>
...
<flow>

<receive name = "service(-)" />

<sequence>
<invoke "clock()"/>
<receive "clock()"
outputVariable = "clock"/>
<assign>

<$service.RTime =
$clock - $service.clock.store />
<$orch.RTime =
$orch.RTime + $service.RTime />

</assign>
</sequence>

</flow>
</sequence>

Fig. 8 Rewriting rule for weaving response time.

representing the queries while being processed by the orchestration. Since Cost
is relevant to service2 by interface declaration in Fig. 6, the call to service2

is augmented with the return of the cost of calling service2. This weaving
is obtained by applying the generic rewriting rule of Fig. 9. Here, the invoke

pointcut is not refined, only the receive is refined, by the advice code (in
roman) following it.

The automatic generation of the augmented program from the original
specification is a direct coding of the Procedure 1. Rules for other constructions
such as the firing of a transition with several input places and the competition
when a token exits a place with possible choices, are derived similarly, following
Procedure 1. For general WFnets, we must keep track of the di↵erent tokens
and attach QoS values to them. This amounts to keeping track of causalities
between service calls that result from the WFnet. To support the weaving,

28 Albert Benveniste et al.

<sequence>

<invoke name = "service(-)"/>

<receive name = "service(-)"/>

</sequence>

rewrites as:

<sequence>

<invoke name = "service(-)" />

<receive name = "service(-)"

outputVariable = "service.Cost" />

<assign>
<$orch.Cost =
$orch.Cost + $service.Cost />

</assign>
</sequence>

Fig. 9 Rewriting rule for weaving cost.

pointcuts need not be explicitly declared by the programmer. They are instead
obtained by pattern matching searching for keywords invoke and receive in
the functional specification.

Instead of developing a tool implementing the above technique for WFnets,
we have performed a prototype implementation on top of the Orc orchestration
language. This is explained in the next section and subsequently illustrated
using the TravelAgent2 example of Fig. 2.

4.3 Enhancing Orc for QoS

Background on Orc: Orc [21] is a general purpose language aimed to encode
concurrent and distributed computations, particularly workflows and Web ser-
vice orchestrations. An orchestration described in Orc is essentially an Orc
expression. An Orc expression is either a site or is built recursively using any
of the four Orc combinators. A site models any generic service which the Orc
expression orchestrates. A site can be called with a list of parameters, and all
these parameters’ values have to be defined before the call can occur. A call
to a site returns (or publishes) at most one value; it may also halt without
returning a value. The identity site, which publishes the value x it receives as
a parameter, is denoted by x (the name of its parameter). Orc allows compos-
ing service calls or actions by using a predefined small set of combinators that
we describe next. In the parallel composition f | g, expressions f and g run
in parallel. There is no direct interaction between parts of f and g and the
returned values are merged by interleaving them. The sequential composition
f >x> g starts by running f . For every value v published by f , a new instance
of g is run in parallel, with the value of x bound to v in that instance. As a
particular case, f�g performs f and then g, in sequence. The pruning com-
position f <x< g runs f and g in parallel. When g publishes its first value v,
the computation of g is terminated, and occurrences of x in f are replaced by

QoS-Aware Management of Monotonic Service Orchestrations 29

v. Since f is run in parallel with g, site calls in f that have x as a parameter
are blocked until g publishes a value. Finally, the otherwise combinator f ; g
runs f first. If f publishes a value, g is entirely ignored. However if the com-
putation of f halts without returning any values, then g is run. Orc also has
built in sites to track passage of time (Rtime, Rwait), deal with data structures
(tuples, lists, records), handle concurrency (semaphores, channels) and define
new sites (class). An interested reader is referred to the Orc documentation 6

for details.

Enhancing Orc: We now describe how we integrate our QoS framework into
the Orc language. In particular, we explain how we perform the four tasks
listed at the end of Section 4.1 within Orc.

The Causality Tracking task consists in tracking the causal relations
between execution events in the Orc interpreter. This was straightforward for
WFnets, since causality is revealed by the graph structure of the net. It is
not immediate for Orc programs, however. The event structure semantics of
Orc [43] served as a formal specification for this. It turns out that causality can
be cast into our generic algebraic framework for QoS developed in Section 2.3.
Causalities are represented as pairs x = (e, C), where e is the considered event
and C = {x

1

, . . . , x

k

} is the set of its direct causes, recursively encoded as pairs
of the same kind. The QoS domain encoding causalities is defined similarly to
the QoS domain “Cost” of Section 2.2. Consequently, the generic technique
developed to weave QoS into an Orc program can be instantiated to generate
causalities. Details will be reported elsewhere. As a small illustration example,
consider the computation of causalities for the following Orc program:

((2 � x) <x< (1 � 3)) � print(4)

We apply our generic weaving method by seeing causality as a QoS domain.
We make use of two data structures in Orc : tuples, such as (f, g) and finite
lists, such as [f, g]. The causal history is stored as a list of lists with the tuple
(publication, causal past) published in the transformed program. The weaving
yields the following causality-enhanced Orc program:

(
((
((((2, []) >t> (x >(x0,)> (x0, union([x], [t])))) <x<

((((1, []) >t> (3, [t]))
() >t> ((”print”, [t]) >x0> (print(4), [x0]))
)

The first event has an empty causal past (represented by []). Through pattern
matching, this is propagated to the next event with causal history accumulated.
The output of its execution yields the partial order of causes of the publication
of print(4):

4(signal, [(print, [(3, [(3, [(1, [])]), (2, [])])])])

6 http://orc.csres.utexas.edu/documentation.shtml

30 Albert Benveniste et al.

Focus now on theCompetition Tracking task. In its basic form, Orc does
o↵er a way to select one publication among several candidate ones, namely by
using the pruning operator. Indeed, in the Orc expression

f <x< (E
1

| E
2

| · · · | E
n

) (26)

the first publication by E

1

, E
2

, . . . , or E

n

, preempts any future publication
of the parallel composition g�E

1

| E
2

| · · · | E
n

. Since only one publication
of g is picked, all possible publications of g are in mutual conflict when in
the context of (26). One can regard (26) as implementing the Competition

Tracking task for the particular case when the conflict is resolved on the
basis of the time of occurrence of the conflicting publications, seen as a QoS
measure—only the earliest one survives. We propose to lift the Orc pruning
operator by resolving the conflict on the basis of an arbitrary QoS measure q

given as a parameter of the generalized pruning:

f <x<q (E
1

| E
2

| · · · | E
n

) (27)

which is, for its definition, macro-expanded in core Orc as follows:

f <x< best
q

(E
1

| E
2

| · · · | E
n

) (28)

In (28), expression best
q

(E
1

| E
2

| · · · | E
n

):

1. stores, as a stream S, all publications of E
1

| E
2

| · · · | E
n

upon termina-
tion;

2. finds a maximal x in S according to the partial order defined by QoS
measure q;7

3. returns xC
q

(S \ {x}).

For the special case where QoS measure q is just the response time d, then
(27) is equivalent to (26), the original pruning operator.

At this point, we must explain how Procedure 1 is implemented. Focus first
on step 1 of that procedure, where a cluster is selected. In free choice nets,
clusters localize conflicts. In core Orc, conflicts are localized in the pruning
operator (26). In our extension of Orc, conflicts are localized in the QoS-based
pruning operator (27). Thus, step 1 of Procedure 1 consists in selecting one
among all enabled expressions of the form (27). Next, expression (27) itself is
better explained with reference to Fig. 1. Fig. 1-(a) is a direct illustration of
(27), whereas its equivalent form Fig. 1-(b) yields step 3 of Procedure 1 (the
competition step). This discussion shows that the new feature (27) enhances
Orc with a feature that is as powerful as the QoS-based conflict of our Orch-
Nets and it explains how Procedure 1 is implemented. How this approach is
implemented is presented in Appendix B.1. We could have considered a more
general feature f <x<q g, where g is an arbitrary Orc expression with its
several induced threads, not necessarily a parallel composition. Our current
implementation does not provide this more general feature, however.

7 Since QoS values may be partially ordered, this choice could be non-deterministic.

QoS-Aware Management of Monotonic Service Orchestrations 31

The QoS Tracking task of implementing the QoS algebra is handled as
in the QoS declarations of Section 4.2. This is extended with QoS Weaving
to enhance the functional declared code with a QoS enhanced output. In Ap-
pendix B we provide examples and develop the TravelAgent2 Examples in Orc
by using the above methodology.

Finally, the End-to-End QoS task is much less obvious than for WFnets.
The reason is that Orc does not handle explicitly states, transitions, and
causality. Rewriting rules are needed that automatically transform functional
Orc code by enhancing it for QoS, structurally. This resembles what we briefly
presented regarding causality. Details will be presented elsewhere.

5 Evaluation of Our Approach

In this section, we make use of our implementation for performing contract
composition, that is, estimating the end-to-end QoS of the TravelAgent2 and
TravelAgent3 examples. The former is monotonic whereas the latter is not. Our
study illustrates the e↵ect of monotonicity and substantiates the need for the
rich theory developed in this paper.

The experiments

Each orchestration is specified as a QoS weaved specification such as explained
in Appendix B.2. For each trial, QoS values for each called service are drawn
according to their specified contracts and then our automatic QoS evaluation
procedure applies—we will actually use both the normal QoS evaluation from
(18) and the “pessimistic”QoS evaluation from (19) and compare them. Draw-
ing 20, 000 successive trials yields, using Monte-Carlo estimation, an estimate
of the end-to-end contract in the form of a probability distribution. QoS di-
mensions considered here are response time, cost, and category. When choices
are performed according to two dimensions or more (e.g., cost and category),
we make use of a weighing technique following AHP [47].

Fig. 10 displays the results of two experiments, corresponding to two dif-
ferent sets of contracts exposed by the called services, shown on diagrams (a)
for response time, and (c) for cost. In order to evaluate the end-to-end QoS
of the TravelAgent2 orchestrations in a realistic setting, the AirlineCompany
and HotelBooking services are modeled as distributed applications hosted on a
GlassFish 3.1 server on the Inria local area network—each call to AirlineCom-
pany or HotelBooking results in a parallel call to one of the above mentioned
GlassFish applications and the corresponding response time is recorded and
used for end-to-end QoS evaluation. Other services are assumed to react much
quicker and are drawn from a Student-t distribution, not shown in the figures.
Costs, on the other hand, are drawn from some Gaussian distributions (with
small variance/mean ratio); note that we could as well have costs deterministic,
this would not change our method.

32 Albert Benveniste et al.

0 50 100 150
0

0.5

1

(a) Latency (seconds)

C
u

m
.

D
e

n
si

ty

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

(b) Latency (seconds)

C
u

m
.

D
e

n
si

ty

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

(c) Cost

C
u

m
.

D
e

n
si

ty

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

(d) Cost

C
u

m
.

D
e

n
si

ty

AirlineCompany1

AirlineCompany2

HotelBookingA

HotelBookingB

TravelAgent2 (11)

TravelAgent2 pessimistic (12)

TravelAgent3 (11)

TravelAgent3 pessimistic (12)

AirlineCompany1

AirlineCompany2

HotelBookingA

HotelBookingB

TravelAgent2

TravelAgent3

0 50 100 150
0

0.5

1

(a) Latency (seconds)

C
u

m
.

D
e

n
si

ty

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

(b) Latency (seconds)

C
u

m
.

D
e

n
si

ty

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

(c) Cost

C
u

m
.

D
e

n
si

ty

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

(d) Cost

C
u

m
.

D
e

n
si

ty

AirlineCompany1

AirlineCompany2

HotelBookingA

HotelBookingB

TravelAgent2 (11)

TravelAgent2 pessimistic (12)

TravelAgent3 (11)

TravelAgent3 pessimistic (12)

TravelAgent2

TravelAgent3

AirlineCompany1

AirlineCompany2

HotelBookingA

HotelBookingB

Fig. 10 We show results from two experiments (top and bottom). For each experiment we
display cumulative densities of: (a) Measured response time of invoked services (b) End-
to-end response time for TravelAgent2 orchestrations through two evaluation schemes (c)
Measured cost of invoked services (d) Returned cost invoice of TravelAgent2 orchestrations.

Fig. 10 displays the estimated end-to-end QoS in diagrams (b) for response
time and (d) for cost. The results are shown for both the normal QoS evaluation
from (18) and the “pessimistic” QoS evaluation from (19). Not surprisingly,
pessimistic evaluation yields larger end-to-end QoS estimates.

Now, recall that TravelAgent2 is monotonic, whereas TravelAgent3 is not.
What are the consequences of this? In Fig. 10-right, the cost for AirlineCom-
pany2 has been reduced as compared to Fig. 10-left. For the monotonic orches-

QoS-Aware Management of Monotonic Service Orchestrations 33

tration TravelAgent2, this reduction results in a reduction of the overall cost.
For the non-monotonic orchestration TravelAgent3, however, this reduction
gives raise to an increase in overall cost. On the other hand, pessimistic QoS
evaluations are always monotonic, see Theorem 1; the results shown conform
to this theorem.

Once these end-to-end measurements are taken, the negotiation of con-
tracts and their monitoring may be done as in [39, 40]. This follows the
Monte-Carlo procedure explained in [39,40] and is thus omitted.

Discussion

When dealing with monotonic orchestrations, our contract composition pro-
cedure performs at once, both QoS evaluation and optimization. Competing
alternatives are captured by the di↵erent choices occurring in the orchestra-
tion. According to Procedure 1, choice among competing alternatives is by
local optimization, which implements global optimization since the orches-
tration is monotonic. Despite the use of Monte-Carlo simulations, this simple
policy is cheaper than global optimization, even if analytic techniques are used
for composing probabilistic QoS. Furthermore, when applied at run time, Pro-
cedure 1 implements late binding of services with optimal selection in a very
cheap way.

Of course, there is no free lunch. If the considered orchestration is not
monotonic, the above approach does not work as such, as already pointed out
in [7, 10, 51], see Section 6. The bypasses developed in Section 3.5 must be
used. The aggregation procedure results in aggregating services that are called
in sequence, which increases granularity of the orchestration. When applied in
the context of late binding, the decision is delayed until alternatives have all
been explored—thus, it is hard to claim that late binding has been achieved
by doing so. If pessimistic evaluation is followed, then immediate choices can
be applied but, as we said, the end-to-end QoS evaluation that results is pes-
simistic in that the evaluation accumulates worst QoS among alternatives. So,
none of the above techniques is fully satisfactory for non-monotonic orchestra-
tions. In turn, global optimization always applies and implements best service
selection—however, we question the meaning of QoS aware management when
orchestrations are non-monotonic.

6 Related Work

We restrict ourselves to papers dealing with QoS-aware management of com-
posite services and addressing QoS-based design, on-line service selection, mon-
itoring and adaptation/reconfiguration. We focus on specific papers dealing
with issues relevant to our work:

– QoS Algebraic Formulation: While QoS composition has been studied in
a variety of techniques, we are interested in mathematically sound mod-

34 Albert Benveniste et al.

Paper QoS framework Algorithms

Yu and
Bouguettaya
(2008) [48]

QoS parameters can be defined as
“the probability of something”,
composition rules are proposed

Extensive study of QoS
algebra; optimization of
service selection by Dynamic
Programming applied to the
orchestration modeled as a
directed graph

Bistarelli and
Santini (2009,
2009, 2010)
[12], [13], [11]

Probabilistic QoS supported;
analytic techniques for composing
component QoS to get overall
service QoS

Formal language based on
semirings used to aggregate
QoS; however, composition
rules for QoS are not detailed

Buscemi and
Montanari
(2011) [16],
Buscemi and
Montanari
(2007) [15], De
Nicola et al.
(2005) [37]

Generic QoS is supported through
a commutative semi-ring algebra;
The cc-pi calculus is developed to
model dynamic service binding
with QoS-based selection and its
expressiveness is studied; SLA is
declared as a system of named
constraints

Cardoso et al.
(2002,
2004) [19,20]

Probabilistic QoS is supported
but with little details; the
composition of QoS values is
explained but the composition of
QoS distributions is not explained

Generic formulae presented
with rules for composing
workflows’ QoS and tested on
a genome based workflow.

Hwang et al.
(2004,2007)
[24,25]

Probabilistic QoS is supported,
with analytic techniques for QoS
composition

E�cient approximations for
the analytic evaluation of
Probabilistic QoS composition
are proposed

Menascé et al.
(2008) [32]

Probabilistic QoS is supported,
with analytic techniques for QoS
composition, mathematical details
are provided

Optimal service selection is
precisely formulated and
solved with an e�cient
heuristic

Table 1 Literature survey: Papers dealing with orchestrations allowing for a data-dependent

workflow (thus exhibiting a risk of non-monotonicity). The issue of monotonicity is ignored,
except in the work of the authors of this paper and in Ardagna et al. [10], Alrifai & Risse [7]
and Zeng et al. [51], cited in Table 2, where it is identified through the discussion on global
versus local optimization.

els for QoS. We pay attention to the handling of probabilistic and multi-
dimensional QoS.

– Monotonicity: In case of data dependent workflows, the analysis of mono-
tonicity in design becomes crucial. We restrict our discussion to papers
that have either considered this implicitly or make use of other techniques
to ensure this.

– Contracts: Once QoS models have been specified, contractual agreements
between clients and orchestrations (or similarly, between orchestrations
and sub-contracted services) will need to be specified. We review some
approaches that utilize the probabilistic nature of QoS to ensure mathe-
matically sound contractual agreements.

We review the literature collected in Table 1 and Table 2, where issues of
monotonicity are relevant.

QoS-Aware Management of Monotonic Service Orchestrations 35

Paper QoS framework Algorithms

Calinescu et al.
(2011) [17]

Probabilistic QoS is
supported, with analytic
techniques for QoS
composition (Markov models,
DMC, CMC, MDP)

QoS is formally specified by using
probabilistic temporal logic;
extensive toolkit and model
checkers are used to implement
QoS-based design and
reconfiguration but little detail is
given about algorithms

Zeng et al.
(2004, 2008,
2003) [51],
[50, 52]

Probabilistic QoS is supported
(restricted to Gaussian
distributions); analytic
techniques for QoS
composition are provided

Using an integer programming
formulation, global and local
optimization are studied in
dynamic environments and the
issue of monotonicity is implicitly
pinpointed

Ardagna et
al.(2005) [10];
Alrifai &
Risse(2009) [7]

Probabilistic QoS is not
supported

QoS-aware service selection is
solved via Mixed Integer Linear
Programming / Multi-dimension
Multi-choice 0-1 Knapsack
Problem (MMKP); the issue of
monotonicity is pinpointed
through the comparison of local
vs. global QoS guarantees

Rosario et al.
(2007, 2008,
2009)
[14,39,40]

Probabilistic QoS is supported
through Soft Probabilistic
contracts; Monte-Carlo
simulation is proposed for QoS
composition; the whole study
is restricted to response time

An in-depth study of
monotonicity is performed;
contract composition, optimal
service binding, and statistical
QoS contract monitoring are
developed

Rosario et al.
(2009) [41,42]

Probabilistic
multi-dimensional QoS is
supported, with soft
Probabilistic contracts
involving Monte-Carlo
simulation for QoS
composition

Probabilistic monotonicity is
studied; a preliminary version of
this paper

Table 2 Literature survey, continued.

We begin with the work of Yu and Bouguettaya [48]. Built-in monotonicity
is still ensured, due to proper restrictions on the control flow of the considered
orchestrations. We nevertheless discuss it because specific issues of interest
are studied. A Service Query Algebra is proposed in which composite services
are seen as graphs. They can be further composed. QoS composition is one
aspect of this service composition. QoS is treated in a fully algebraic style,
very much like our present approach. Probabilistic aspects are not extensively
developed, however. Buscemi and Montanari (2011) [16], Buscemi and Mon-
tanari (2007) [15], De Nicola et al. (2005) [37] is a series of paper developing
algebraic modeling of QoS in a way very similar to ours. By building on the
seminal work of Baccelli et al. [23] on max/+-algebra, these authors develop a
commutative semi-ring algebra to model QoS domains; this is almost identical
to our modeling, except for our consideration of the “competition” operator
used in late service binding. Then, the authors develop the cc-pi calculus to

36 Albert Benveniste et al.

capture dynamic service binding way beyond our present study. Probabilistic
frameworks are not considered, however.

The work by Bistarelli and Santini [12, 13] is discussed here because it
explicitly refers to monotonicity in its title. This is, however, misleading in
that this term is used in the totally di↵erent setting of “belief revision”, a kind
of logic in which facts can get falsified (thus the world is not monotonic in this
sense).

For the next group of papers, the authors seem unaware of the issue of
monotonicity for the type of orchestration they consider (we do not repeat
this fact for the di↵erent papers). Cardoso et al. [19, 20] propose a predictive
QoS model that allows to compute the QoS of workflows from the QoS of
their atomic parts. Individual QoS measures are estimated for their minimum,
maximum, and averaged values based on measurements. Rules to compute
QoS composition incrementally are used (the SWR rules published in the first
author’s PhD), with a special attention paid to fault-tolerant systems. Proba-
bilistic QoS is possibly supported, with, however, little technical details. The
work by Hwang et al. [24, 25] is very interesting in its study of probabilistic
QoS composition via analytic techniques. To avoid the computational cost re-
sulting from state explosion in composite services, heuristic approximations
are proposed. The work by Menascé et al. [32] gives a mathematically pre-
cise development of optimal service selection with cost and response time as
QoS dimensions. The BPEL constructs are supported, including the “switch”,
which is a source of possible lack of monotonicity; alternative branches of
the switch are assigned a probability. A very interesting heuristic is provided
to perform near-to-optimal selection at a reasonable computational cost. The
long and rich paper by Calinescu et al. [17] presents a methodology and ex-
tensive toolkit for performing QoS-based design and reconfiguration. Markov
types of models are used in this toolkit, ranging from discrete and continuous
Markov chains to Markov Decision Processes to deal with non-deterministic
choices or data-dependent branching. QoS analyses are supported thanks to a
formulation using probabilistic temporal logic and associated model checkers.
The methodology and toolkit reuses existing tools and did not need the de-
velopment of any new engine. The paper lacks mathematical details, however,
regarding the models and algorithms used.

The issue of monotonicity is identified in only three papers from our list,
albeit under a di↵erent wording than ours. Ardagna et al. [10] discuss local
versus global QoS guarantees and explain why optimizing QoS guarantees of
local execution paths may not lead to the satisfaction of global QoS guarantees.
Alrifai & Risse [7] propose a similar approach using MMKP for computation-
ally e�cient selection over global and local constraints. In Zeng et al. [51], a
thorough comparison is made between local versus global optimization in ser-
vice selection. It is argued that performing local optimization may not lead to
optimal selection; indeed, the beginning of Section 3.2 in this paper explains
exactly our example of Fig. 3. The paper explains that global optimization
always provides a relevant selection, which is certainly correct. We have, how-
ever, explained in our introduction why we believe that not having monotonic-

QoS-Aware Management of Monotonic Service Orchestrations 37

ity leads to a strange understanding of QoS management. Now, referring to
our taxonomy, in monotonic orchestrations, local optimization is enough to
ensure global optimality. Other major features of this paper are summarized
in the table.

To conclude on this bibliographical study, we notice that the issue of mono-
tonicity is mostly ignored in the literature on composite Web services, whereas
it is known in the area of performance studies for general computer architec-
tures. Our work focuses on monotonicity, its conditions, and its consequences
for QoS-aware management of composite Web services.

7 Conclusion

We have studied the QoS aware management of composite services, with em-
phasis on QoS-based design and QoS-based on-line service selection. We have
advocated the importance of monotonicity—a composite service is monotonic
if a called service improving its QoS cannot decrease the end-to-end QoS of
the composite service. Monotonicity goes hand-in-hand with QoS, as we think.
For monotonic orchestrations, “local” and “global” optimization turn out to be
equivalent. This allowed us to propose simple answers to the above tasks.
Corresponding techniques are valid for both deterministic and probabilistic
frameworks for QoS. We have proposed techniques to deal with the lack of
monotonicity. We have observed that the issue of monotonicity has been un-
derestimated in the literature.

To establish our approach on firm bases, we have proposed an abstract QoS
calculus, whose algebra encompasses most known QoS domains so far. How
QoS based design and on-line service selection are performed in our approach is
formalized by the model of OrchNets. Our framework of QoS calculus and Or-
chNets supports multi-dimensional QoS measures, possibly handled as partial
orders. To account for high uncertainties and variability in the performance of
Web services, we support probabilistic QoS.

QoS and function interfere; still, the designer expects support for sepa-
ration of concerns. We provide such a support by allowing for separate QoS
declaration and functional specification, followed by weaving to generate QoS-
enhanced orchestrations. Our weaving techniques significantly clarifies the
specification. Finally, we have proposed a mild extension of the Orc orchestra-
tion language to support the above approach—the principles of our extension
could apply to BPEL [38] as well.

We believe that our approach opens new possibilities in handling orches-
trations with rich QoS characteristics.

Acknowledgements The authors would like to thank Jayadev Misra and William R. Cook
for fruitful discussions regarding Orc. Further thanks to the two anonymous referees for
providing us with constructive comments and suggestions that have been incorporated in
the revised version. This work was partially funded by the INRIA Associated Team grant
FOSSA, the ANR national research program DocFlow (ANR-06-MDCA-005) and the project
CREATE ActivDoc.

38 Albert Benveniste et al.

A Appendix: Proofs

A.1 Proof of Theorem 2

Throughout the proof, we fix an arbitrary value ! for the daemon. We first
prove the su�ciency of condition (21). Let N 0 be such that N 0 � N . Since op-
erators � and C are both monotonic, see Definition 1, we have, by Procedure 2
and formulas (17) and (18):

E

!

((N 0
,!),N 0) � E

!

((N 0
,!),N)

By (21) applied with  = (N 0
,!), we get that

E

!

((N 0
,!),N) � E

!

((N ,!),N)

holds. This proves the su�ciency of condition (21).
We prove necessity by contradiction. Let (N ,!,

†) be a triple violating
condition (21), in that



† cannot get selected by Procedure 1, but
E

!

(†,N) � E

!

((N ,!),N) does not hold.

Now consider the OrchNet net N 0 = (N,V,Q

0
, Q

init

) where the family Q

0 is
such that, 8t 2 

†, ⇠0
t

(!) = ⇠

t

(!) holds, and 8t /2 

†, using (5) together with
the assumption that (D,) is an upper lattice, we can inductively select ⇠0

t

(!)
such that the following two inequalities hold:

_

t2

†

q

t


� _

p

02•
t

q

p

0
�
� ⇠

0
t

(!) (29)

⇠

t

(!)  ⇠

0
t

(!) (30)

Condition (30) expresses that N 0 � N . By Procedure 1 defining QoS policy,
(29) implies that configuration † can win all competitions arising in step 3 of
QoS policy, (N 0

,!) = 

† holds, and thus

E

!

((N 0
,!),N 0) = E

!

(†,N 0) = E

!

(†,N)

However, E
!

(†,N) � E

!

((N ,!),N) does not hold, which violates mono-
tonicity.

A.2 Proof of Theorem 3, Su�ciency

Let '
N

be the net morphism mapping U

N

onto N and let N be any OrchNet
built on U

N

. We prove that condition (21) of Theorem 2 holds for N by induc-
tion on the number of transitions in the maximal configuration (N ,!) that
actually occurs. The base case is when it has only one transition. Clearly this
transition has minimal QoS increment and any other maximal configuration
has a greater end-to-end QoS value.

QoS-Aware Management of Monotonic Service Orchestrations 39

Induction Hypothesis: Condition (21) of Theorem 2 holds for any maximal
occurring configuration with m � 1 transitions (m > 1). Formally, for an
OrchNet N , 8! 2 ⌦, 8 2 V (N),

E

!

(,N) � E

!

((N ,!),N) (31)

must hold if |{t 2 (N ,!)}|  m� 1.

Induction Argument: Consider the OrchNet N , where the actually occurring
configuration (N ,!) has m transitions and let

; = 

0

(!) � 

1

(!)(= ) � . . . � 

M(!)

(!) = (N ,!)

be the increasing chain of configurations leading to (N ,!) under QoS policy,
see (3.2) — to shorten the notations, we write simply  instead of 

1

(!)
subsequently in the proof. We assume that M(!)  m. Let t be the unique
transition such that t 2 

1

(!) and set bt = {t}[t•. Let 0 be any other maximal
configuration of N . Then two cases can occur.

– t 2 

0: In this case, comparing the end-to-end QoS of (N ,!) and 

0

reduces to comparing

E

!

((N ,!) \ bt,N ) and E

!

(0 \ bt,N )

where N  is the future of  in N = (N,V,A,Q,Q

init

), obtained by re-
placing N by N

, restricting V , A, and Q to N

, and replacing Q

init

by
E

!

(,N), the QoS cost of executing configuration .
Since (N ,!) \ bt is the actually occurring configuration in the future N 

of transition t, using our induction hypothesis, then

E

!

(0 \ bt,N ) � E

!

((N ,!) \ bt,N )

holds, which implies

E

!

(0,N) � E

!

((N ,!),N)

– t /2 

0: Then there must exist a transition t

0 2 

0 such that t and t

0

di↵er and belong to the same cluster c. Hence, '
N

(t)• = '

N

(t0)• follows
from the structural condition of Theorem 3. The futures N  and N 

0

thus are isomorphic: they only di↵er in the initial colors of their places.
If Q

init

and Q

0
init

are the initial QoS values for the futures N  and N 

0
,

then Q

init

 Q

0
init

holds (since ⇠
t

 ⇠

t

0 , t

• has QoS lesser than t

0• by
monotonicity of �). On the other hand,

E

!

((N ,!),N) = E

!

((N ,!) \ bt,N ) (32)

and

E

!

(0,N) = E

!

(0 \ b
t

0
,N 

0
)

40 Albert Benveniste et al.

Now, since N 

0
and N  possess identical underlying nets and N 

0 � N ,
then we get

E

!

(0 \ b
t

0
,N 

0
) � E

!

(0 \ b
t

0
,N ) (33)

Finally, applying the induction hypothesis to (32) and using (33) yields
E

!

(0,N) � E

!

((N ,!),N).

This proves that condition (21) of Theorem 2 holds and finishes the proof of
the theorem.

A.3 Proof of Theorem 3, Necessity

We will show that when the structural condition of Theorem 3 is not satisfied
by N , Orchnet N

N

can violate condition (21) of Theorem 2, the necessary
condition for monotonicity.

Let c be any cluster in U

N

that violates the structural condition of Theo-
rem 3. Since N is sound, all transitions in c are reachable from the initial place
and so there are transitions t

1

, t

2

2 c such that •
t

1

\•
t

2

6= ;, •'(t
1

)\•
'(t

2

) 6= ;
and '(t

1

)• 6= '(t
2

)•.
Define [t] = dte \ bt and  = [t

1

] [[t
2

].  is a configuration. Since t

•
1

6= t

•
2

,
without loss of generality, we assume that there is a place p 2 t

•
1

such that
p /2 t

•
2

. Let t

⇤ be a transition in N  such that t

⇤ 2 p

•. Such a transition
must exist since p can not be a maximal place: '(p) can not be a maximal
place in N which has a unique maximal place. Now, consider the Orchnet
N 0

> N obtained as follows: using repeatedly condition (5) for operator � in
Definition 1, ⇠0

t1
(!) = ⇠

t1(!), ⇠
0
t2
(!) � ⇠

t1(!), and, for all other t 2 c, ⇠0
t

(!) �
⇠

0
t2
(!). For all remaining transitions of N 0, with the exception of t⇤, the QoS

increments are the same as that in N and thus are finite for !. Finally, select
⇠

0
t

⇤(!) such that

⇠

t1(!)� ⇠

0
t

⇤(!) > Q⇤(!) (34)

where Q⇤(!) 2 D will be chosen later—here we used the additional condition
of Theorem 3 regarding D, together with condition (5) for operator � in Def-
inition 1. Transition t

1

has a minimal QoS increment among all transitions in
cluster c. It can therefore win the competition, thus giving raise to an actually
occurring configuration (N 0

,!). Select Q⇤(!) equal to the maximal value of
the end-to-end QoS of the set K of all maximal configurations  that do not
include t

1

(e.g., when t

2

fires instead of t
1

). By (34), since t

⇤ is in the future
of t

1

, we thus have E

!

((N 0
,!),N 0) � ⇠

t1(!)� ⇠

0
t

⇤(!) > Q⇤(!) � E

!

(,N 0)
for any configuration  and, therefore, N 0 violates the condition (21) of The-
orem 2.

QoS-Aware Management of Monotonic Service Orchestrations 41

A.4 Proof of Theorem 5

The proof is by contradiction. Assume that

there exists a pair (N ,N 0) of OrchNets such that
N � N 0 and P {! 2 ⌦ | E

!

(N) < E

!

(N 0)} > 0.
(35)

To prove the theorem it is enough to prove that (35) implies:

there exists N
o

,N 0
o

such that N
o

� N 0
o

,
but E(N

o

) �s

E(N 0
o

) does not hold
(36)

To this end, set N
o

= N and define N 0
o

as follows, where ⌦
o

denotes the set
{! 2 ⌦ | E

!

(N) < E

!

(N 0)}:

N 0
o

(!) = if ! 2 ⌦

o

then N 0(!) else N (!)

Note that N
o

� N 0
o

� N 0 by construction. On the other hand, we have
E

!

(N
o

) < E

!

(N 0
o

) for ! 2 ⌦

o

, and E

!

(N
o

) = E

!

(N 0
o

) for ! 62 ⌦

o

. By (35),
we have P(⌦

o

) > 0. Consequently, we get:

[8! 2 ⌦) E

!

(N
o

)  E

!

(N 0
o

)]

and [P {! 2 ⌦ | E
!

(N
o

) < E

!

(N 0
o

)} > 0]

which implies that E(N
o

) �s

E(N 0
o

) does not hold.

B Appendix: Implementation in Orc

An implementation of a QoS management facility is a large undertaking, in-
volving the creation of mechanisms for service identification, QoS criteria def-
inition, SLA negotiation, QoS measurement, alerts, reports, QoS-based recon-
figuration, and so forth. In this section, we narrow our focus to several aspects
of these mechanisms that are impacted by this paper’s view of QoS for service
orchestrations.

In particular, we illustrate some aspects of our implementation in Orc. We
first explain how Orc is upgraded to o↵er the QoS-based pruning operator (27)
in the form of a new bestQ operator. Then, we exhibit the implementation of
several QoS domains with their QoS operators. Finally, we illustrate how the
QoS weaving is performed for the TravelAgent2 orchestration from Section 1.

B.1 Enhancing Orc with bestQ functions

Recall that the Orc pruning combinator g <x< f selects the first publication
from an expression f , and terminates further execution of that expression. In
this case, first is in the sense of the real time ordering of publications. However,
this mechanism can be extended to various QoS domains. For example, in our
exemplar security level with values “high” and “low”, security-pruning selects

42 Albert Benveniste et al.

def compete((slx,rtx), ys) =

unzip(ys) >(_,rtys)> (slx, responseTimeDomain.join(rtx:rtys))

def bestSLandRT(thunk) =

val lows = Channel()
def trackLow(("low", x)) = lows.put(x)

b <("high",_) as b< (thunk() >x> (x | trackLow(x)))
;

("low", responseTimeDomain.join(lows.getAll()))

Fig. 11 Competition operator and bestSLandRT for composite (security level, response
time) QoS domain

the first “high” publication; or if the expression halts after publishing only
“low” publications, then security-pruning selects the first one. This selection
process may impact other QoS values, such as response time or cost, since
several values are considered before the “winner” is selected.

This QoS-aware selection process is performed by a bestQ function, for
various domains Q. The bestQ function implements Step 3 of Procedure 1.

The simplest cases for the competition function are domains where evalu-
ation of “looser” alternatives does not a↵ect the resultant QoS. Security level
(without considering cost or response time) is an example of such a domain.
In these cases, the competition function is trivial:

xCX = x for any pair (x,X) (37)

and bestQ is simply max.

Fig. 11 shows an Orc implementation of the competition operator and
bestSLandRT for a more complex domain: a compound security level–response
time QoS domain. In this domain, the QoS values are represented as pairs of
(security level, response time), following Equation (3).

The competition operator compete unzips the list of considered-but-not-
selected values’ pairs into a pair of lists, takes the second of these lists (the list
of response times), and performs a response time domain join on that list with
the “winner” value’s response time prepended. The response time domain join
is the maximum of the response times of all values considered, which is used
to set the response time of the QoS value resulting from the compete.

The bestSLandRT function immediately publishes the first “high” security
level value it receives, if any. In this case, the response time component of
the result is that of the first “high” value received, under the assumption
that bestSLandRT is receiving values in order of increasing response time. If
bestSLandRT receives only “low” security level values, then it returns the pair
containing“low”and the response time domain join of all received values (max-
imum response time), since bestSLandRT had to wait for all responses to de-
termine that there was no “high” security response.

QoS-Aware Management of Monotonic Service Orchestrations 43

In other domains, the competition operator and bestQ function would in-
volve a di↵erent set of considered values, according to the specifics of the
particular criteria for “best”, as determined by the application.

B.2 QoS Weaving

QoS weaving consists of the steps needed to enhance functional Orc specifica-
tions with QoS.

1. Orchestration Definition: Starting from the specification of the orchestra-
tion, we construct a conventional Orc program. At this point, the program
corresponds only to the functional requirements of the specification, and
does not include any explicit QoS awareness.

2. QoS Declaration: Based on the QoS requirements of the specification, ap-
propriate QoS domains are selected. For each QoS domain, the operators
leq, min, max, oPlus, join, and compete, are defined, along with the zero

constant for the QoS domain.
Refer to Fig. 12 for an example of QoS operator definitions for the Response
time and Cost QoS domains, and the composite Cost and response time
domain. These definitions make use of Orc library functions8, such as cfold
which is a normal list fold operation for a commutative operator. The
Response time domain’s underlying set is non-negative integers. The Cost
domain uses integers as its underlying set. Note that in Section 2.2, the
Cost domain needed multisets to preserve the lattice semantics used in
the development of the theory. The Orc implementation can bypass this
obligation by defining a join operation that is di↵erent from a pure order-
theoretical

W
operator dictated by the partial order.

3. Site Enhancement with QoS : Services, called “sites” in Orc, which are in-
volved in the QoS of the orchestration are enhanced to be QoS-aware. QoS
parameters are passed and returned by QoS-aware site calls. For some do-
mains, generic QoS measurement logic can be instantiated. For example,
call–return response time can be measured and the resultant QoS param-
eters computed appropriately in a site-independent manner. However, for
other QoS domains, such as cost, the site’s participation is required to
compute the QoS parameters for a call.

4. QoS Weaving : QoS-awareness is “woven” into the orchestration by program
transformations. This is a mechanical process that can be automated. A
basic sketch of a few representative transformations are presented here.
Program values corresponding to the OrchNet tokens are augmented into
(value, QoS) pairs, as discussed in Section 3.2. QoS-aware Orc site calls are
rewritten to join the QoS parameters carried by their arguments, and to
increment the QoS parameters of their returns. Program operations that
select one QoS value from a set are rewritten to use bestQ and competition
operators as appropriate.

8 Described in the documentation at URL: http://orc.csres.utexas.edu/

http://orc.csres.utexas.edu/

44 Albert Benveniste et al.

-- Response time

def class ResponseTimeDomainClass() =

def leq(x, y) = x <= y
def min(xs) = cfold(lambda(x, y) = if leq(x, y) then x else y, xs)
def max(xs) = cfold(lambda(x, y) = if leq(y, x) then x else y, xs)
def oPlus(x, y) = x + y
def zero() = 0
def join(xs) = max(xs)
def compete(x, ys) = x
stop

val responseTimeDomain = ResponseTimeDomainClass() -- Singleton

-- Cost

def class CostDomainClass() =

def leq(x, y) = x <= y
def min(xs) = cfold(lambda(x, y) = if leq(x, y) then x else y, xs)
def max(xs) = cfold(lambda(x, y) = if leq(y, x) then x else y, xs)
def oPlus(x, y) = x + y
def zero() = 0
def join(xs) = cfold(oPlus, xs)
def compete(x, ys) = x
stop

val costDomain = CostDomainClass() -- Singleton

-- Cost and response time

def class CostAndRTDomainClass() =

def leq((c1, rt1), (c2, rt2)) = if c1 /= c2 then costDomain.leq(c1,
c2) else responseTimeDomain.leq(rt1, rt2)

def min(xs) = cfold(lambda(x, y) = if leq(x, y) then x else y, xs)
def max(xs) = cfold(lambda(x, y) = if leq(y, x) then x else y, xs)
def oPlus((c1, rt1), (c2, rt2)) = (costDomain.oPlus(c1, c2),

responseTimeDomain.oPlus(rt1, rt2))
def zero() = (costDomain.zero(), responseTimeDomain.zero())
def join(xs) = unzip(xs) >(cs,rts)> (costDomain.join(cs),

responseTimeDomain.join(rts))
def compete((cx,rtx), ys) = unzip(ys) >(_,rtys)> (cx,

responseTimeDomain.join(rtx:rtys))
stop

val costAndRTDomain = CostAndRTDomainClass() -- Singleton

Fig. 12 QoS declaration for the TravelAgent2 example

QoS-Aware Management of Monotonic Service Orchestrations 45

The transformed program’s publications carry QoS parameters indicating
the end-to-end QoS for each value published from the orchestration.

These are the essential steps to constructing a QoS-aware Orc program.
There are many enhancements suggested by engineering concerns, such as:

– Automation of the weaving process described above.
– Accommodation of additional QoS domains, and more complex QoS values.

For example, adding an error bound domain or accommodating multiple
units of cost.

– Some QoS domain-independence for certain sites. For example, joining mul-
tiple QoS parameters without depending on the specific types of the pa-
rameters.

These are implemented by straightforward applications of object-oriented soft-
ware engineering. Implementations of these enhancements are omitted here as
unnecessary to demonstrate the contributions of the current work.

B.3 TravelAgent2 Example

In Fig. 13, the QoS-weaved output of the TravelAgent2 orchestration from
Section 1 is provided with the original orchestration implementation in nor-
mal text and the QoS-weaving added code highlighted. Increments to the
compound QoS domain Cost and ResponseTime are accumulated as the or-
chestration progresses. The QoS-weaved code is available on the Orc site at
URL: http://orc.csres.utexas.edu/papers/qos-aware.shtml,
from where it can be run.

http://orc.csres.utexas.edu/papers/qos-aware.shtml

46 Albert Benveniste et al.

include "QoS.inc"

-- Air travel quote service

def randomPrice() = Random(50)
def simulateDelay() = Random(150) >d> Rwait(d) >> d

def class Airline(name) =

def quoteAvailPrice(order, qosParms) =

randomPrice() >p>
simulateDelay() >d>
({. supplier = name, price = p .}

, costAndRTDomain.oPlus(qosParms, (p,d)))
stop

-- Hotel accommodation quote service

type RoomCategory = Deluxe() | Standard()
def randomRoomCat() = if Random(2) = 0 then Deluxe() else Standard()

def class Hotel(name) =

def quoteAvailPrice(order, qosParms) =

randomPrice() >p>
randomRoomCat() >r>
simulateDelay() >d>
({. supplier = name, roomCat = r, price = p .}

, costAndRTDomain.oPlus(qosParms, (p,d)))
stop

-- Travel Agency orchestration

{- QoS-based comparisons -}

def bestPrice((vx, qx), (vy, qy)) = if vx.price <= vy.price then (vx
, costAndRTDomain.compete(qx,[qy])) else (vy
, costAndRTDomain.compete(qy,[qx]))

def bestCategoryPrice((vx, qx), (vy, qy)) if (vx.roomCat = vy.roomCat)
= if vx.price <= vy.price then (vx
, costAndRTDomain.compete(qx,[qy])) else (vy
, costAndRTDomain.compete(qy,[qx]))

def bestCategoryPrice((vx, qx), (vy, qy)) if (vx.roomCat = Deluxe())
= (vx, costAndRTDomain.compete(qx,[qy]))

def bestCategoryPrice((vx, qx), (vy, qy)) if (vy.roomCat = Deluxe())
= (vy, costAndRTDomain.compete(qy,[qx]))

Fig. 13 Weaved TravelAgent2 orchestration (part 1 of 2). Highlighted code is added by QoS
weaving.

QoS-Aware Management of Monotonic Service Orchestrations 47

{- Service instances -}

val airline1 = Airline("Airline 1")
val airline2 = Airline("Airline 2")
val hotelA = Hotel("Hotel A")
val hotelB = Hotel("Hotel B")

{- The TravelAgent2 workflow -}

{- Wait for up to ’t’ milliseconds for the first value from x, then
halt -}

def timeout(t, x) = Let(Some(x) | Rwait(t) >> None()) >Some(y)> y

def class TravelAgent2() =

def acceptOrder(order, budget) =

timeout(325,
{. order = order .} >invoice>
costAndRTDomain.zero() >qosParms>
bestPrice(airline1.quoteAvailPrice(order, qosParms),

airline2.quoteAvailPrice(order, qosParms)) >(air,qosParms)>
(invoice + {. airSegment = air .}) >invoice>
bestCategoryPrice(hotelA.quoteAvailPrice(order, qosParms),

hotelB.quoteAvailPrice(order, qosParms)) >(hotel,qosParms)>
(invoice + {. hotelSegment = hotel .}) >invoice>
(invoice + {. totalPrice = invoice.airSegment.price +

invoice.hotelSegment.price .}, qosParms)
)

>(invoice, qosParms)>
(if invoice.totalPrice <= budget

then (invoice, qosParms)
else acceptOrder(order, budget))

stop

-- Simulate some orders

{- Simulation parameters -}
val numSimulatedOrders = 10
val budget = 40
val delayBetweenOrders = 200

def simulateOrders(_, 0) = stop

def simulateOrders(number, max) =

TravelAgent2().acceptOrder(number, budget)
| Rwait(delayBetweenOrders) >> simulateOrders(number + 1, max - 1)

simulateOrders(0, numSimulatedOrders)

Fig. 14 Weaved TravelAgent2 orchestration (part 2 of 2). Highlighted code is added by QoS
weaving.

48 Albert Benveniste et al.

References

1. van der Aalst, W.M.P.: Verification of workflow nets. In: ICATPN, pp. 407–426 (1997)
2. van der Aalst, W.M.P.: The application of Petri nets to workflow management. The

Journal of Circuits, Systems and Computers 8(1), 21–66 (1998). URL citeseer.ist.
psu.edu/vanderaalst98application.html

3. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods, and
Systems. MIT Press (2002)

4. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distrib. Parallel Databases 14(1), 5–51 (2003). DOI http://dx.doi.org/10.
1023/A:1022883727209

5. Abundo, M., Cardellini, V., Presti, F.L.: Optimal admission control for a QoS-aware
service-oriented system. In: ServiceWave, pp. 179–190 (2011)

6. Alain Bensoussan: Stochastic Control of Partially Observable Systems. Cambridge Uni-
versity Press (1992)

7. Alrifai, M., Risse, T.: Combining global optimization with local selection for e�cient
QoS-aware service composition. In: WWW, pp. 881–890 (2009)

8. Ardagna, D., Ghezzi, C., Mirandola, R.: Model driven QoS analyses of composed web
services. In: P. Mähönen, K. Pohl, T. Priol (eds.) ServiceWave, Lecture Notes in Com-

puter Science, vol. 5377, pp. 299–311. Springer (2008)
9. Ardagna, D., Giunta, G., Ingra�a, N., Mirandola, R., Pernici, B.: QoS-driven web

services selection in autonomic grid environments. In: R. Meersman, Z. Tari (eds.)
OTM Conferences (2), Lecture Notes in Computer Science, vol. 4276, pp. 1273–1289.
Springer (2006)

10. Ardagna, D., Pernici, B.: Global and local QoS guarantee in web service selection. In:
C. Bussler, A. Haller (eds.) Business Process Management Workshops, vol. 3812, pp.
32–46 (2005)

11. Bistarelli, S., Montanari, U., Rossi, F., Santini, F.: Unicast and multicast QoS routing
with soft-constraint logic programming. ACM Trans. Comput. Logic 12(1), 5:1–5:48
(2010)

12. Bistarelli, S., Santini, F.: A nonmonotonic soft concurrent constraint language for SLA
negotiation. Electr. Notes Theor. Comput. Sci. 236, 147–162 (2009)

13. Bistarelli, S., Santini, F.: Soft constraints for quality aspects in service oriented archi-
tectures. In: Young Researchers Workshop on Service-Oriented Computing, pp. 51–65
(2009)

14. Bouillard, A., Rosario, S., Benveniste, A., Haar, S.: Monotonicity in service orches-
trations. In: G. Franceschinis, K. Wolf (eds.) Petri Nets, Lecture Notes in Computer

Science, vol. 5606, pp. 263–282. Springer (2009)
15. Buscemi, M.G., Montanari, U.: CC-Pi: A constraint-based language for specifying ser-

vice level agreements. In: Proceedings of the 16th European conference on Programming,
ESOP’07, pp. 18–32. Springer-Verlag (2007). URL http://dl.acm.org/citation.
cfm?id=1762174.1762179

16. Buscemi, M.G., Montanari, U.: QoS negotiation in service composition. J. Log. Algebr.
Program. 80(1), 13–24 (2011)

17. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dynamic
QoS management and optimization in service-based systems. IEEE Transactions on
Software Engineering 37(3), 387 –409 (2011)

18. Cardellini, V., Casalicchio, E., Grassi, V., Presti, F.L.: Adaptive management of com-
posite services under percentile-based service level agreements. In: ICSOC 2010, LNCS
6470, pp. 381–395 (2010)

19. Cardoso, J., Sheth, A.P., Miller, J.A.: Workflow quality of service. In: K. Kosanke,
R. Jochem, J.G. Nell, A.O. Bas (eds.) ICEIMT, IFIP Conference Proceedings, vol. 236,
pp. 303–311. Kluwer (2002)

20. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Quality of service for
workflows and web service processes. J. Web Sem. 1(3), 281–308 (2004)

21. Cook, W.R., Patwardhan, S., Misra, J.: Workflow patterns in Orc. In: Coordination,
pp. 82–96 (2006)

citeseer.ist.psu.edu/vanderaalst98application.html
citeseer.ist.psu.edu/vanderaalst98application.html
http://dl.acm.org/citation.cfm?id=1762174.1762179
http://dl.acm.org/citation.cfm?id=1762174.1762179

QoS-Aware Management of Monotonic Service Orchestrations 49

22. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s Unfolding Algorithm.
Formal Methods in System Design 20(3), 285–310 (2002)

23. F. Baccelli and G. Cohen and G.J. Olsder and J-P. Quadrat: Synchronization and
Linearity. Wiley Series in Probability and Mathematical Statistics, John Wiley (1992)

24. Hwang, S.Y., Wang, H., Srivastava, J., Paul, R.A.: A probabilistic QoS model and
computation framework for web services-based workflows. In: ER, pp. 596–609 (2004)

25. Hwang, S.Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to modeling
and estimating the QoS of web-services-based workflows. Inf. Sci. 177(23), 5484–5503
(2007)

26. Kattepur, A.: Importance sampling of probabilistic contracts in web services. In: G. Kap-
pel, Z. Maamar, H.R. Motahari-Nezhad (eds.) ICSOC, Lecture Notes in Computer Sci-

ence, vol. 7084, pp. 557–565. Springer (2011)
27. Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring service level

agreements for web services. J. Network Syst. Manage. 11(1) (2003)
28. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., marc Loingtier, J.,

Irwin, J.: Aspect-oriented programming. In: ECOOP. SpringerVerlag (1997)
29. Kiselev, I.: Aspect-Oriented Programming with AspectJ. Sams, Indianapolis, IN, USA

(2002)
30. Kitchin, D., Cook, W.R., Misra, J.: A Language for Task Orchestration and its Semantic

Properties. In: Proc. of the Intl. Conf. on Concurrency Theory (CONCUR) (2006)
31. Marsan, M.A., Balbo, G., Bobbio, A., Chiola, G., Conte, G., Cumani, A.: The e↵ect of

execution policies on the semantics and analysis of stochastic Petri nets. IEEE Trans.
Software Eng. 15(7), 832–846 (1989)

32. Menascé, D.A., Casalicchio, E., Dubey, V.K.: A heuristic approach to optimal service
selection in service oriented architectures. In: A. Avritzer, E.J. Weyuker, C.M. Woodside
(eds.) WOSP, pp. 13–24. ACM (2008)

33. Misra, J., Cook, W.R.: Computation Orchestration: A Basis for Wide-Area Computing.
Journal of Software and Systems Modeling May (2006). Available for download at
http://dx.doi.org/10.1007/s10270-006-0012-1

34. Moshe Shaked and J. George Shanthikumar: Stochastic Orders and their Applications.
Academic Press (1994)

35. Moshe Shaked and J. George Shanthikumar: Stochastic Orders. Springer (2007)
36. Murata, T.: Petri nets: Properties, analysis and applications. In: Proceedings of the

IEEE, vol. 77, pp. 541–580 (1989)
37. Nicola, R., Ferrari, G., Montanari, U., Pugliese, R., Tuosto, E.: A process calculus for

QoS-aware applications. In: J.M. Jacquet, G.P. Picco (eds.) Coordination Models and
Languages, Lecture Notes in Computer Science, vol. 3454, pp. 33–48. Springer (2005).
DOI 10.1007/11417019 3. URL http://dx.doi.org/10.1007/11417019_3

38. OASIS: Web Services Business Process Execution Language Version 2.0. (2007). URL
http://docs.oasisopen.org/wsbpel/2.0/wsbpel-v2.0.pdf

39. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic QoS and soft contracts for
transaction based web services. In: ICWS, pp. 126–133. IEEE Computer Society (2007)

40. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic QoS and soft contracts for
transaction based web services orchestrations. IEEE Transactions on Service Computing
1(4) (2008)

41. Rosario, S., Benveniste, A., Jard, C.: A Theory of QoS for Web Service Orchestrations.
Research Report RR-6951, INRIA (2009). Available from http://hal.inria.fr/
inria-00391592/PDF/RR-6951.pdf

42. Rosario, S., Benveniste, A., Jard, C.: Flexible probabilistic QoS management of trans-
action based web services orchestrations. In: ICWS, pp. 107–114. IEEE (2009)

43. Rosario, S., Kitchin, D., Benveniste, A., Cook, W.R., Haar, S., Jard, C.: Event structure
semantics of orc. In: M. Dumas, R. Heckel (eds.) WS-FM, Lecture Notes in Computer

Science, vol. 4937, pp. 154–168. Springer (2007)
44. Sato, N., Trivedi, K.S.: Stochastic modeling of composite web services for closed-form

analysis of their performance and reliability bottlenecks. In: B.J. Krämer, K.J. Lin,
P. Narasimhan (eds.) ICSOC, Lecture Notes in Computer Science, vol. 4749, pp. 107–
118. Springer (2007)

http://dx.doi.org/10.1007/11417019_3
http://docs.oasisopen.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://hal.inria.fr/inria-00391592/PDF/RR-6951.pdf
http://hal.inria.fr/inria-00391592/PDF/RR-6951.pdf

50 Albert Benveniste et al.

45. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. In: B. Jon-
sson, J. Parrow (eds.) CONCUR, Lecture Notes in Computer Science, vol. 836, pp.
481–496. Springer (1994)

46. Teturo Kamae and Ulrich Krengel and George L. O’Brien: Stochastic inequalities on
partially ordered spaces. The Annals of Probability 5(6), 899–912 (1977)

47. Thomas L. Saaty: How to make a decision: the analytic hierarchy process. European
Jounral of Operational Research 48(2), 9–26 (1990)

48. Yu, Q., Bouguettaya, A.: Framework for web service query algebra and optimization.
TWEB 2(1) (2008)

49. Yu, T., Lin, K.J.: Service selection algorithms for composing complex services with
multiple QoS constraints. In: B. Benatallah, F. Casati, P. Traverso (eds.) ICSOC,
Lecture Notes in Computer Science, vol. 3826, pp. 130–143. Springer (2005)

50. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven web
services composition. In: WWW, pp. 411–421 (2003)

51. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Trans. Software Eng. 30(5),
311–327 (2004)

52. Zeng, L., Ngu, A.H.H., Benatallah, B., Podorozhny, R.M., Lei, H.: Dynamic composition
and optimization of web services. Distributed and Parallel Databases 24(1-3), 45–72
(2008)

53. Zheng, H., Yang, J., Zhao, W., Bouguettaya, A.: QoS analysis for web service compo-
sitions based on probabilistic QoS. In: G. Kappel, Z. Maamar, H. Motahari-Nezhad
(eds.) Service-Oriented Computing, Lecture Notes in Computer Science, vol. 7084, pp.
47–61. Springer Berlin / Heidelberg (2011)

	Introduction
	QoS Calculus
	A QoS framework for composite services
	Implementing our approach in Orc
	Evaluation of Our Approach
	Related Work
	Conclusion
	Appendix: Proofs
	Appendix: Implementation in Orc

