
Copyright

by

David Wilson Kitchin

2013

The Dissertation Committee for David Wilson Kitchin

certifies that this is the approved version of the following dissertation:

Orchestration and Atomicity

Committee:

Jayadev Misra, Supervisor

William Cook, Supervisor

Don Batory

Keshav Pingali

Dan Grossman

Orchestration and Atomicity

by

David Wilson Kitchin, B.S.C.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2013

This dissertation is dedicated to my mother and father,

whose boundless love and support have made all of this possible.

Acknowledgments

First, I must express my gratitude to my best friend, Kristine Butler, without whose

unwavering support I could never have completed this journey.

I am also deeply grateful to my good friends Chris Lundberg and Mercedes

Vaughn, who have given me a place to call home for the past three years, and whose

wonderful companionship I have continually enjoyed.

I am thankful every day for my loving, quirky, and brilliant family.

I am grateful for my excellent advisor and mentor, Jay Misra, so much so

that I am not sure how to put it into words. We have worked together for eight

years, and our collaborations have always been productive and enjoyable. He has

always treated me with respect, even when I have ignored his guidance or strained

his patience. Jay is a great scholar, and I look forward to opportunities to work

with him again in the future.

My gratitude extends to all of the members of the Orc Research Group,

past and present, who have each in their own way made the group a lively and

interesting hub of great ideas and vigorous discussion. My current co-conspirators,

John Thywissen and Arthur Peters, are at the top of that list.

I would like to thank the other four members of my dissertation commit-

tee — William Cook, Don Batory, Keshav Pingali, and Dan Grossman — for their

patience throughout my long and difficult writing process.

I would like to thank all of the organizers, lecturers, and participants who

v

attended the Summer School on Language-Based Techniques for Concurrent and

Distributed Software at the University of Oregon, in 2006. That confluence of great

ideas and talented minds gave me the initial spark that led, over the course of seven

years, to the development of Ora.

I am indebted to Frank Pfenning, who managed to teach me enough about

programming language theory in a single semester to last me through a decade of

exploration and research, with more still to come.

I am also indebted to Steven Rudich, who managed to teach me enough

about the magic of computer science in a single semester to last me through a dozen

years of programming and proving, with more still to come.

And I am indebted to a whole host of other excellent teachers for their

innumerable lessons: Stephen Gregory, Meg Curran, Richard Monroe, Paul Jourcin,

Mark Stehlik, Klaus Sutner, Patricia Carpenter, and so many others.

Lastly, I would like to thank Zoë Keating for her beautiful music, which has

helped me to endure a long journey and to remain an optimist throughout.

David Wilson Kitchin

The University of Texas at Austin

August 2013

vi

Orchestration and Atomicity

Publication No.

David Wilson Kitchin, Ph.D.

The University of Texas at Austin, 2013

Supervisor: Jayadev Misra

Co-supervisor: William Cook

This dissertation presents the concurrent programming language Ora, an extension

of the Orc orchestration language with the capability to execute transactions. A new

formal definition of transactions is given, in terms of two complementary properties:

atomicity and coatomicity. These properties are described in terms of a partial order

of events, rather than as properties of a totally ordered program trace. Atomicity

and coatomicity are ensured in Ora programs by a novel algorithm for multiversion

concurrency control.

vii

Contents

Acknowledgments v

Abstract vii

Chapter 1 Introduction 1

1.1 Controlling Structured Concurrency 1

1.2 Contributions of This Thesis . 3

Chapter 2 Orc 6

2.1 Orc as a Process Calculus . 6

2.1.1 Values . 7

2.1.2 Sites . 7

2.1.3 Stop . 8

2.1.4 Combinators . 8

2.1.5 Functions . 9

2.2 Orc as a Programming Language . 10

2.2.1 val . 11

2.2.2 Operators . 11

2.2.3 Conditionals . 11

2.2.4 Flattening . 12

2.2.5 Structured Data . 13

2.2.6 Patterns . 13

2.2.7 Join . 14

2.2.8 Enhanced Function Definitions 14

2.2.9 Mutable State . 15

viii

2.3 Formal Semantics . 17

2.3.1 Syntax . 18

2.3.2 Expression Semantics . 19

2.3.3 Environment Semantics . 21

2.3.4 Site Semantics . 25

Chapter 3 A Survey of Concurrency Control Methods 32

3.1 Locks . 33

3.2 Messages . 35

3.3 Transactions . 37

3.3.1 New Approaches to Transactional Memory 38

3.3.2 Limitations of Transactional Memory 40

Chapter 4 A General Principle of Concurrency Control 42

4.1 Representation of Concurrent Events 43

4.1.1 Causality in Programs . 44

4.1.2 Causality at Sites . 45

4.2 Controlling Concurrent Events . 47

4.2.1 Defining Atoms . 53

4.2.2 Examples . 53

4.2.3 Redefining Atoms . 75

4.3 Related Work . 76

Chapter 5 Ora 78

5.1 The atomic combinator . 79

5.1.1 Unary atomic . 79

5.1.2 The Abort Site . 79

5.2 Atomic Choice . 81

5.3 Writing Programs in Ora . 85

5.3.1 Account Transfer . 85

5.3.2 Permutation . 86

5.3.3 Dining Philosophers . 88

5.3.4 Atomic Timeout . 90

5.3.5 Retry Tactics . 91

5.3.6 Job Priority . 93

ix

Chapter 6 Implementing Ora 95

6.1 Transactions . 96

6.1.1 Transactional Sites . 96

6.2 Observation . 98

6.2.1 Version Information . 99

6.2.2 Observing States . 100

6.2.3 Blocked Calls . 104

6.2.4 Tracking Causality . 105

6.2.5 Relationship to Distributed Snapshot 107

6.3 Merging . 108

6.3.1 Resource Versions . 109

6.3.2 Commit . 110

Chapter 7 Formal Semantics of Ora 114

7.1 Syntax of Ora . 116

7.2 Internal Semantics . 118

7.2.1 Halting Judgment . 118

7.2.2 Execution Judgment . 120

7.3 External Semantics . 129

7.3.1 Environment and Event Grammar 129

7.3.2 Site Transitions . 130

7.3.3 External Transitions . 131

7.4 Environment Operations . 135

7.4.1 Environment Filtering and Mapping 135

7.4.2 Image . 136

7.4.3 State . 136

7.5 Observer Semantics . 138

7.5.1 Snapshot Judgment . 138

7.5.2 Boundary Judgment . 139

7.5.3 Observe Judgment . 140

7.6 Commit Semantics . 141

7.6.1 Merge Operation . 141

7.6.2 Graft Judgment . 142

7.6.3 Participants . 142

x

7.6.4 Boundary? Judgment . 143

7.6.5 Commit Judgment . 143

7.6.6 Conflict Judgment . 144

7.6.7 The Abort site . 144

7.7 Resource Semantics . 146

7.7.1 Guard . 146

7.7.2 Ref . 148

7.7.3 Cell . 150

7.7.4 Channel . 151

7.7.5 Semaphore . 154

Chapter 8 Formal Properties of Ora 156

8.1 Atomicity and Coatomicity . 156

8.1.1 Notation . 156

8.1.2 Internal Causality . 157

8.1.3 External Causality . 158

8.1.4 Virtual Causality . 159

8.1.5 Relevance . 162

8.1.6 The Bubble Conjecture . 163

8.2 Consistency . 163

Chapter 9 Discussion 166

9.1 Choosing Resources . 166

9.2 Incorporating Time . 167

9.3 Blocking . 169

9.4 Nonserializable Executions . 171

Bibliography 174

xi

Chapter 1

Introduction

Writing clear and correct concurrent code is a difficult task, even for experienced

programmers. It requires attention to the potential interactions of many different

entities, which are often in disparate locations in a program, or even in separate

programs entirely. Moreover, most modern programming languages do not provide

convenient or well-integrated concurrency primitives. Their fundamental designs

were established in an era predating widespread concurrent computing. What if we

started with a language specifically designed for concurrent programming?

1.1 Controlling Structured Concurrency

The Orc programming language provides structured concurrency, a form of concur-

rency where the program structure is directly related to the execution structure,

making it easier to modularize and reason about concurrent activity. Chapter 2

presents the Orc calculus, a simple process calculus for structured concurrency, and

then shows how that calculus can be expanded into a full programming language. A

full formal semantics of Orc is also presented, including some features that have not

previously been described formally, such as the ‘otherwise’ combinator, and sites

that manipulate mutable state.

Unfortunately, while Orc makes concurrency easier to express, it does not

make it easier to control. In particular, concurrent access to shared memory, which

has always been a problem for concurrent programs, is particularly difficult to con-

trol in Orc. So, in search of a suitable method for Orc to use, Chapter 3 surveys

1

methods of concurrency control in three broad categories: mutual exclusion using

locks, message passing, and optimistic concurrency using transactional memory.

Locks

Locks were the earliest method of concurrency control. They can ensure that only

one process at a time is running certain pieces of code or accessing certain parts

of shared memory. This allows us to reuse single-process reasoning techniques on

concurrent code. Single-process reasoning is already of questionable utility for a

pervasively concurrent language, and even as locks solve some problems, they in-

troduce others, well-known to concurrent programmers, such as deadlock, loss of

modularity, and difficulty in formal reasoning.

Messages

Some languages avoid the problems of concurrent access to shared memory by re-

stricting the interaction of processes to the sending and receiving of messages. While

this can be very beneficial, it often requires a significant change in programming

style. Furthermore, existing message-passing languages tend to express unstruc-

tured concurrency; many important properties of the system emerge from the in-

teraction between processes, and so they are difficult to understand by looking at

individual process definitions. So, this model is not a great match for Orc; while

Orc programs are perfectly capable of creating communication channels and pass-

ing messages around, restricting them to use only this form of shared state is too

confining.

Transactional Memory

Sequences of program actions are organized into transactions, which are run in

such a way that they appear to have happened either all at once, or not at all.

Furthermore, transactions are allowed to run concurrently with each other, even if

it is possible that they will interfere with each other. The changes a transaction

makes to shared memory are hidden while it runs, so that if interference does occur,

the transaction can be aborted, and all of its changes undone. If the transaction

completes without interference, it can commit, and its changes become visible all at

once.

2

Despite being friendlier to concurrent execution, transactions are still not de-

signed for pervasive concurrency. In particular, concurrent activity within a trans-

action is rarely allowed. Furthermore, the theory for reasoning about transactions,

as with locks, is based on reasoning about ordered sequences of events called traces

that are arbitrarily scrambled, and then must be shown to be equivalent to an un-

scrambled sequence of events. This is a poor formal model for Orc. However, if

we approach transactions from a new perspective, and define them using a different

model of concurrent execution, a much more effective form of concurrency control

arises.

1.2 Contributions of This Thesis

This thesis makes multiple contributions to concurrent programming language de-

sign and the theory of transactional memory: a new principle of concurrency control,

an extended version of Orc with support for transactions, a novel algorithm for ver-

sioned transactional memory, and formal definitions for all of these contributions.

A New Principle of Concurrency Control

How might we better describe and implement transactions for a pervasively concur-

rent language? Chapter 4 describes how, with a simple change of perspective, we

can obtain an intuitive and general principle of concurrency control that corresponds

to a new definition for transactions. This novel principle is the central contribution

of this thesis.

Rather than starting with traces, and trying to unscramble them, instead

we start with a set of events, and then impose a partial order between some of the

events based on their causal relationship. We can then take a subset of the events,

designate it an atom, and ask for two simple properties:

atomicity: Whenever an event in an atom is a cause for some event outside

of the atom, every event in the atom is a cause for that outside event.

coatomicity: Whenever an event outside of an atom is a cause for an event

within the atom, that outside event is a cause for every event within the atom.

3

These simple, symmetric properties are all that we need to define transac-

tions. There is no need to talk about traces or interleaving; in fact, this principle

has nothing to do with sequential execution at all. There is a profound lesson here:

sequentiality is not essential to transactions.

An Extension of Orc with Transactions

Following the example of other languages that implement transactional memory, we

can make this new form of transaction into a language feature. Chapter 5 describes

Ora, an extension of Orc with a new combinator called atomic. An expression inside

atomic is run in such a way that it behaves as an atom, as described above: the set

of events that happen within the expression must obey atomicity and coatomicity.

The atomic combinator allows us to easily write concurrent programs with well-

controlled shared state.

A New Multiversioning Algorithm

Chapter 6 describes the underlying algorithm that implements atomicity and coatomic-

ity. It is a novel variant of an established technique called multiversion concurrency

control. This algorithm maintains two version systems: a logical version system

that acts as a distributed snapshot algorithm, keeping track of which events can see

which other events, and a separate resource version system that determines whether

a transaction can merge its changes while maintaining consistency.

Formal Semantics and Definitions

Unlike many other transactional memory systems, the Ora language and its under-

lying concurrency principles are formally and precisely defined. Chapter 7 presents

a complete formal semantics for the Ora programming language, including its under-

lying versioning algorithms. Chapter 8 presents formal definitions of the properties

of atomicity, coatomicity, and consistency.

Potential Extensions

Chapter 9 discusses some problems with Ora, and some possible future extensions,

such as new transactional sites, how to incorporate real and simulated time, and

4

how to program with sites that could be waiting for events to happen in other

transactions.

5

Chapter 2

Orc

Orc is a programming language designed with concurrency in mind. Orc supports

orchestration, a programming style where activities are concurrent but their orga-

nization is hierarchical. The lexical structure of the Orc program is reflected in the

structure of the concurrent computation. This is a form of structured concurrency,

by analogy to the structured programming advocated by Dijkstra [Dij68], and in

contrast to the relatively unstructured concurrency of message-passing languages

such as Erlang [Arm07] or models such as the π-calculus [Mil99].

Orc emphasizes the importance of interactions with the external world. It

interacts with external services, called sites, to provide a variety of capabilities. In

fact, the notion of sites is so pervasive that even primitive features of the language

are implemented as sites.

The Orc programming language is based on a simple process calculus called

the Orc calculus. We begin with an explanation of this calculus, and then proceed

to a description of the full programming language, and then a formal presentation

of the calculus with an operational semantics.

2.1 Orc as a Process Calculus

The Orc process calculus is based on the execution of expressions. As an expression

executes, it may interact with external services (called sites), and may publish values

during its execution. An expression may also halt, explicitly indicating that its

execution is complete.

6

Simple expressions are built up into more complex ones by using combinators

and by defining functions.

2.1.1 Values

A value, on its own, is a valid Orc expression. When the expression is executed, it

publishes that value, and then halts.

An Orc value could be:

• A number, such as 0, or 1.618, or -7

• A boolean, true or false.

• A character string, such as "ceci n’est pas une |"

• The signal value, which carries no information.

There are many other types of values created and used during the execution

of Orc expressions; these are simply the types most likely to be written as expressions

on their own.

2.1.2 Sites

Orc interacts with external services through site calls. A site call resembles a func-

tion call in other languages. It names the site to be called, and gives arguments for

the call. The external service then performs some computation, and may eventually

respond to the call, either with a single value, or the special response stop, indicat-

ing the absence of a value. If the response is a value, that value is published, and

the site call then halts. If the response is stop, the site call simply halts. A site

responds at most once to a call.

Here are some examples of site calls:

• The Print site prints text to the console. Print("Hello, World.") prints

Hello, World. on the console, then publishes signal, then halts.

• The Prompt site asks the user for text input. Prompt("username:") presents

a prompt with the text username:, receives a line of input, publishes that line

of input as a string, and then halts.

7

• The (+) site responds with the sum of its arguments. (+)(2,3) publishes 5

and then halts.

• The Rwait site waits for a given number of milliseconds and then responds.

Rwait(1000) waits for one second, then publishes signal, then halts.

An Orc expression may make use of many other sites, with capabilities such

as file system access, Internet search, execution of code written in other languages,

and more.

Sites are first-class in Orc, which means they may be used wherever a value

could be used. In particular, they can be passed as arguments to calls, and they

can be published.

The Orc calculus does not include certain primitive operations that are usu-

ally regarded as essential language features. For example, it does not define arith-

metic operations such as addition or multiplication, nor does it define any data

structures such as lists, nor any facilities for using mutable state. These capabili-

ties, and many others, are provided through site calls instead.

2.1.3 Stop

The expression stop, when executed, halts immediately.

2.1.4 Combinators

Orc has four concurrent combinators, which combine subexpressions according to

four distinct patterns of concurrent execution.

Parallel Combinator

The parallel combinator, written f | g, executes expressions f and g concurrently.

They have no direct interaction with each other. Each publication of f or g is

published by f | g. When both f and g have halted, f | g halts.

Sequential Combinator

The sequential combinator, written f >x> g, executes expression f . The variable x

may appear in expression g, wherever a value could appear. Whenever f publishes

8

a value v, a new copy of g is executed in parallel with f >x> g. In this copy of g,

the variable x is replaced by v.

The sequential combinator may be written without a variable name, as f � g.

This is equivalent to writing f >x> g with an x that never appears in g.

When f and all copies of g have halted, f >x> g halts.

Pruning Combinator

The pruning combinator, written f <x< g, executes expressions f and g concur-

rently. The variable x may appear in expression f , wherever a value could appear.

When g publishes a value v, execution of g is immediately terminated, and

all occurrences of x in f are replaced by v. If g halts without publishing a value, all

occurrences of x in f are instead replaced by stop. A site call with an argument of

stop halts immediately.

Since f begins executing before x is replaced, execution of f may encounter

a site call with an argument of x, or even x as its own expression. Execution of such

expressions blocks; nothing happens until x is replaced by a value or stop, and then

the expression resumes execution. A blocked expression is not considered halted,

since it might become unblocked in the future.

When f has halted, and g has either published or halted, f <x< g halts.

Otherwise Combinator

The otherwise combinator, written f ; g, executes expression f . If f halts without

publishing any values, then g is executed.

If f publishes, f ; g halts when f halts. If f halts without publishing, f ; g

halts when g halts.

2.1.5 Functions

An expression g may be preceded by a function definition, written as follows:

def F (ȳ) = f

g

9

This defines a function F with formal parameters ȳ and body f . The defini-

tion together with its scope g forms an expression itself, so a function definition may

appear in any nested scope, and an expression could be preceded by any number of

function definitions in a nested sequence.

When all free variables in f have been replaced by values, then f is considered

closed, and a function closure is created. All occurrences of F in g are then replaced

by this function closure. A function may be recursive, so F could appear in f as

well as in g.

If the variable F is encountered during the execution of g, and it has not yet

been replaced by a function closure, execution of that use of F blocks, just like in

the pruning combinator.

The function closure can be called just like a site in g; function calls are of

the form F (p̄), where p̄ is a sequence of values or variables. However, there is one

important difference between site calls and function calls: a function call is lenient,

meaning that the call may proceed even if some of its parameters p̄ have not yet

been replaced by values. Some parameters might still be variables, and some might

even be stop. When the closure is called, the call is replaced by a copy of f in

which the formal parameters ȳ have been replaced by the actual parameters p̄, and

any use of F has been replaced by the closure. This copy of f then executes.

Function closures are first-class in Orc, which means they may be used wher-

ever a value could be used. In particular, they can be passed as arguments to calls,

and they can be published. A function closure can escape the scope in which it was

defined, by being published, or passed to a site. Since a function closure has no free

variables, it is self-contained, so this escape is safe.

2.2 Orc as a Programming Language

Orc is not just a process calculus; it is also a full-featured programming language.

The calculus is a subset of the full language, so any expression in the calculus is

also a valid Orc program. The Orc language has many syntactic constructs that

make programming easier and more convenient. However, each of these constructs

translates back into the calculus. Thus, each Orc program is also transformable to a

valid Orc calculus expression. Some of these translations are straightforward; others

are more complex.

10

The current implementation of Orc has several features that are not discussed

here: a sophisticated static typechecker, support for classes, a large site library, and

more. For more information, consult the Orc reference manual, which provides

extensive documentation.[Orc13a]

2.2.1 val

The simplest syntax extension is the val declaration. It is an alternate form of

the pruning combinator, in prefix instead of postfix form. It makes many programs

easier to read.

For example, these two programs are equivalent:

val x = g

f
f <x< g

2.2.2 Operators

The Orc language has a standard suite of primitive operators:

• Arithmetic operators: +, -, *, /, \% (modulus), and ** (exponent)

• Comparators: <:, <=, =, >=, :>, and /=

• Logical operators: \&\&, ||, and \textasciitilde (negation)

Each use of these operators is actually translated to a site call. The corre-

sponding sites are named (+), (-), and so forth; they can be used explicitly in an

Orc program, though this is very rare.

For example, these two programs are equivalent:

1 + 0.618 (+)(1, 0.618)

2.2.3 Conditionals

The Orc language provides a conditional expression of the form

if f then g else h

11

where f , g, and h are expressions. Execution of a conditional executes f until

it publishes a value, and then terminates it. If that value is true, g is executed.

If that value is false, h is executed. If the value is not a boolean, or if f halts

without publishing, then the conditional halts.

This is translated to the Orc calculus using the sites Ift and Iff. Ift

responds with signal if its argument is true, otherwise it responds with stop.

Iff tests for false in the same way.

For example, the following two programs are equivalent:

if (x < 0)

then "negative"

else "nonnegative"

(

Ift(b) >> "negative"

| Iff(b) >> "nonnegative"

)

<b< (x < 0)

2.2.4 Flattening

The Orc calculus does not allow expressions to appear as arguments to calls. How-

ever, in many circumstances, it is convenient to have this capability. So, whenever

an expression appears as an argument, that expression is replaced by a fresh variable

name (call it x), and then a pruning combinator is added to bind the first publica-

tion of the expression to x. The transformation is applied recursively throughout

the program until no expression appears as an argument to a call.

For example, these three programs are all equivalent:

(4 * 3) - (2 + 1)

val x = 4 * 3

val y = 2 + 1

x - y

(-)(x,y)

<x< (*)(4,3)

<y< (+)(2,1)

This transformation is fundamental to the Orc programming language. It

provides ‘implicit’ concurrency. Due to the use of pruning combinators, each nested

expression is executed in parallel. In the case of function calls, this capability can

be very powerful; since function calls are lenient, the execution of the function body

can proceed in parallel with the execution of its arguments.

This capability also extends to all syntactic constructs that are converted to

site calls.

12

2.2.5 Structured Data

The Orc language provides three primitive data structures: tuples, lists, and records.

Tuples are sequences of a fixed length, with at least two elements. They are

written like this: (0, "zero"). Different elements of a tuple may be different types

of values.

Lists are sequences of variable length, with any number of elements. The

empty list is written []. Lists with elements are written like this: [0, 0, 6].

Typically, all elements of a list are the same type of value. A list may also be

formed using the infix cons operator, written as a colon (:). It creates a new list

from a given head element and tail list. Elements of a list are typically all of the

same type, though this is not required.

Records are mappings from names to values. A record is written like this:

{. x = 3, y = 4 .} . This record has two fields, with labels x and y mapped

to values 3 and 4 respectively. Record elements are accessed using the . operator,

called ”dot”, like this: {. z = false .} >r> r.z .

These data structures are built using sites. Tuples are formed using the

Tuple site. Lists are formed by a chain of Cons site calls ending with a Nil call to

create the empty list. Records are formed using the Record site.

The following two programs are equivalent:

(1, 1)

| [2, 3]

| {. x = 5, y = 8 .}

Tuple(1, 1)

| Cons(2, y) <y< Cons(3, x) <x< Nil()

| Record("x", 5, "y", 8)

2.2.6 Patterns

In addition to providing the means to build data structures, Orc also provides a

way to examine them: patterns. A pattern may replace the variable name in the

sequential combinator, the pruning combinator, or the val declaration. A pattern

has the same form as a data structure, except that the values are instead replaced by

variable names, or recursively by other patterns. Thus, tuple patterns, list patterns,

and record patterns are all possible.

When a value would be bound to the pattern, the structure of the value is

matched against the pattern, binding components of the value to the corresponding

variables in the pattern.

13

For example, this program uses a tuple pattern to sum the components of

some pairs:

((0, 3) | (2, 5) | (1, 7)) >(x, y)> x+y

It is possible for a pattern match to fail. If this happens in a sequential

combinator, the published value is simply thrown away; no copy of the right hand

expression is executed. If it happens in a pruning combinator, the value is thrown

away, and the right hand expression is not terminated.

Every expression using a pattern can be converted to an equivalent Orc

calculus expression, using a number of helper sites that extract the components of

a data structure. However, this conversion is complex; it is beyond the scope of this

document.

2.2.7 Join

It is often useful to wait for some number of expressions to each publish a value,

and then publish a signal when all of them have done so. The infix operator &,

called the ”join” operator, provides this capability. Its translation is simple: each

expression in the join is made into an element in a tuple; when the tuple is published,

it is discarded and signal is published instead.

The following two programs are equivalent:

Rwait(10) & Rwait(100) & Rwait(1000)

(x,y,z) >> signal

<x< Rwait(10)

<y< Rwait(100)

<z< Rwait(1000)

Note that each expression is terminated after it publishes. The join operator

is intended to be used primarily with expressions which publish as the last step of

their execution, so no computation remains.

2.2.8 Enhanced Function Definitions

Defined functions have an expanded set of capabilities in the Orc language. Any

contiguous group of function definitions may be mutually recursive. Furthermore,

functions may be defined by using clauses: multiple definitions of the same function

14

name, with patterns as arguments. When such a function is called, the arguments

are matched against the patterns of the first clause. If any argument matched

against a pattern is unbound, the call blocks until that argument is bound. If all

patterns successfully match, the body of that clause is executed, with the appro-

priate bindings. If any pattern fails to match, then the next clause is tried. If no

clauses remain, the call halts.

Here is an example of a clausal function, which sums a list of numbers. The

style of programming will look familiar to users of typed functional programming

languages, such as ML or Haskell.

def sum([]) = 0

def sum(h:t) = h + sum(t)

Mutually recursive functions and clausal functions can be converted to equiv-

alents in the Orc calculus. However, as with patterns, the details of the conversion

are beyond the scope of this document.

2.2.9 Mutable State

In addition to the various language features mentioned so far, Orc programs also rely

on a library of sites, providing various capabilities. Orc variables and data structures

are immutable, so we must rely on sites to create shared mutable resources. Here

we will focus on four essential sites: Ref, Cell, Channel, and Semaphore.

Ref

The Ref site creates mutable references. It may be invoked with one argument, or

no arguments. Ref(v) creates a new reference with initial value v. Ref() creates

a new reference with no initial value; it is empty. In either case, the response is a

record r, with two fields: read and write. Each field is a site, which reads or writes

the reference, respectively.

• r.read() responds with the current value of the reference. If the reference is

empty, then the call blocks until a write occurs.

15

• r.write(v) sets the value of the reference to v, and responds with signal

. If the reference was empty, each read currently blocking is unblocked and

responds with v.

For syntactic convenience, r? is equivalent to r.read(), and r := v is equiv-

alent to r.write(v).

Cell

The Cell site creates write-once mutable cells. It takes no arguments. Cell()

creates a new empty cell, and responds with a record r, with two fields: read and

write. Each field is a site, which reads or writes the cell, respectively.

• r.read() responds with the current value of the cell if it has been written, or

blocks if it is still empty.

• If the cell is empty, r.write(v) sets the value of the cell to v and responds

with signal. This unblocks all readers.

• If the cell has a value, r.write(v) does nothing, and halts.

For syntactic convenience, r? is equivalent to r.read(), and r := v is equiv-

alent to r.write(v).

Channel

The Channel site creates asynchronous FIFO buffers. It takes no arguments.

Channel() creates a new buffer with no contents, and responds with a record r,

with two fields: get and put. Each field is a site, which takes from or adds to the

buffer, respectively.

• r.put(v) adds v to the end of the buffer, and responds with signal

• r.get() takes the value v at the front of the buffer, and responds with v. If

the buffer is empty, the call waits until a new item is put, and takes that value.

The buffer is fair: if new values are put into the buffer infinitely often, then

no get operation will block forever.

16

Semaphore

The Semaphore site creates semaphores. It takes one argument. Semaphore(n)

creates a new semamphore with initial value n (where n ≥ 0), and responds with

a record r, with two fields: acquire and release. Each field is a site, which

decrements (’P’) or increments (’V’) the semaphore, respectively.

• r.acquire() decrements the semaphore value if it is greater than 0, respond-

ing with signal. If the semaphore value is 0, the call blocks.

• r.release() increments the semaphore value (possibly unblocking an acquire

call) and responds with signal.

The semaphore is fair: if the semaphore is released infinitely often, then no

acquire operation will block forever.

2.3 Formal Semantics

This section presents a formal semantics for the Orc calculus, in four parts. The

formal grammar describes the structure of Orc expressions. The expression seman-

tics of Orc shows the labeled small-step transition relation on Orc expressions, and

the structure of the transition labels. The environment semantics of Orc describes

the structure of the environment in which an Orc program runs, and the small-step

transitions which the program and its environment jointly make as they interact.

The environment semantics relies on another relation, ↪→, which processes site com-

putations. The site semantics describes how sites compute by defining a set of rules

for the ↪→ relation.

Though the operational semantics of Orc has been presented previously[KCM06],

the semantic rules given here are more detailed than those seen in previous versions.

The internal semantics includes rules for the otherwise combinator, along with an

inductive judgment for halting of expressions. Semantic rules for the external en-

vironment, and for stateful sites in particular, have never been published before.

Each of these inclusions is important and necessary to support the extensions to

Orc shown in later chapters.

Since a program in the Orc programming language can be reduced to an

equivalent expression in the calculus, it suffices as a formal representation for the

17

full language, assuming that each site used in the program also has some formal

representation. The site semantics presented here includes all of the sites needed for

the translations mentioned in section 2.2, and it also models the shared resources

created by Ref, Cell, Channel, and Semaphore, but it does not include any other

sites. In particular, Rwait is not formally modeled; a formal semantics of Orc with

real time is beyond the scope of this document.

2.3.1 Syntax

The formal grammar of the Orc calculus is given here. A grammar for the full Orc

programming language can be found in the Orc reference manual.[Orc13b]

x, y ∈ Variable

k ∈ Handle

V ∈ Value

v ∈ Orc value ::= V D

w ∈ Response ::= v stop

p ∈ Parameter ::= w x

D ∈ Definition ::= def y(x̄) = f

f, g ∈ Expression ::= p (Parameter)

p(p̄) (Site or Function Call)

k? (Site Call In Progress)

f >x> g (Sequential Combinator)

f | g (Parallel Combinator)

f <x< g (Pruning Combinator)

f ; g (Otherwise Combinator)

D # f (Function Definition)

Variables and handles are arbitrary identifiers. The set of values V contains

all sites, all constants, all structured values, and all other datatypes returned by

sites.

18

A value can be either an external value as defined by V , or a closure D created

within the program. A response w could be any of these, or stop, indicating the

absence of a value (due to a halted computation). A parameter p could be any of

these, or a variable name.

An expression f could be a bare parameter, a site call, a pending site re-

sponse, any of the four Orc combinators, or a definition scoped to an expression.

2.3.2 Expression Semantics

The semantics of Orc expressions is a small-step operational semantics with labeled

transitions.

Transition Labels

Here is the grammar for the labels attached to each transition.

l ∈ Non-publication Label ::= Vk(v̄) (Call)

k?w (Response)

τ (Internal Event)

L ∈ Label ::= !v (Publication)

l

A non-publication label could be a site call, a site response, or an internal

event. A label can be any of these, or a publication.

Halted Expressions

The helper judgment f halted indicates when the expression f has halted. A

halted expression has no transitions, and will never have any future transitions.

f halted

D # f halted
(HaltDef)

19

f halted g halted

f | g halted
(HaltPar)

f halted

f >x> g halted
(HaltSeq)

stop(p̄) halted (HaltCall)

V (..., stop, ...) halted (HaltArg)

stop halted (HaltStop)

Orc Transition Rules

Here are the labeled transition rules for Orc expressions.

k fresh

V (v̄)
Vk(v̄)−→ k?

(SiteCall)

k?
k?w−→ w (SiteReturn)

v
!v−→ stop (Publish)

These are the transitions associated with base expressions. Notice that the

response w is unbound in the (SiteReturn) rule. This means that an expression k?

20

has an unbounded number of possible transitions at all times, one for each possible

response w. However, as we will see later, the expression does not make these

transitions autonomously; it must synchronize with an available response in the

environment.

f
L−→ f ′

D # f
L−→ D # f ′

(DefScope)

D is def y(x̄) = g

FV (D) = ∅

D # f
τ−→ [y 7→ D]f

(DefClose)

D is def y(x̄) = g

D(p̄)
τ−→ [y 7→ D][x̄ 7→ p̄]g

(DefCall)

These are the transitions used to manage function definitions and function

closures.

The notation FV (D) used in (DefClose) means ”the set of free variables of

D”. Thus, a closure is not considered closed until its set of free variables is empty.

This will happen when each free variable in D has been replaced by a value.

These rules are more comprehensive than in previous presentations of the Orc

semantics. In particular, note that (DefCall) is as powerful as the β-reduction rule

of the λ-calculus. Indeed, using this semantics, Orc embeds the untyped λ-calculus.

The remaining transition rules, governing the Orc combinators, are shown in

Figure 2.1.

2.3.3 Environment Semantics

In addition to the transitions of the Orc program, there is another set of semantic

rules describing the environment in which the program runs, and the interactions

between the Orc program and that environment.

21

f
L−→ f ′

f | g L−→ f ′ | g
(ParL)

g
L−→ g′

f | g L−→ f | g′
(ParR)

f
l−→ f ′

f ; g
l−→ f ′ ; g

(OtherN)

f
!v−→ f ′

f ; g
!v−→ f ′

(OtherV)

f halted

f ; g
τ−→ g

(OtherH)

f
l−→ f ′

f >x> g
l−→ f ′ >x> g

(SeqN)

f
!v−→ f ′

f >x> g
τ−→ f ′ >x> g | [x 7→ v]g

(SeqV)

f
L−→ f ′

f <x< g
L−→ f ′ <x< g

(PruneL)

g
l−→ g′

f <x< g
l−→ f <x< g′

(PruneN)

g
!v−→ g′

f <x< g
τ−→ [x 7→ v]f

(PruneV)

g halted

f <x< g
τ−→ [x 7→ stop]f

(PruneZ)

Figure 2.1: Semantics of the Orc Combinators

22

Environment and Event Grammar

An environment, denoted by E, is a set of events, with the following grammar:

e ∈ Events ::= 〈k . V (v̄)〉
〈k / w〉
...

A site call event 〈k . V (v̄)〉 indicates that the site V was called with arguments

v̄ and handle k.

A site return event 〈k / w〉 indicates that the site call associated with handle

k has finished computing, and that the response was w.

Each site will also extend the grammar of events with new events representing

its own operations.

External Transitions

An Orc program f executing within an environment E is denoted by the pair E, f .

The following small-step semantic rules specify the transition relation −→ on

such a pair. Each such step involves a transition within the program f and some

corresponding activity in the environment E.

f
τ−→ f ′

E, f −→ E, f ′
(EnvTau)

f
!v−→ f ′

E, f −→ E, f ′
(EnvPub)

f
Vk(v̄)−→ f ′

E, f −→ E ∪ {〈k . V (v̄)〉}, f ′
(EnvCall)

23

〈k . V (v̄)〉 ∈ E
〈k / 〉 /∈ E

E ` V (v̄)
F
↪→ w

E, f −→ E ∪ F + 〈k / w〉, f ′
(EnvProcess)

〈k / w〉 ∈ E
f

k?w−→ f ′

E, f −→ E, f ′
(EnvRespond)

• The (EnvTau) rule allows a τ transition in the program, producing no change

in the environment.

• The (EnvPub) rule similarly allows a toplevel publication from the program,

producing no change in the environment. In an actual implementation of Orc,

such a publication might be reported on the console, but here it has no real

effect on the environment state.

• The (EnvCall) rule allows the program to emit a call, adding a corresponding

call event to the environment.

• The (EnvProcess) rule takes a call in the environment and processes it, using

the relation ↪→, which defines the behavior of sites. The response to the call,

w, is then added to the environment as a new site response event, along with

the set of side effects F . Note that a site call computation may only proceed

if no response exists yet; this prevents spurious reruns of the same call.

• The (EnvRespond) rule matches a site response with an available response

action in the program, so that the response from the site call appears in the new

program. The handle k is eliminated from the program by the k?w transition,

so the site call can receive at most one response.

The transition relation never removes or modifies events in the environment;

it only adds new ones. Thus, all transitions are monotonic in the environment.

24

2.3.4 Site Semantics

Sites have their own semantic rules, each of which defines the behavior of the ↪→
relation used in the (EnvProcess) rule of the environment semantics when a call to

that site is processed. Some sites also create new types of events in the environment

in order to track the state of a shared resource.

Events

Sites that create and modify shared mutable resources must keep track of the state

of those resources in the environment. Since the environment is designed to be

monotonic – that is, events may only be added, never removed or modified – each

event represents a new version of a resource’s state, and the versions are ordered by

a nonnegative sequence number, n. Whenever a resource’s state is needed, the site

will look for the event with the maximum sequence number to discover the current

resource state.

Different instances of the same resource type, e.g. different memory locations

or channel buffers, must also be kept separate. Each event is associated with a

particular resource identifier R, and when a site is created, its operations are defined

only for that particular resource R.

Here is the grammar for the new events, and their components:

e ∈ Events ::= ...

〈RefR(v), n〉
〈ChannelR(v̄), n〉
〈SemaphoreR(n), n〉

v ∈ Contents ::= v �

R ∈ Resource

n ∈ N

Pure Sites

A pure site behaves identically regardless of the environment in which it is called,

and it adds no new events to the environment. A pure site need not be total; it may

respond with stop to some calls.

Most of the sites underlying Orc language features are pure. All of the

25

arithmetic operators, logical operators, comparators, data structuring sites, and

pattern matching sites are pure. The sites Ift and Iff are also pure.

All pure sites are governed by a single semantic rule:

V (v̄) = w

E ` V (v̄)
∅
↪→ w

(PureSite)

The premise V (v̄) = w calculates the relationship between the input v̄ and

the response w of the pure site V . This premise will be undefined if the site is not

pure. For sake of brevity, the full definitions of each pure site are not listed here;

they are obvious from their definitions. The most important characteristic of this

rule is that the site computation ignores E entirely, and produces an empty set of

side effects. This is what characterizes pure sites.

26

Ref

The Ref site creates mutable references. The site itself, and the sites it creates, are

governed by the following rules:

R fresh in E

e = 〈RefR(�), 0〉
v = {. read = ReadR, write = WriteR .}

E ` Ref()
{e}
↪→ v

(RefNSite)

R fresh in E

e = 〈RefR(u), 0〉
v = {. read = ReadR, write = WriteR .}

E ` Ref(u)
{e}
↪→ v

(RefVSite)

maxR(E) = 〈RefR(v), n〉

E ` ReadR()
∅
↪→ v

(ReadSite)

maxR(E) = 〈RefR(), n〉
e = 〈RefR(v), n+ 1〉

E `WriteR(v)
{e}
↪→ signal

(WriteSite)

The (RefNSite) and (RefVSite) rules govern the creation of new refer-

ences via calls to the Ref site. In each case the call creates a new event representing

the initial state of the reference, and adds it to the environment as a side effect of

the call.

The return value of the call to Ref is a record with two fields: read and write

, which are assigned the values ReadR and WriteR, respectively. These methods are

27

the read and write operations of the reference; their behavior is described by the

other two rules. This same approach will be used for every site definition that has

methods.

The (ReadSite) rule performs a read operation. It locates the reference

state for this reference (identified by R) with the largest version number, and re-

turns its contained value v. Note that if the maximum reference state contains

� (indicating an empty reference) instead of a value, then the (ReadSite) rule

does not apply, and so the call blocks since no transition is possible yet. Once the

reference has been written, then (ReadSite) will be applicable and the read can

proceed.

The (WriteSite) rule performs a write operation. It determines the largest

current version number for this reference, creates an event containing the newly

written value and a strictly larger version number, and adds this event to the envi-

ronment as a side effect of the call.

Cell

The Cell site creates write-once mutable references. The site itself, and the sites it

creates, are governed by the following rules:

R fresh in E

e = 〈RefR(�), 0〉
v = {. read = ReadR, write = WriteonceR .}

E ` Cell()
{e}
↪→ v

(CellSite)

maxR(E) = 〈RefR(�), n〉
e = 〈RefR(v), n+ 1〉

E `WriteonceR(v)
{e}
↪→ signal

(WriteOnceN)

maxR(E) = 〈RefR(v), 〉

E `WriteonceR()
∅
↪→ stop

(WriteOnceV)

28

The (CellSite) rule governs the creation of new cells. A call to Cell creates

a new event representing the initial state of the cell, and adds it to the environment

as a side effect of the call. Note that the state representation of a cell is identical to

that of a reference, but the initial state is always �, indicating an empty reference.

The call to Cell returns a record with the same read operation as an or-

dinary reference, but with a different write operation. The (WriteOnceN) and

(WriteOnceV) rules capture the behavior of this new write operation. When

writing to an empty cell, the behavior is the same as an ordinary reference write.

However, writing to a cell that already contains a value causes the call to halt, with

no effect.

Channel

The Channel site creates asynchronous channels. The site itself, and the sites it

creates, are governed by the following rules:

R fresh in E

e = 〈ChannelR(ε), 0〉
v = {. get = GetR, put = PutR .}

E ` Channel()
{e}
↪→ v

(ChannelSite)

maxR(E) = 〈ChannelR(v v̄), n〉
e = 〈ChannelR(v̄), n+ 1〉

E ` GetR()
{e}
↪→ v

(GetSite)

maxR(E) = 〈ChannelR(v̄), n〉
e = 〈ChannelR(v̄ v), n+ 1〉

E ` PutR(v)
{e}
↪→ signal

(PutSite)

The (ChannelSite) rule governs the creation of new channels. A call to

Channel creates a new event representing the initial state of the channel, and adds

29

it to the environment as a side effect of the call. A newly created channel is initially

empty.

The (GetSite) rule performs a get operation. It locates the state for this

channel that has the largest version number, examines the sequence of values it

contains, with first element v and remaining elements v̄, and then returns the first

element v. The call creates a new event representing the modified state of the

channel, now containing only the tail v̄, makes its version the largest one, and adds

it to the environment as a side effect. Note that if the maximum channel state

contains an empty sequence, then the (GetSite) rule does not apply, and so the

call blocks since no transition is possible yet. Once the channel contains at least

one value, then (GetSite) will be applicable.

The (PutSite) rule performs a put operation. It locates the state for this

channel that has the largest version number, examines the sequence v̄ of values tht

it contains, then creates a new event representing the modified state of the channel,

now containing v̄ with the argument u appended, makes the version of this event

the largest one, and adds the event to the environment as a side effect.

Semaphore

The Semaphore site creates semaphores. The site itself, and the sites it creates, are

governed by the following rules:

R fresh in E

e = 〈SemaphoreR(i), 0〉
v = {. acquire = AcquireR, release = ReleaseR .}

E ` Semaphore(i)
e
↪→ v

(SemaphoreSite)

maxR(E) = 〈SemaphoreR(i), n〉 i > 0

e = 〈SemaphoreR(i− 1), n+ 1〉

E ` AcquireR()
{e}
↪→ signal

(AcquireSite)

30

maxR(E) = 〈SemaphoreR(i), n〉
e = 〈SemaphoreR(i+ 1), n+ 1〉

E ` ReleaseR()
{e}
↪→ signal

(ReleaseSite)

The (SemaphoreSite) rule governs the creation of new semaphores. A call

to Semaphore creates a new event representing the initial state of the semaphore,

and adds it to the environment as a side effect of the call. A newly created semaphore

has the value given by the call’s argument.

The (AcquireSite) rule performs an acquire operation. It locates the state

for this semaphore that has the largest version number, examines the current value

and verifies that it is greater than 0, then creates a new event representing the

modified state of the semaphore, now with its count reduced by one, makes the

version of this event the largest one, and adds the event to the environment as a

side effect. Note that if the maximum semaphore state has a value of 0, then the

(AcquireSite) rule does not apply, and so the call blocks since no transition is

possible yet. Once the semaphore has a positive value, then (AcquireSite) will be

applicable.

The (ReleaseSite) rule performs a put operation. It locates the state

for this semaphore that has the largest version number, then creates a new event

representing the modified state of the semaphore, with its value increased by one,

makes the version of this event the largest one, and adds the event to the environment

as a side effect.

31

Chapter 3

A Survey of Concurrency

Control Methods

The greatest strength of the Orc language is also its greatest weakness: by making

concurrency pervasive, Orc multiplies all of the problems associated with concurrent

access to shared resources. This chapter reviews common strategies for controlling

access to shared state in concurrent computations, and considers the applicability

of each strategy to Orc programs. We will focus on a particular strategy called

transactional memory, which is a good fit for the needs of Orc. The extensions to

Orc described in the remainder of this dissertation are inspired by transactional

memory.

Throughout, the discussion focuses on how concurrency is controlled, not how

it is created or represented. Whether the underlying model uses threads or processes

or actors, whether these are created by system calls or associated with certain lan-

guage objects, and whether they are scheduled cooperatively or preemptively, are

all separate considerations. For simplicity, the subsequent descriptions will use the

term process to refer generically to entities that may execute concurrently.

When concurrent access to shared state is not controlled, many problems

can arise. Any process that modifies shared state can affect any other process that

can read that shared state. Reasoning about program behavior quickly becomes

impossible, as each action of the program could interact with many other interleaved

actions originating from disparate parts of the program. A variety of strategies have

been developed to mitigate this problem. The most common strategy in current

32

programming practice is to use locks, which ensure that at most one process is

performing certain operations by making other processes wait until it is finished.

Another strategy is to only allow processes to send messages to each other, and

eliminate all other shared state; this rules out many of the problems associated with

sharing state, but it requires fundamental changes in programming style. A third

strategy is to use transactions, which are sets of operations that must appear to

occur all at once, or not at all. A transaction proceeds optimistically, assuming that

no concurrent interference will occur; if interference does occur, the operations of

the transaction are undone, and it is retried later.

Orc currently has the capability to use two of these strategies, locks and

messages, in some form. Adding support for the third strategy, transactions, is one

of the main objectives of this dissertation.

3.1 Locks

The dominant approach to concurrency control has been, and largely continues to

be, the use of locks. A lock is a shared object with two operations: acquire and

release. A lock may be acquired by at most one process at a time; once it has been

acquired, it must be released before it can be acquired by a different process. If a

process attempts to acquire a lock that is currently held, that process waits, doing

nothing, until the lock is released.

The details of lock acquisition depend on the implementation; there are many

variations. A process might wait for a lock by repeatedly checking whether the lock

is available; this is called a spin or a busy wait, and it is rarely used due to its

inefficiency. More commonly, when a process must wait for a lock, it places itself in

the waiting set associated with that lock, from which a subsequent release operation

will choose a new holder for the lock. Often, this waiting set is structured as a

queue, so that if multiple processes are waiting on a lock, and no process holds that

lock forever, then each process waiting on the lock will eventually acquire it. These

are called fair locks. Certain recursive programs might cause a process to try to

acquire a lock it is already holding. Many lock implementations will test for this

condition and allow the same process to acquire a lock multiple times; these are

called reentrant locks.

Since a lock may be held by at most one process at a time, it can be used to

33

protect operations from concurrent interference; we will say that a set of operations is

protected by a lock if that lock is acquired before the operations occur, and released

when the operations are completed. Whenever that set of operations occurs, no

other operations also protected by that lock will be interleaved with those protected

operations. If a lock protects a section of the program to prevent it from being

executed by multiple concurrent processes, that code is called a critical section. If

a lock protects every operation that could access a particular piece of shared state,

that piece of shared state is called a monitor.

Monitors are important enough to receive special treatment in some lan-

guages. Object-oriented languages are particularly well suited, since individual ob-

jects are easy to designate as monitors. For example, in Java, every object has its

own lock, and the synchronized keyword may be used to treat any object as a

monitor, acquiring the object’s lock for the duration of the block or method labeled

with synchronized [Jav13].

As programs become more complex, multiple locks may be needed, and some-

times a process will need to acquire multiple locks at once. This introduces a host

of potential problems [LR80]. The most troublesome of these problems is deadlock:

two or more processes could wait forever, if each of those processes is waiting to

acquire a lock currently held by another of those processes.

Orc has the capability to use locks for concurrency control, by using the

Semaphore site to create semaphore instances. These locks are fair, since Orc’s

semaphores use a queue for waiting processes. However, Orc does not provide reen-

trant locks; since processes have no unique identity, it is impossible to tell if the

same process is attempting to acquire a lock multiple times. Orc also does not have

a general technique like synchronized, since the pieces of shared state it manipu-

lates may not be objects, and are not assured to have a lock associated with them.

It is still possible to construct monitors in Orc, but there is no primitive language

support for doing so.

Overall, locks are not suitable on their own to control concurrency in Orc. In

Orc, pervasive concurrency only exacerbates the complexity of properly acquiring

and releasing locks. A disproportionate amount of expertise is required when using

locks in Orc, even for simple programs.

34

3.2 Messages

Many concurrent languages are designed with communication as their fundamental

principle. Rather than allowing concurrent processes to arbitrarily share mutable

state, these languages allow processes to interact only through a defined messag-

ing system. A process is allowed to send messages to other processes, and receive

messages from other processes, but cannot affect other processes in any other way.

Interactions within this messaging system are technically operations on shared state,

in the sense that the underlying message queues are mutable objects with shared

access, but the operations allowed on this state are so much more constrained that

they essentially constitute a method of concurrency control in their own right.

There are many examples of programming languages and formal models

based on this principle:

• In the Erlang programming language, all processes are separate, self-contained,

functional units, which communicate with each other by sending asynchronous

messages. A process receives messages in its mailbox, a message queue aug-

mented with pattern matching capabilities [Arm07].

• The π calculus is a formal model of concurrent computation which uses com-

munication channels as primitive objects [Mil99]. The only computation step

is the rendezvous of a message sending operation in one process with a message

receiving operation in another process. The π calculus allows new channels to

be created during an execution, and it also allows channels to themselves be

sent as values along other channels. These features give it enough expressive

power to embed the λ calculus and express functional programming concepts.

The experimental language Pict1 is a small functional concurrent language

which translates down to the π calculus [PT00].

• The join calculus is another formal model of concurrency based on message

passing [FG02]. As in the π calculus, messages are sent and received, but in

addition, a process may wait on two or more separate messages together before

proceeding. The experimental language Polyphonic C# is an extension of C#

1The design of Pict, and in particular its translation of language forms into process calculus
forms, inspired some of the design of the Orc language.

35

with the message handling capabilities of the join calculus [BCF04], and its

successor Cω also includes these capabilities [Com13].

• The Concurrent ML programming language extends the ML language with

new event handling and synchronization primitives that have the same level

of expressive power as messages sent over channels [Rep99]. Events in Con-

current ML can be composed to form more complex synchronizations, and the

underlying static typing capabilities of ML make these compositions easier to

use.

Message passing systems appear to control concurrent state better, by shar-

ing nothing, and thus removing many troublesome concurrent interactions. In par-

ticular, messaging systems do not need to use locks to provide mutual exclusion. In

many cases, the buffering and ordering of messages suffices to avoid the simple pit-

falls. For more complex operations, a particular process can be designated to receive

requests for the operation, and then handle those requests one by one, modifying its

internal state on each request without the possibility of concurrent interference, and

perhaps spawning additional processes. Such a process is called an actor [Hew10].

Though message passing systems have these and many other benefits, they

require a very different style of programming than conventional shared state pro-

grams. Furthermore, message passing programs exhibit unstructured concurrency:

the behavior of the program emerges from the interactions of separately defined

processes, but the structure of these interactions is not reflected in the structure of

any individual process; the system must be examined as a whole, taking account of

code that may be scattered across disparate process definitions.

Orc can create asynchronous messaging channels using the Channel site.

Since these channels are first-class values, they can be sent on other channels, giving

Orc most of the expressive power of the π calculus.2 However, Orc is not restricted

to use only channels as its form of shared state, so it can mix and match message

passing with other forms of shared state. Furthermore, a pure message passing model

is not always compatible with Orc programming style, since message passing alone

does not take advantage of the structured concurrency offered by Orc combinators.

2Orc cannot represent guarded choice, an important component of the π calculus. In Chapter 5,
we will see how Ora can represent guarded choice, completing the embedding.

36

3.3 Transactions

When performing operations on a database, it is useful to aggregate those operations

into larger blocks, where the changes made by a block are applied to the database

as an indivisible unit. This is called a transaction. Transactions have been an

object of study in database research and a ubiquitous tool in database practice for

decades [GR92].

A transaction is a set of operations that has four properties: Atomicity, Con-

sistency, Isolation, and Durability. The acronym ACID is used to summarize these

properties. Atomicity states that the operations are “all or none”: either all of the

operations are performed on the database, or none of them are. Consistency states

that the operations, taken together, must maintain the validity of the database; if

the database was valid before the transaction, it remains so after the transaction.

Isolation has varying definitions, but generally it requires that the changes made

by a transaction not be made visible to other transactions until the transaction has

committed, meaning that the transaction is finished, its consistency has been veri-

fied, and the corresponding changes have been applies to the database. Durability

requires that the changes made by the transaction be stored or logged in such a way

that they cannot be erased by software errors or machine failure.

In the past two decades, a substantial research effort has arisen to use trans-

actions as a method of concurrency control for program operations that modify

shared state. This technique is called transactional memory. The concept of trans-

actional memory originally arose as an alternative to locks, in an effort to design

lock-free data structures [HM93]. The initial design specified a new set of processor

instructions that allowed values to be written to memory in such a way that those

writes remained hidden until a subsequent commit instruction was issued, which

would make all of the writes visible at once, providing an “all or none” functionality

for memory reads and writes, and thus replacing mutual exclusion techniques such as

locks. Subsequent papers proposed software transactional memory, or STM, which

performed the same function but without requiring hardware support [ST95]. For

the purposes of this dissertation, we will restrict our focus to software transactional

memory.

In order to execute a transaction in an STM system, the programmer must

designate the start and end of the transaction. Early STM systems required special

37

instructions to begin, end, or interrupt a transaction; transactional capabilities were

treated as a library, rather than a language feature. More sophisticated systems only

require the programmer to mark a block of code marked with a special keyword,

such as atomic [HF03].

Each memory operation that occurs within a transaction must obey the prop-

erties of atomicity, consistency, and isolation.3 When the block ends, the transaction

attempts to commit. If the transaction fails to commit, then it aborts, reverting all

of the tentative changes it had made, and retries from the beginning of the block.

As a concurrency control primitive, transactions have a number of advan-

tages. They are not vulnerable to deadlock, or other difficulties associated with

lock-enforced mutual exclusion. They move most of the work involved in concur-

rency control into the implementation layer, leaving the programmer with one sim-

ple construct. Programmers are measurably better at using transactions than using

fine-grained locking strategies, making fewer errors when writing concurrent pro-

grams [RHW10].

These features do come with a price, however. Transactions are still vulner-

able to livelock: retrying the same actions repeatedly, and thereby failing to make

any progress. This can occur when two parallel transactions repeatedly interfere

with each other, and consequently they repeatedly abort, and retry. Transactions

also impose more (in some cases, substantially more) time and space overhead on

many program operations. In this regard, transactional memory has been com-

pared to garbage collection since it trades runtime performance for ease of program

reasoning [Gro07].

3.3.1 New Approaches to Transactional Memory

Many languages have incorporated transactions as a language feature and enriched

them with new capabilities, or modified the underlying algorithms to improve perfor-

mance for specific cases. Here are a few examples of the integration of transactions

into functional programming languages.

3The durability property is not included for transactional memory; the heap is not considered
to be durable storage.

38

AtomCaml

AtomCaml is an extension to OCaml providing a higher-order function atomic,

which takes a function as an argument and runs it to completion atomically [RG05].

AtomCaml implements atomic in an unusual way. A thread executing atomic

attempts to run the given function to completion, using an eager writing strategy

which writes new values to memory directly and maintains an undo log with the

previous values. If the thread executes the whole atomic section without being

preempted, then it simply discards the undo log and continues; since all of the

values have already been written, doing nothing is equivalent to committing. If a

context switch occurs before the thread finishes the execution, the previous state of

memory is restored using the undo log, to prevent any other thread from seeing the

values written by the incomplete transaction; this is considered an abort. When the

aborted thread resumes, it tries the atomic execution again from the beginning.

This approach has some very nice properties: no conflict resolution is needed,

commits take no work, and it is easily integrated into an existing runtime. It also

has obvious limitations. The model is explicitly designed only for the uniprocessor

case, so atomic executions are conceptually equivalent to critical sections for which

the thread scheduler holds one global lock. Furthermore, an atomic execution which

exceeds its time slice will always be rolled back, even if it had no potential to interfere

with other threads.

STM Monad

The STM monad is an extension of Haskell which offers monadic access to software

transactional memory [HMJH05]. Haskell differs from every other programming

language in the TM domain because it uses static typing and monads to identify

and control side effects. In the case of STM, the monad offers transactional memory

references, which can only be read or written from within the monad.

Haskell’s approach offers more complex language-level abstractions for using

atomicity. In addition to transactional reads and writes, the STM monad offers two

more capabilities. The keyword retry forces the enclosing transaction to abort,

keeping the log of the memory references touched during the execution. The trans-

action is retried only when some location in the log is changed. In this way, a

transaction will not be re-run if its new execution would produce the same result

39

as the old. The keyword orElse is a operator on two transactions; it runs one

transaction, and if that transaction retries, immediately tries the other transaction

rather than waiting. If that transaction also retries, the whole combined transaction

waits as described above.

Transactional memory can only be accessed from within the STM monad;

therefore there is no way to access non-transactional memory within a transaction,

and vice versa. Since side effects are already restricted by the type system, this is

not an unusual obstacle for a Haskell programmer.

Transactional Events

Concurrent ML has been extended with support for transactional events, using a new

combinator thenEvt to form atomic sequences of synchronizing operations [EDKG08].

This allows transactional execution to be smoothly integrated with the rest of Con-

current ML’s event combinators. Though Concurrent ML is based on message pass-

ing, the compositional nature of the event combinators give it more structure than

is seen in other messaging systems, so it could be considered a form of orchestration.

Thus, Ora is closely related to this line of research.

3.3.2 Limitations of Transactional Memory

Research in transactional memory has generally favored implementation and op-

timization over theory and semantics. This is possibly a result of its initial in-

tended purpose, as a direct competitor to locks; subsequent systems were expected

to demonstrate comparable efficiency, or be discarded as unfit competitors.

Despite being simple to use, transactions have not yet become simple to rea-

son about. There is a lack of conceptual clarity about the semantics of transactions,

and about the properties that they are intended to maintain. Formal language

semantics and formal definitions of transactional properties are rare in the transac-

tional memory literature.

For the sake of efficiency, many transactional memory systems forbid transac-

tions from executing inside of other transactions. Almost all transactional memory

systems disallow concurrent activity within a transaction, though in many cases this

is a failure of the language itself to express concurrency.

40

Weak/Strong Atomicity

There is disagreement over the scope of the protection that a transaction should

provide. Some approaches guarantee only weak atomicity: transactions are pro-

tected from each other, but nontransactional memory accesses can freely interfere

with transactional memory accesses. Others provide strong atomicity: memory

accesses not within a transaction must still respect the atomicity of transactional

accesses [MBL06]. Weak atomicity has obvious problems, including the ability to to-

tally violate atomicity by using nontransactional operations to “share” information

between separate transactions. However, weak atomicity also admits more efficient

implementations, since nontransactional memory accesses can simply ignore trans-

actions entirely and thus incur no performance penalty.

Nesting Transactions

Since atomic blocks are syntactically no different from any other code block, another

question arises: could atomic blocks be nested, and if so, what would that mean?

Clearly this would give rise to a tree of transactions at runtime; how would atomicity

be enforced, and rollback executed? Most transactional memory systems already

disallow parallelism within a transaction, so nested subtransactions are never run-

ning in parallel. Thus, execution proceeds as an inorder traversal of a transaction

tree. To support rollback in this context, it suffices to provide “savepoints”: a stack

of partial rollback points for the beginning of each subtransaction. This approach

continues to be the default in mainstream systems to date.4

Various lines of research have explored the idea of nested transactions with

parallelism. Some recently developed transactional memory systems, such as NePaLTM

and XCilk, allow unbounded nesting with unbounded parallelism [VWAT+09][AFS08].

Another recently introduced system, called Xfork, allows concurrent nested transac-

tions by using combinators to connect subtransactions, providing explicit joins and

mutual exclusion [RW09].

4Though this approach is easier and usually more efficient to implement, it hinders a consistent
understanding of the semantics of transactions. Concurrency within transactions is the key to
understanding both nested transactions and the use of message passing within transactions.

41

Chapter 4

A General Principle of

Concurrency Control

This chapter describes a novel and general principle of concurrency control. This

principle is more appropriate to control of orchestration and pervasive concurrency

than previous approaches such as locking or transactions, since it is not conceptually

rooted in the sequential execution of statements.

The classical abstraction for concurrent program behavior is the trace: a

sequence of discrete program events. The properties of many existing concurrency

control mechanisms are expressed in terms of traces. Here, we will instead organize

program events using event graphs, where each node in the graph is an event, and

directed edges between the nodes represent the causal ordering of events. The

graph is a representation of a partial order, rather than a total order. This shift of

perspective is critical, because it reveals an important intuition: sequentiality is not

essential to transactions.

We will begin with a formal definition of the partial order, and its correspon-

dence to a graph. Subsequently we will see how the execution of a program, and

its interaction with shared resources, creates events in the graph and adds edges

to the graph. Then, we will consider some simple example programs, using them

to provide the intuition for a new principle of concurrency control: identifying an

event subset called an atom, where every edge that enters or leaves the atom must

be shared by every other event in the atom. We will consider a series of examples, to

explore the implications of this principle, ending with an example that illuminates

42

some shortfalls in the simple definition of atoms, followed by a revised definition of

atoms that takes these issues into account.

This is an informal presentation, eliding many subtleties. We will see the full

formal representation of these ideas in Chapter 8.

We will use Orc programs as examples throughout this chapter, though the

methodology applies equally well to other concurrent programming languages.

4.1 Representation of Concurrent Events

An execution of a concurrent program is represented by two components:

1. A set of events, E.

2. A strict partial order, ≺, which is the causal order over the events of E.

Recall that a strict partial order has two key properties: it is asymmetric,

meaning a ≺ b implies b 6≺ a, and it is transitive, meaning a ≺ b and b ≺ c imply

a ≺ c.
Just as many program actions are elided from a trace, since they are internal

to the program’s operation and do not affect the state of any shared resource, the set

E contains only a salient subset of the program events; many “internal” or “silent”

events will be elided.

If a program is nondeterministic, running the program multiple times may

result in different partial orders, with a different set of events E or a different

causal ordering ≺ of those events. This is unlike other models, such as event

structures[Win89], which represent all possible executions of a program with a single,

more elaborate construct.

For ease of presentation, we represent events and their partial order graph-

ically using an event graph: a directed graph containing a node for each event in

E, and an edge from event a to event b whenever a ≺ b. Since ≺ is a strict partial

order, it follows that event graphs are acyclic.

Each topological sort of the event graph results in a trace. Thus, the event

graph could be thought of as a compact summary of a set of traces, factoring out

all of the arbitrary ordering decisions in the traces.

Henceforth, we say that an event b sees an event a iff a ≺ b.

43

4.1.1 Causality in Programs

Consider a very simple Orc program:

val r = Ref(0)

r := r? + 1

Recall from Chapter 2 that ? reads from a mutable reference and := writes

to a mutable reference. Figure 4.1 shows the event graph for a full execution of this

program.

create write read add write

Figure 4.1: A simple event graph

Each node is a program event, and each edge represents the ordering of events

required by the structure of the program. The first two events, create and write,

represent the creation of the reference and its initialization to 0. Since the reference

must be created before it can be written, the two events are ordered. All other

events using the reference see both the create event and the write event.

Some internal events have been hidden because they are not relevant to the

goal of representing and controlling concurrent interactions. Concurrent activity

does not change the behavior of internal site call events, response events, or variable

binding. Of course, these hidden events still provide a path of causes from one visible

event to another; we use the transitivity of ≺ to replace the path with a single edge.

Consider another Orc program. This is essentially two copies of the previous

program, running in parallel:

val r = Ref(0)

val s = Ref(0)

r := r? + 1 | s := s? + 1

Its associated event graph is given in Figure 4.2. No event from either sub-

graph sees an event from the other subgraph; each half of the program operates

entirely in parallel, since each half is using a different reference.

Let’s consider an example with some nondeterminism:

44

val b = true | false

Ift(b) >> Print("heads") | Iff(b) >> Print("tails")

There are two possible event graphs for this program, given in Figure 4.3

and Figure 4.4. In each case, one of the branches is truncated, since the call to Iff

or Ift halts on an argument of true or false, respectively, so the corresponding

print event never occurs.

4.1.2 Causality at Sites

Edges in the event graph are created by the program, and they can also be added

by interactions with shared resources. Each of the sites that Orc provides to create

shared resources has its own rules for the creation of edges. We will focus on the sites

Ref, Cell, Channel, and Semaphore, which were introduced in Section 2.2.9.

For all resources, there is a create event that corresponds to the site call

that created the resource. All operations on a resource see this event.

Each resource maintains an additional invariant: each event that sees the

resource must be able to determine a unique state for that resource. Different

observers may see different states for the same resource, but a single observer must

not see more than one possible state. This property is called consistency.

Ref

The Ref site creates mutable references. There are two operations on these refer-

ences: read and write. These operations obey two rules:

• There is a total order on all write events on a reference.

create write read add write

create write read add write

R R R

S S S

Figure 4.2: A simple disconnected event graph

45

true

ift print
"heads"

iff

Figure 4.3: Nondeterministic binding, where b = true

false

ift

iff print
"tails"

Figure 4.4: Nondeterministic binding, where b = false

• Every read event on a reference sees at least one write event on that reference.

When a reference is read, the read event sees some subset of the write events

on that reference. Since write events are totally ordered, the subset has a unique

maximum. The value read from the reference is the value that was written by that

maximum write event.

Cell

The Cell site creates write-once mutable cells. Like references, there are two op-

erations on cells: read and write. These operations obey two rules:

• There is at most one write event on a cell.

• Every read event on a cell sees exactly one write event on that cell.

When a cell is read, that read event sees the value written by the unique

write event on that cell.

46

Channel

The Channel site creates FIFO asynchronous channels. There are two operations

on channels: put and get. These operations obey three rules:

• There is a total order on all put events on a channel.

• There is a total order on all get events on a channel.

• Every get event on a channel sees more put events than get events.

Since get events and put events for a channel are each totally ordered, we

can assign any given get or put event an index i. The ith get event on a channel

receives the value that was sent by the ith put event on that channel. Since a get

event sees more put events than get events, the ith get will always see at least i

put events, so there is always an ith put available.

Semaphore

The Semaphore site creates semaphores. There are two operations on semaphores:

acquire and release. These operations obey two rules:

• There is a total order on all acquire events on a semaphore.

• Every acquire event on a reference sees fewer acquire events than release

events.

4.2 Controlling Concurrent Events

Let’s consider a classic example: two parallel increments to the same reference.

val r = Ref(0)

r := r? + 1 | r := r? + 1

What event graphs might result from the execution of this program? There

are two nontrivial possibilities, shown in Figure 4.5 and Figure 4.6. Every other

possible graph is equivalent to one of these two graphs. Recall that writes must be

totally ordered, which restricts the space of possible graphs.

47

read add write

create write

read add write

Figure 4.5: Two increments, sequenced

In Figure 4.5, the reference is read as 0, that value is incremented to 1, and

then the value 1 is written. Subsequently the reference is read again as 1, that value

is incremented to 2, and the value 2 is written. If the expression r := r? + 1 is

thought of as a single “increment” operation, then in this case, two such operations

occur in sequence.

48

read add write

create write

read add write

Figure 4.6: Two increments, lost update

In Figure 4.6, the reference is first read as 0, and that value is incremented

to 1. In parallel, the reference is again read as 0, and that value is separately

incremented to 1. Then two writes occur, in some order, each writing the value 1. If

we again think of r := r? + 1 as a single increment operation, then this behavior

is confusing; two increments have been performed but the reference value has only

increased by 1. This is a classic race condition, known as a “lost update”.

We would like to express the idea that r := r? + 1 is an indivisible opera-

tion. In the classic representation of program events using traces, we would simply

say that there must exist an equivalent permutation of the trace where the read,

add, and write events are contiguous. What requirement might we make of the

event graph, to ensure that the events of r := r? + 1 constitute an indivisible

operation?

49

read add write

create write

read add write

Figure 4.7: Two increments, divergent (illegal)

Note that the event graph shown in Figure 4.7 is not possible, since writes

must be totally ordered.

50

create write

increment

increment

Figure 4.8: Figure 4.5, collapsed

Consider Figure 4.8, a collapsed version of Figure 4.5, where each subgraph

corresponding to an increment operation has been replaced by a new increment

event. This is the kind of graph we would like to reason about; the units we consider

indivisible have been replaced with single events, so that we need not be concerned

with their internal activity.

51

read add write

create write

read add write

Figure 4.9: Figure 4.8, reexpanded

Now suppose we take the graph in Figure 4.8, and expand it again, replacing

each increment event with the subgraph that it replaced. Each edge with its origin

or destination at an increment event is copied for each event in the subgraph that

replaces it. This proliferates many new edges. The expanded graph is shown in

Figure 4.9.

If we take the graph in Figure 4.9, and remove edges implied by transitivity,

then the result is exactly the graph in Figure 4.5. So, in this case, the collapsed and

expanded graphs are equivalent representations of the program’s behavior.

What happens if we repeat the same procedure with Figure 4.6? There are

two possibilities, depending on whether we draw an edge from one increment event

to the other in the collapsed graph. If we do draw the edge, then the collapsed graph

is just Figure 4.8, and its expansion will just be Figure 4.5, which is different from

the original graph. If we do not draw the edge, then the subsequent expansion will

be equivalent to Figure 4.7, an invalid event graph. The condensed and expanded

versions of Figure 4.6 are not equivalent representations. This makes sense, because

the program behavior represented in Figure 4.6 is not what we want.

Whenever a subgraph has the property that each edge entering or leaving

it is shared by every node in the subgraph, then condensing and expanding will

produce equivalent representations. We can use this as the basis for defining the

“indivisibility” of a set of events.

52

atomicity coatomicity

a ab

c
x

c

b

xA A

Figure 4.10: Atomicity and Coatomicity

4.2.1 Defining Atoms

Call any subset of events A an atom if the following two properties hold, for all

events a ∈ A and x 6∈ A:

Atomicity:
If x sees a, then x sees every event in A.

That is, a ≺ x =⇒ ∀b : b ∈ A : b ≺ x

Coatomicity:
If a sees x, then every event in A sees x.

That is, x ≺ a =⇒ ∀b : b ∈ A : x ≺ b

Figure 4.10 depicts these properties graphically.

The atomicity property ensures that an outside observer sees either all of

the events in the atom, or none of them; no intermediate state is visible. The

coatomicity property ensures that within the atom, every event has an equivalent

view of the events outside the atom; it is as if the world outside of the atom has

been frozen.

4.2.2 Examples

To understand these properties better, let’s consider a few simple examples. In these

example programs, we’ll mark some expressions using the keyword atomic. The set

of events in the execution of an atomic expression is marked by a gray box in the

53

event graph. Each gray box must be an atom, as defined above; any event graph in

which the events do not satisfy atomicity or coatomicity is considered invalid.

The implementation of atomic, and its implications for writing Orc pro-

grams, are discussed in subsequent chapters. For now, we will simply assume that

it works as specified.

Write Twice

Let’s consider a very simple example of atomicity.

val r = Ref(true)

r? << atomic (r := false >> r := true)

This program creates a reference with the initial value true. An atomic

expression sets the reference to false, and then back to true. In parallel, the

reference is read. Since the writes are performed as an atom, the read should never

see the intermediate state, so it should always publish true.

What event graphs might be produced by this program, and which of these

are permitted by atomicity?

54

read

write write

create write
true

truefalse

Figure 4.11: Both writes are unseen

In Figure 4.11, the read event sees only the initializing write; it does not see

the other writes. Thus the read publishes true, the initial value of the reference.

Atomicity holds trivially, since there are no edges leaving the atom.

55

read

write write

create write
true

truefalse

Figure 4.12: Both writes are seen

In Figure 4.12, the read sees both writes. It publishes true, because the

maximum write it sees is true. Atomicity holds because the read sees both events

in the atom: one directly, one by transitivity.

56

read

write write

create write
true

truefalse

Figure 4.13: One write seen, one unseen

In Figure 4.13, the read event sees only the first write. It publishes false,

since the write with false is the maximum write that it sees. However, in this

case, atomicity is violated, since the read event sees one event in the atom (the

false write), but does not see the other (the true write). Thus, this graph is not

permitted by atomicity.

Note that in all cases, coatomicity holds trivially, since the create event and

the initializing write are seen by both writes, and the read event is never seen by a

write.

It follows that the program will always publish true.

Read Twice

Now let’s consider an equally simple example of coatomicity.

val r = Ref(false)

atomic (r?, r?) << r := true

This program creates a reference with the initial value false. Subsequently

an atomic expression reads the reference twice, creating a tuple of the values read.

In parallel, a write operation sets the reference to true. Since both reads occur

within an atom, each read should see the same external state, so the tuple must

always have equal elements: (false, false) or (true, true).

What event graphs might be produced by this program, and which of these

are permitted by coatomicity?

57

read

tuple

read

write
true

create write
false

Figure 4.14: Both reads miss the write

In Figure 4.14, neither read event sees the write of true. Thus each read

publishes false, the value set by the initial write, which is the only write each read

sees. The resulting tuple is

(false, false). Coatomicity holds, since both reads see the initial write, the

tuple event sees the initial write transitively, and no other edges enter the atom.

58

read

tuple

read

write
true

create write
false

Figure 4.15: Both reads see the write

In Figure 4.15, both read events see the write event. Thus each read publishes

true, the maximum visible write; the result is (true, true). Coatomicity holds,

since each write is seen by every event in the atom.

59

read

tuple

read

write
true

create write
false

Figure 4.16: Only one read sees the write

In Figure 4.16, only one read event sees the write event. Consequently, the

reads publish different values: true and false. However, coatomicity fails, since

the write is seen by one event in the atom and not also seen by the other event.

Note that in all cases, atomicity holds trivially, since there are never any

edges leaving the atom. It follows that the program will only ever publish (false,

false) or (true, true).

Double Increment

Atoms are not required to be disjoint; they may be nested within other atoms, to

arbitrary depth. Here we consider an example where two atoms are nested inside of

a larger atom.

val r = Ref(0)

r? << atomic (atomic (r := r? + 1) & atomic (r := r? + 1))

This program resembles the two-increment program we considered earlier.

It creates a reference with an initial value of zero, and then performs two incre-

ment operations on that reference. This time, there is also a read operation on the

reference, in parallel with the writes.

Unlike the earlier example, we have explicitly marked each increment opera-

tion as an atom, to avoid the ‘lost update’ problem. In addition, the two increments

together are also marked as an atom. Thus, any outside event will either see both

60

increments, or neither. In particular, the read operation r? should publish only 0

or 2.

What event graphs might be produced by this program, and which of these

are permitted by atomicity and coatomicity?

61

readcreate write

read add write

read add write

Figure 4.17: Two increments, unseen

In Figure 4.17, the two increments in the atom happen in sequence; the

terminal write of one increment is seen by the initial read of the other increment.

Thus, atomicity and coatomicity are satisfied by transitivity for each internal atom,

and there is no lost update. Every event in the enclosing atom sees the initializing

write, and the external read sees no events from the atom, so both atomicity and

coatomicity are satisfied for the enclosing atom as well. The program publishes 0.

62

readcreate write

read add write

read add write

Figure 4.18: Two increments, seen

In Figure 4.18, the two increments in the atom happen in sequence, satisfying

atomicity and coatomicity as before. Every event in the enclosing atom sees the

initializing write. The external read sees the write from the second increment,

and so it sees every event in the enclosing atom, by transitivity. Thus, both atomicity

and coatomicity are satisfied for the enclosing atom as well. The program publishes

2.

63

readcreate write

read add write

read add write

Figure 4.19: Two increments, partial visibility (invalid)

In Figure 4.19, the two increments in the atom happen in sequence, and

atomicity and coatomicity are satisfied as in the previous graphs. However, this

time the external read sees the write from the first increment, and not the second;

as a result, it does not see the events of the second increment, and so atomicity is

violated for the enclosing atom. In this case the program would publish 1, but this

execution is invalid and so it would never occur.

64

readcreate write

read add write

read add write

Figure 4.20: Divergent writes (invalid)

Figure 4.20 shows another invalid execution. This time, the invariants on

write events are not satisfied. Writes must be totally ordered, but the writes in

each increment are not ordered with respect to each other. As a result, the read

event could see multiple possible states for the reference, violating the consistency

property defined in Section 4.1.2. Thus, this execution can never occur.

65

readcreate write

read add write

read add write

Figure 4.21: Internal lost update (invalid)

Figure 4.21 shows one more invalid execution. This is the ‘lost update’ prob-

lem described earlier; this configuration violates coatomicity of one of the internal

atoms, since the write should be seen by every event in that atom, but the read

does not see it.

Reads and Writes

Let’s consider a more complex example, which will illustrate some weaknesses in the

simple definition of atoms that we have used thus far.

val r = Ref(false)

val s = Ref(false)

atomic (r?, s?) << atomic (r := true & s := true)

This program creates two references, both set to an initial value of false. It

then performs two operations in parallel: set both references to true, and read the

references as a tuple. Each of these operations is an atom. Thus, the reads should

each see the same state: both references containing false, or both containing true.

Note that if either of the operations were not an atom, the result could be

(true, false) or (false, true). If the reads were not an atom, one read could

see a reference state before the writes, and one after, leading to an inconsistent

tuple. If the writes were not an atom, the reads could see a state with one reference

written, but not the other, also leading to an inconsistent tuple.

66

What event graphs might be produced by this program, and which of these

are permitted by atomicity and coatomicity?

67

create
R

write
R

create
S

write
S

tuple

read
R

read
S

&

write
R

write
S

Figure 4.22: Both writes unseen

In Figure 4.22, neither read event in (r?, s?) sees either write from the

other atom. Thus, each read sees the initial value from its respective reference,

forming the tuple (false, false).

The program’s behavior seems to agree with our expectations. However,

coatomicity is technically not satisfied by this graph; there are edges implied by

coatomicity that are absent here. Figure 4.23 shows the graph with the edges needed

for coatomicity added as dotted lines.

68

create
R

write
R

create
S

write
S

tuple

read
R

read
S

&

write
R

write
S

Figure 4.23: Both writes unseen, missing edges added

As far as the program’s behavior is concerned, these edges are irrelevant.

Each of the edges connects an event at one reference to an event at another, but the

behavior of an event on one reference can’t be affected by events at other references.

The behavior of a read at reference R will be the same regardless of which reads or

writes at reference S it sees or does not see.

So, the definitions of atomicity and coatomicity will need a small revision: if

an edge could never affect the behavior of the program, its absence does not violate

atomicity or coatomicity.

69

create
R

write
R

create
S

write
S

tuple

read
R

read
S

&

write
R

write
S

Figure 4.24: Both writes seen

In Figure 4.24, both read events in (r?, s?) see their corresponding writes

from the other atom. Thus, each read sees the newly written value true from its

respective reference, forming the tuple (true, true).

70

create
R

write
R

create
S

write
S

tuple

read
R

read
S

&

write
R

write
S

Figure 4.25: Both writes seen, missing edges added

Just as before, there are edges missing. Figure 4.25 shows the graph with

the edges required by atomicity and coatomicity added as dotted lines. The edges

from the previous case are present, as well as a new set of edges connecting the two

atoms. In addition to edges that connect events on unrelated references, there are

also edges that connect the & operation, a pure site call, to the read events. These

edges are all irrelevant. An & operation has no effect on other events of any kind,

just like + or < or any other mathematical operation. And as before, edges between

events on different references are irrelevant.

71

create
R

write
R

create
S

write
S

tuple

read
R

read
S

&

write
R

write
S

Figure 4.26: Only one write seen

In Figure 4.26, only one of the read events in (r?, s?) sees its corresponding

write from the other atom. Thus, one read sees the newly written value true, but

the other sees the initial value false, forming the tuple (true, false).

72

create
R

write
R

create
S

write
S

tuple

read
R

read
S

&

write
R

write
S

Figure 4.27: Only one write seen, missing edges added

Adding the missing edges needed for atomicity and coatomicity gives us

Figure 4.27. As before, each of these edges is irrelevant to the program’s behavior.

But if we ignore the absence of those edges, we are left with a program that appears

to obey atomicity and coatomicity, but produces behavior that seems to be incorrect.

What has gone wrong?

73

create
R

write
R

create
S

write
S

tuple

read
R

read
S

&

write
R

write
S

Figure 4.28: Only one write seen, least fixed point

Consider what would happen if we took Figure 4.27, and continued adding

new edges implied by atomicity and coatomicity. In other words, what if we took the

least fixed point of the atomicity and coatomicity rules? The result is Figure 4.28.

74

create
R

write
R

create
S

write
S

tuple

read
R

read
S

&

write
R

write
S

Figure 4.29: Only one write seen, missing edge identified

Now, as before, we discard each of the irrelevant edges, resulting in Fig-

ure 4.29. One edge remains: an implied edge from the unseen write in one atom to

the corresponding read in the other atom. This edge does affect the behavior of the

program, but it was not present in the original event graph. The absence of that

implied edge should indicate that atomicity or coatomicity has been violated, but

in order to correctly account for this situation, we need to revise the definition of

an atom.

4.2.3 Redefining Atoms

In order to account for the issues raised by the example in the previous section, we

will need to revise the definition of an atom.

We will approach the problem from a different perspective: suppose we are

given a set of subsets A of the entire event set E, and told that each subset A ∈ A
is an atom. How would we validate this choice of atoms?

We will say that an event x is relevant to an event y if x ≺ y is possible in

some execution, even if it is not true in the current execution.

We define a new strict partial order ≺ , the virtual order, which represents

the requirements of atomicity and coatomicity. The dotted edges in the preceding

event graphs are a graphical representation of ≺ . The ≺ relation has three

rules:

75

1. Whenever x ≺ y, x ≺ y also. That is, we treat solid edges as if they were

also dotted edges.

2. Whenever we have events a ∈ A, b ∈ A, and x 6∈ A, and we know a ≺ x, then

b ≺ x also. This expresses atomicity.

3. Whenever we have events a ∈ A, b ∈ A, and x 6∈ A, and we know x ≺ a, then

x ≺ b also. This expresses coatomicity.

We apply these rules repeatedly, until ≺ cannot be expanded any further.

Then the selection of atoms is valid if whenever x is relevant to y, and x ≺ y holds,

then x ≺ y also holds.

We will see a more formal presentation of this concept in Section 8.1.

4.3 Related Work

While the presentation of atomicity and coatomicity as symmetric properties over

partial orders is a novel approach, the pursuit of a formal classification or definition

for transactional operations has been ongoing for decades. The concept shown here

has many antecedents in the transactional literature.

In the same paper that defined the concepts of weak atomicity and strong

atomicity [MBL06], Blundell et al. also mention the concepts of “noninterference”

and “containment” to elucidate the interaction of certain transactions. These con-

cepts could be seen as analogous in function to coatomicity and atomicity respec-

tively. However, the paper does not explain these concepts further nor define them

formally, and does not consider their applicability to nested or internally concurrent

transactions.

Farzan and Madhusudan propose a notion of causal atomicity, which moves

the focus to partial ordering of events, and defines atomicity in terms of that partial

ordering [FM06]. The subsequent analysis is presented in terms of colored Petri

nets. However, the focus is on program analysis and the detection of atomicity, not

on language integration. Again, nested and internally concurrent transactions are

not considered.

The general principle described in this chapter also closely parallels the fun-

damental ACID properties of database transactions: Atomicity, Consistency, Isola-

tion, and Durability.

76

The database property of Atomicity maps almost directly to the atomicity

property described in this chapter: an all-or-none view of events. The property of

Consistency also corresponds closely with the notion of consistency described here,

in the sense that the appropriate invariants of shared resources must be preserved

in order to ensure that no resource is left in an invalid or indeterminate state. The

property of Durability is not essential in this context; many of the shared resources

that could be used by a concurrent program are not associated with durable storage

and do not need to be.

The most interesting point of comparison is between the Isolation property of

database transactions and the coatomicity property described in this chapter. Defi-

nitions and implementations of isolation vary widely. As a reference point, consider

the transaction isolation levels defined in the SQL standard: Read Uncommitted,

Read Committed, Repeatable Read, and Serializable [SQL92].

Read Uncommitted allows operations that would violate atomicity, so it is

clearly too weak to be comparable. Read Committed allows operations that would

violate coatomicity, since it allows a transactional read to see a write not seen by

another read within the same transaction (a “non-repeatable read”). Repeatable

Read also allows operations that would violate coatomicity, though the violation

is more subtle: since coatomicity would not distinguish between events that mod-

ify records and events that add records, the “phantom read” operations permitted

by a Repeatable Read isolation level are still not coatomic. An isolation level of

Serializable seems most comparable to coatomicity. If transactions can be totally

ordered, then both atomicity and coatomicity are assured: each event of an earlier

transaction is certain to precede every event of a later transaction. In fact, Serializ-

able isolation is a stronger constraint than coatomicity, since coatomicity does not

require equivalence to some serial order on the atoms or events it constrains. We

will discuss nonserializable executions further in Section 9.4.

77

Chapter 5

Ora

This chapter focuses on the integration of the concurrency control principles of

atomicity and coatomicity into the Orc programming language. Orc programs are

pervasively and often implicitly concurrent, and while this abundance of concurrency

is usually beneficial, it compounds the classic problems of concurrency control.

This chapter focuses on Ora, an extended version of the Orc language with

a new combinator called atomic that defines atoms, as explained in the previous

chapter.1 We will first discuss the behavior of the atomic combinator, and how it

integrates with the rest of the Orc language. Then, we will see how the availability

of atomic provides a powerful new capability called atomic choice, a generalization

of the guarded choice operator in the π calculus [Mil99]. Subsequently we will

consider a series of Ora programs, examining how atomic and atomic choice provide

concurrency control solutions for various common problems that arise when writing

concurrent programs, particularly when writing Orc programs.

1Ora is a contraction of “Orc with atomic”. It is also a play on ōra, which in Latin means
“boundary” or “region”, referring to its fundamental concurrency control principle: to define bound-
aries of atomic activity.

78

5.1 The atomic combinator

The Ora language extends Orc with a new combinator, atomic f g.

When atomic f g is executed, it executes the expression f as an atom.

That is, every event that occurs in f must obey the constraints of atomicity and

coatomicity, as described in Chapter 4. The execution of f also operates under a

few additional constraints, which ensure that the program’s internal events satisfy

atomicity and coatomicity:

1. f begins to execute only when it has no free variables.

2. No event outside of f may see any event in f until f halts.

3. If f would publish a value, that value is instead frozen. When f halts, all

frozen values are published simultaneously. If f is killed for any reason, the

frozen values are discarded, and never published.

The execution of f may reach a state where consistency could be violated if

some event that occured in f is ever seen outside of f . If this happens, then f is

killed, and g runs; this is called an abort. Note that g does not execute as an atom,

nor does it have any of the other constraints that are applied to f .

5.1.1 Unary atomic

The expression g is used as a fallback in case f does not succeed. However, it is

often desirable to just retry f when it fails, rather than executing a new expression,

and in that case a second argument is not needed. A unary form of atomic is simple

to express in terms of the binary form. Define atomic f as follows:

atomic f ≡ def p() = atomic f p()

p()

5.1.2 The Abort Site

It is sometimes useful to explicitly force an abort, even if an atomic expression has

not violated atomicity, coatomicity, or consistency. Ora introduces a new site Abort

for this purpose. A call to Abort takes no arguments. If during the execution of

atomic f g, Abort is called in f , then f is killed and g executes, just as if f had

79

aborted normally. If Abort is called without an enclosing atomic expression, the

call simply halts.

80

5.2 Atomic Choice

The π-calculus has a choice operator +, which permits a nondeterministic choice

between two processes. In its simplest form, this choice is unrestricted: the π-

calculus expression P + Q becomes either P or Q in one step. This is easy to

replicate in Orc:

P +Q ≡ if (true | false) then P else Q

However, this is rarely useful in practice, because the choice is entirely arbi-

trary; it is not driven by events in the environment or by the availability of messages

or resources. Depending on the implementation, the choice may not even be fair.

So instead of unrestricted choice, the π-calculus often uses guarded choice.

In a guarded choice P + Q, the processes P and Q must each begin with some

synchronizing action, such as a channel input. The choice is then guarded by this

action; a process may only be chosen if its initial action can be performed. For

example, here is a process that waits for the first input seen from channel a or b,

and then sends it to channel c:

a?(x).c!(x) + b?(x).c!(x)

We would like to express this as an Ora program. Here is a naive initial

attempt:

val x = a.get() | b.get()

c.put(x)

The calls a.get() and b.get() occur in parallel. Suppose an input value v

becomes available on channel a. Then a.get() returns v, which is then published

and bound to x, terminating b.get(). Then c.put(x) sends v on c.

However, this program is not equivalent to the π-calculus version. When a

site call is terminated by the pruning combinator, the call still continues at the site,

uninterrupted; its eventual return value is simply ignored. Thus, b.get() will still

take a value from the channel b if one becomes available, and then discard it.

The difficulty seems to arise because pruning may occur between a call and

its return. What if we used atomic to make the call and return happen in one

indivisible step?

81

val x = atomic a.get() | atomic b.get()

c.put(x)

Unfortunately, this also does not solve the problem. Even though we have

an ‘all or none’ view of each call, such that it is not possible to see a channel call

without its associated return, we can still ‘waste’ a value if both atomic executions

successfully complete before the pruning occurs. Then the pruning combinator picks

only one of the resulting publications, wasting the other. Ora has no scheduling

constraints to prevent this scenario.

Guard

To solve this problem, we augment Ora with a new site called Guard, which creates

guards. A guard G is a site that returns a signal to its first caller, and then halts

on all subsequent calls; it returns at most once. It explicitly represents the intent

to choose only one branch.

Using a guard, we represent guarded choice in the following way:

Guard() >G>

(atomic (G() >> a.get())

| atomic (G() >> b.get()))

In this example, expressions G() >> a.get() and G() >> b.get() each

execute atomically. The call G() returns a signal in both executions. This seems

to contradict the definition of a guard, but remember that due to atomicity, each

return from G is not seen outside of its respective atomic execution, so no observer

could see that G has returned twice. In fact, to any observer outside of these two

atoms, G has never even been called. Note that if we did not use atomic here, the

second call to G() would never return, and this would be equivalent to unguarded

choice.

Both expressions cannot successfully complete, since then the effects of both

expressions will be seen by the environment, and then an observer could see that G

has returned twice, violating consistency. Therefore, only one of the two branches

is allowed to complete; the other one never completes, and thus from the outside it

appears that it never executed at all, again due to atomicity. Note that even when

one of the two executions completes, and the guard call is seen by the environment,

82

it is still not seen by the other expression, due to coatomicity. Therefore it is still

true that no observer sees that G has returned more than once.

An expression will only complete if the get call succeeds, so the result is

“chosen” based on the success of that action. Thus, at most one of a.get() or b.

get() is chosen, depending on which channel has available input, and the unchosen

expression appears never to run at all. This is semantically equivalent to the π-

calculus expression shown earlier.

In fact, this atomic choice generalizes guarded choice, since we can choose

based on a whole expression, rather than just a single action. As we will see in

subsequent examples, this capability is quite powerful.

A perceptive reader might wonder why Guard is even necessary. Creating a

Cell that both branches attempt to write would seem to have equivalent behavior.

However, an implementation of Cell might see the competing writes as a possible

violation of consistency, and preemptively abort one of the branches, before either

one had halted. An arbitrary abort defeats the purpose of atomic choice.

The semantics of Ora, as described in detail in Chapter 7, do not allow

an abort until a violation of consistency is inevitable. However, an alternative

implementation of the Ora language might mediate potential conflicts differently.

So, in order to ensure that ++ is implemented faithfully by its encoding, the Guard

site is used to signify a need for the most conservative abort strategy possible.

The ++ Operator

Given Ora expressions A and B, we will subsequently use the operator ++ as syn-

tactic sugar for atomic choice:

A ++ B ≡
Guard() >G>

(atomic (G() >> A)

| atomic (G() >> B))

The ++ operator is a fully associative and commutative n-ary operator, as is ev-

ident from the definition above, since the parallel combinator is associative and

commutative, and we can simply add more parallel clauses.

In particular, the following π-calculus process and Ora expression are equiv-

alent:

a?(x).c!(x) + b?(x).c!(x) ≡ (a.get() ++ b.get()) >x> c.put(x)

83

The atomic combinator enables encodings for many other concurrent primi-

tives. For example, the multi-way join patterns of the join calculus could be encoded

by associating a channel with each process abstraction; a call sends its arguments as

a tuple on the corresponding channel, while a definition waits on multiple channels

simultaneously within an atomic body, waiting for the needed message to arrive

from each channel.2

These encodings for guarded choice and join patterns are similar to those

presented in AtCCS, an extension of CCS with transactions [ABZ07], developed

independently from Ora. However, the guarded choice encoding in AtCCS is less

general than the atomic choice shown here, since Ora’s ++ operator can make a

choice based on the execution of an entire expression.

2Channels in Ora are ordered, so under this encoding, process abstractions would receive inputs
in the order that they were sent. The join calculus does not require this kind of ordering; fortunately,
it has little effect on the behavior of the encoding. An unordered channel primitive would be more
appropriate, but the implementation of Ora described in this dissertation supports only ordered
channels.

84

5.3 Writing Programs in Ora

This section presents a series of example programs, demonstrating how to solve

common concurrency control problems using the atomic combinator and the ++

(atomic choice) operator. As with the other combinators of Orc, there are various

programming tactics and idioms that are useful when working with atomic.

5.3.1 Account Transfer

This example is a classic problem from the transactional memory literature: a trans-

fer between two bank accounts.

We model each account as a mutable reference. Here is a function transfer,

which subtracts some amount from one account and adds it to another:

def transfer(x, y, amount) =

atomic (

x := x? - amount

& y := y? + amount

)

Due to atomicity, we know that any observer outside the call to transfer

will see either both account changes, or neither. As a result, the sum of the accounts

is invariant.

However, this simple example needs some refinement. What happens if the

source account has insufficient funds for the transfer? We need to check if x has at

least a value of amount. As a sanity check, we will also make sure that amount is

greater than 0.

def transfer(x, y, amount) =

Ift(amount :> 0) >>

atomic (

Ift(x? >= amount) >>

(

x := x? - amount

& y := y? + amount

)

)

85

Note that the check on amount is outside of atomic; it is a pure operation, so

it has no interactions with other events. However, the check on x is within atomic,

since we must be sure that the value of x does not change between the two reads,

to avoid setting x to a negative value.

Also note that the check on x uses Ift, which will simply halt if the amount is

insufficient. This does not cause an abort; the atomic expression simply completes

at that moment, halting without modifying either account. We interpret a halted

call of transfer as an indication that the transfer did not occur. If the checks

succeed and the transfer does occur, the call will instead publish signal.

This function needs one more refinement. What happens if the source and

destination accounts are identical? Then the two account modifications could be

interleaved, and we might end up with a “lost update”, like the two-increments

problem from Section 4.2. We could fix this by comparing the identity of the ac-

counts, and publish signal without making a transfer if they are equal. Or, we

could simply enclose each account modification in its own atomic, preventing a lost

update. Here is the final version of transfer:

def transfer(x, y, amount) =

atomic (

Ift(x? >= amount) >>

(

atomic (x := x? - amount)

& atomic (y := y? + amount)

)

)

5.3.2 Permutation

This example focuses on a common problem in concurrent and distributed program-

ming: obtaining a consistent view of a resource that changes over time. Here, we will

see how atomic enables us to perform a computation on a list that is continuously

being shuffled.

We first define a few helper functions. These are some typical list functions:

86

def nth(0, x:xs) = x

def nth(n, x:xs) = nth(n-1, xs)

def length([]) = 0

def length(x:xs) = 1 + length(xs)

nth(n,xs) publishes the nth element of list xs, starting at 0; if there is no

nth element, the call halts. length publishes the number of elements in the list.

The following helper functions are specific to this example:

def atRandomIntervals(t) =

Rwait(Random(t+1)) >> (signal | atRandomIntervals(t))

def randomItem(xs) =

nth(Random(length(xs)), xs)

def total([]) = 0

def total(x:xs) = x? + total(xs)

def swap(x,y) =

atomic ((x?, y?) >(vx, vy)> x := vy & y := vx)

atRandomIntervals(t) publishes signal repeatedly, spaced at random in-

tervals of no less than 1 millisecond and no more than t milliseconds.

randomItem(xs) publishes a random element of the list xs. All elements

are equally probable. If the list is empty, the call halts.

total(xs) takes a list xs containing mutable references. It reads each ref-

erence, and publishes the sum of their values.

swap(x,y) takes two mutable references x and y, and exchanges their values.

Since it is enclosed by atomic, other events in the program will see the references in

either their unswapped state or their swapped state, but never in an intermediate

state.

87

val numbers =

[Ref(1), Ref(2), Ref(3), Ref(4), Ref(5)]

atRandomIntervals(100) >>

swap(randomItem(numbers), randomItem(numbers)) >> stop

|

atRandomIntervals(100) >>

atomic (total(numbers))

This program assembles a list of references, each of which contains a number

from 1 to 5. It then performs two activities in parallel, repeatedly, each at random

intervals: swap the values stored at two random references from the list, and compute

the total of the values in the list, publishing that value.

The correct behavior of the program is to repeatedly publish 15, the total

of the values stored in the references, since a swap never changes the total value of

the list. Even though the swap function is atomic, that alone does not ensure the

correctness of the program. If total were not called within atomic, then a swap

operation during the execution of total might swap an unexamined element with

an examined one, causing some number to be totaled twice, and another number to

be missed. However, the use of atomic guarantees the correctness of total: due

to coatomicity, every read operation in total must see the same set of writes. So,

if the effect of a swap is seen by a read on one of the swapped references, it must

also be seen by the read on the other swapped reference.

5.3.3 Dining Philosophers

This example presents the classic Dining Philosophers problem [Dij65], in Ora. The

dining philosophers program uses locking; while transactions are usually considered

to be an alternative to locks, in Ora we can use locks in the context of atomic just

like any other resource. In particular, atomic provides a means to acquire a set of

locks simultaneously, without requiring a global lock order or some equivalent tactic

to prevent deadlock.

Here is the dining philosophers program in Ora:

88

def think() = Print("Thinking...") >> Rwait(Random(1000))

def eat() = Print("Eating...") >> Rwait(Random(1000))

def philosopher(l,r) =

think() >>

atomic (l.acquire() & r.acquire()) >>

eat() >>

atomic (l.release() & r.release()) >>

philosopher(l,r)

val a = Semaphore(1)

val b = Semaphore(1)

val c = Semaphore(1)

val d = Semaphore(1)

val e = Semaphore(1)

philosopher(a,b)

| philosopher(b,c)

| philosopher(c,d)

| philosopher(d,e)

| philosopher(e,a)

The program defines five instances of Semaphore, each of which acts as a

fork. Each fork is shared by two calls to philosopher, a recursive function that

simulates a philosopher process. The functions think and eat are simulations of

the thinking and eating states of the philosopher. When a philosopher process wants

to eat, it acquires its two forks, and when it is done it releases the forks.

To prevent the classic deadlock case, the atomic combinator protects the

acquisition and release of the forks. No observer can see a state where a philoso-

pher is holding only one fork. This prevents the formation of a cycle of waiting

philosophers that would result in deadlock.

However, there is still a potential for starvation of some philosophers (though

not all at once), depending on the underlying implementation. In order to conser-

vatively enforce coatomicity, an implementation may prevent an acquire operation

from seeing a release operation originating outside its atomic execution, causing

the acquire to block forever. So, this is a lock-free implementation, but not a

wait-free one. This problem is discussed further in Section 9.3.

89

5.3.4 Atomic Timeout

One of Orc’s most useful idioms is timeout: if an expression executes for longer than

a given time period, kill it. We would like to find an analogous approach to atomic

expressions: after a given time period, force an abort and try again.

Consider an expression f, which we would like to run atomically. For sim-

plicity, we will assume that f publishes exactly once, and that the published value is

irrelevant. We would like to limit f’s execution time to one second; if it runs longer,

it will be aborted.

The simplest approach is to enforce timeout with pruning, just as with any

Orc expression, since killing an atomic expression is equivalent to aborting it:

val x = atomic f | Rwait(1000)

However, this approach has a significant drawback: if the timeout occurs,

and atomic f is killed, then it is never retried. How might we cause the timeout

to retry f? We can use recursion:

def attempt() =

val b = (atomic f) >> true | Rwait(1000) >> false

if b then signal else attempt()

attempt()

If atomic f completes, then b is set to true, and the expression publishes

signal. If the Rwait call publishes first, then b is instead set to false, and

attempt is called recursively, retrying the execution of atomic f.

However, this program is incorrect. If atomic f completes, but Rwait also

simultaneously returns, then false could be published, causing a retry of atomic f

even though it succeeded. In fact, an arbitrary number of successful executions of

atomic f are then possible. Unless f is idempotent, this is clearly not satisfactory.

How do we address this? The problem is very similar to the guarded choice

example in Section 5.2. We can use ++ to correct the error:

def attempt() =

val b = (f >> true)

++ (Rwait(1000) >> false)

if b then signal else attempt()

attempt()

90

Notice that atomic no longer occurs explicitly in the program; it is implicit

in the use of ++.

This encoding assumes that f publishes exactly once. We can relax this

assumption by using a more complex encoding to redirect the publications of f.

The following program stores the publications of f in a buffer, and then publishes

the contents of that buffer if f completes:

def repeat(f) = f() >x> (x | repeat(f))

val buffer = Channel()

def attempt() =

val b = (f >x> buffer.put(x) >> stop ; true)

++ (Rwait(1000) >> false)

if b then

repeat(buffer.getD)

else

attempt()

attempt()

As f runs (as an atom, due to ++), its publications are stored in buffer. If

it completes, b is set to true, and the modifications to the buffer are made visible.

Then the call repeat(buffer.getD) repeatedly publishes values from the buffer

until it is empty, and then halts. If Rwait publishes first, then b is instead set to

false and f is killed; the recursive call attempt() retries f.

Note that repeated retries of f use the same buffer, but since the buffer

appears empty to all outside observers until f succeeds, there is no risk of corrupting

the state of the buffer.

5.3.5 Retry Tactics

So far, we have been using the unary form of the atomic combinator almost exclu-

sively. While this simple approach suffices for most uses of atomic, it is sometimes

helpful to have more sophisticated retry tactics. Here are a few examples.

91

Limited Retry

Suppose we would like to execute the expression f atomically, but allow only a

limited number of retries before giving up and halting. Here is one approach:

def try(n) = Ift(n :> 0) >> atomic f try(n-1)

A call to try(n) tries to run f atomically, at most n times. If execution of

f aborts, then try(n-1) is called, retrying the execution. However, if there are no

retries remaining, the condition n :> 0 fails to hold, and the call simply halts.

Timed Retry

Suppose we would like to execute the expression f atomically, with unlimited retries,

but not retry more often than once every two seconds. Here is one approach:

def try() =

val x = Rwait(2000)

atomic f (x >> try())

try()

Execution of f in atomic begins in parallel with the call Rwait(2000). If

f aborts, but the Rwait call has not yet returned, then x will remain unbound.

Once Rwait returns, x is bound, and the recursive call try() occurs, retrying the

execution of f.

Limited Timed Retry

We can combine limited retry with timed retry, to allow a limited number of retries

with a minimum time interval between each attempt:

def try(n) =

val x = Rwait(2000)

Ift(n :> 0) >> atomic f (x >> try(n-1))

Exponential Backoff

Suppose we would like to execute the expression f atomically, with unlimited retries,

but increase the delay between each retry. In particular, we would like to use binary

exponential backoff, as in the Ethernet protocol.[Lam13] This tactic is particularly

useful when resources are heavily contended.

92

def try(k) =

atomic f (Rwait(random(2ˆk + 1)) >> try(k+1))

try(0)

The try function is called with an initial argument of 0. If execution of

f aborts, then try is called recursively, retrying the execution, but only after a

random delay of no more than 2k milliseconds.

5.3.6 Job Priority

Consider the problem of scheduling jobs with different priorities. We program a

scheduler which always executes the highest-priority available job. If a higher prior-

ity job arrives while a lower priority job is executing, the executing job is preempted,

and the higher priority job runs instead. In other words, a low priority job should

never complete while a high-priority job is waiting.

A list of channels, cs, contains the currently available jobs. Each job is an

Ora function with no arguments; the job is considered complete when the function

call halts. The channel order in cs gives the priority of a channel; the channel

at the head of the list contains the highest priority jobs. The function prio(cs)

completes the highest priority job available in cs, and then halts. The function

exec repeatedly calls prio to execute all available jobs.

def block() = Cell()?

def noop() = stop

def prio([]) = block()

def prio(c:cs) =

val job = c.get() ++ (prio(cs) ; noop)

job() >> stop

def exec(cs) = prio(cs) ; exec(cs)

The prio function traverses the list cs, initiating nested atomic executions

on each recursion, since ++ runs each of its branches atomically. If a job arrives

from c.get(), it is bound to job, and the search for (and partial execution of)

lower-priority jobs is discarded without effect. job is then executed. If prio(cs)

completes first, it will publish noop, causing job() to halt without doing anything.

93

The job of interest has already been found deeper in the list and executed to com-

pletion, so nothing needs to be done at this level. The base case for prio is an

empty list, where it simply blocks (the block function creates an empty Cell and

then immediately reads it, causing it to block forever).

94

Chapter 6

Implementing Ora

The previous chapter introduced the language Ora, and its central feature, the

atomic combinator. In this chapter we will see how atomic is implemented, specif-

ically how the Ora program cooperates with the sites that it invokes to maintain

atomicity, coatomicity, and consistency.

Each time an atomic expression executes, a dynamic object called a transac-

tion is created to mediate the interaction between that execution and the sites that

it calls. This mediation is implemented by two versioning algorithms. The logical

versioning algorithm manages the state that sites observe from other transactions,

ensuring coatomicity. The resource versioning algorithm manages the reintegration

of state changes that were made within a transaction, ensuring consistency. Atomic-

ity is ensured by a synchronized commit operation, together with the two versioning

algorithms.

Many of the concepts used in this chapter — transactions, commitment, and

so on — are familiar from the broader transactional memory literature. The algo-

rithms shown here are based on a particular strategy for implementing transactions

called multiversion concurrency control, or MVCC [BG83]. They were partially in-

spired by the concepts presented in JVSTM [CRS06], an extension of the Java pro-

gramming language with transactional memory capabilities. This implementation

extends those concepts to account for the pervasive interaction between transactions

and orchestrations: transactions can be nested, can run in parallel with each other

inside of other transactions, and can interact with concurrent activities occurring

in enclosing transactions or even outside of any transaction. The algorithm that

95

maintains coatomicity also incorporates many concepts from the Chandy-Lamport

distributed snapshot algorithm [CL85]. The implementation is, in a sense, a hybrid

of multiversion concurrency control and distributed snapshot.

As in previous chapters, this is an informal presentation. A formal version

of these algorithms is included in the formal semantics of Ora, in Chapter 7.

6.1 Transactions

When an atomic expression begins to execute, a transaction is created for that execu-

tion. A transaction is a dynamically instantiated object that tracks the events that

occur during the execution, to ensure that they satisfy the properties of atomicity,

coatomicity, and consistency.

Since the body of an atomic expression can itself be any Ora expression,

there could be concurrent activity within an atomic execution, due to uses of the

parallel combinator or pruning combinator. Furthermore, atomic itself might occur

in the body expression, and so atomic executions may be nested; any number of

concurrent transactions could occur within the context of another transaction. Thus,

transactions form a tree, where each non-root node is associated with a transaction,

and any transaction that begins within another transaction becomes its child in the

tree. Every event of the program is located at a particular node in the tree. Events

that do not occur within any atomic expression are located at the root. Figure 6.1

shows an example Ora program, and the transaction tree generated by its execution.

Within a recursive function, the same syntactic occurrence of atomic might

be executed multiple times. Each of these executions has its own unique transaction.

Figure 6.2 shows the recursive job priority function introduced in Section 5.3.6,

and a depiction of the (potentially unbounded) transaction tree created during its

execution. The function creates new transactions on each recursive call, due to the

use of the atomic choice (++) operator. The resulting transaction tree is a right

spine of nested transactions.

6.1.1 Transactional Sites

Site calls are the primary locus for the implementation of transactions. Each time

a site call occurs, the call reports its location — the transaction from which the

call originated. The site may use this location information to ensure that the call

96

val r = Ref(0)
r? <<
atomic* (
 atomic* (r := r? + 1)
& atomic* (r := r? + 1)
)

Figure 6.1: Transaction tree for two increments

def prio(c:cs) =
 val job =
 c.get()
 ++ (prio(cs) ; noop)
 job() >> stop

Figure 6.2: Transaction tree for job priority function

97

complies with atomicity, coatomicity, and consistency. Sites fall into three broad

categories in terms of their interaction with transactions:

1. Pure sites (as defined in Section 2.3.4) perform stateless computations; they

have no causal relationship with other events in the program. Consequently,

they cannot violate atomicity, coatomicity, or consistency. They ignore trans-

actions entirely, exhibiting the same behavior regardless of the call’s location.

2. Some sites provide access to shared state, such as mutable references or chan-

nels. In particular, the sites created by Ref, Cell, Guard, Channel, and

Semaphore fall into this category. These sites do interact with transactions,

and that interaction will be the focus of the remainder of this chapter.

3. Many other sites are available in Ora programs, but instrumenting them to

correctly obey atomicity and coatomicity is beyond the scope of this work,

due to the complexity or impossibility of defining their causal relationships.

So, these sites ignore transactions entirely. One such site is Rwait, which is

difficult to instrument due to the interaction of causality and temporal order;

this problem is discussed further in Section 9.2. Other sites such as Print

and Prompt interact with human users, so it is not even clear how to define

causality for them.

6.2 Observation

In order to ensure the property of coatomicity, every site call located in a transaction

needs to operate with the same view of the events outside of that transaction. This

section describes the algorithm that accomplishes this goal.

Effectively, each transaction operates on a snapshot of the state of each re-

source with respect to the operations occurring on that resource outside the trans-

action, to ensure that each event within the transaction sees the same set of outside

events and thus ensure coatomicity.

The naive approach to maintaining such a snapshot would be to interpret

the intuition of coatomicity literally, recording the state of all resources at the point

when the transaction begins. However, this is terribly inefficient, since any given

transaction will likely access only a tiny fraction of the full set of resources in the

program. Instead, the algorithm creates the snapshot on demand.

98

val r = Ref(0)
r? <<
atomic* (
 atomic* (r := r? + 1)
& atomic* (r := r? + 1)
)

1

1 2

Figure 6.3: Transaction tree with logical versions

Whenever an operation inside the transaction makes its first query about

the state of a resource outside of the transaction, that query is noted in such a way

that each subsequent query will return the same state — even if the resource is

later modified. This is ensured by maintaining snapshots on a per-resource basis.

Whenever a resource is modified, that modification must check if any such queries

have been made, and save the queried state in a log, to ensure that subsequent

queries see only that saved state, and not the modifications subsequent to the query.

6.2.1 Version Information

We augment the transaction tree described in the previous section by labeling each

edge with a natural number, called a logical version. When a new transaction begins,

a new node is created, and the edge from its parent is assigned a new logical version,

equal to the maximum logical version of its siblings plus 1. This is called the initial

version of the transaction. If there are no siblings, the initial version is set to 1.

Figure 6.3 repeats the example from Figure 6.1 with initial versions for each edge

of the transaction tree. Note that the initial version assigned to a child is used only

in the context of its parent, so initial versions need only be unique among siblings.1

Each shared resource that supports transactional access, such as a reference

created by Ref or a channel created by Channel, has a corresponding resource tree.

1As a consequence, in a distributed implementation, the parent transaction can provide the
initial versions for its children; no global counter is needed for initial versions.

99

0
"do"

1
"re"

3
"mi" 4

Figure 6.4: Example of a resource node

A resource tree has the same structure as the transaction tree, where each node of the

tree — called a resource node — contains a sequence of states for that resource. Each

state is indexed with a logical version. The sequence is initially empty. Each resource

node also has another logical version, called a boundary number, not associated with

any state. The boundary number is initially 0.

Figure 6.4 gives an example of a resource node, with a sequence of three states

and a boundary number of 4. Note that logical versions are always in increasing

order, but might not be contiguous; in this example, the logical version 2 has been

skipped.

6.2.2 Observing States

Each entry in the sequence of states at a resource node represents the boundary of

a snapshot of that resource. Logical versions identify the snapshots. The boundary

number identifies the logical version of the next snapshot to be taken; if it is equal

to the current maximum logical version, no snapshot is currently needed.

When a site call interacts with a resource, the observed state of the resource

is determined as follows:

1. Examine the resource tree, at the node corresponding to the call’s location.

Consider the sequence of states at that node.

2. If the sequence is not empty, the observed state is the state in the sequence

with the largest logical version.

3. If the sequence is empty, note the initial version n on the edge from this node

to its parent.2

2Note that the algorithm will never reach this step for the root node; any call that can access

100

4. If the boundary number of the parent node is less than n, increase it to n.

5. Then examine the sequence at the parent node, but consider only the subse-

quence with logical versions less than n. Using this subsequence, repeat from

step 2.

Figures 6.5 - 6.8 show a few examples of observing a state in a Ref resource

tree. The transaction tree is shown on the left, and the corresponding nodes of

the resource tree are shown on the right. The observed state is indicated by the ?
marker. Unseen states (i.e., the states disregarded by step 5 above) are shaded gray.

a resource can also observe, somewhere along the path to the root, the initial state established by
the site that created the resource.

101

0 1
2

Figure 6.5: Observed state is within caller’s transaction

2 3 5
5

0

3

Figure 6.6: Observed state is in parent transaction

2 3 5
5

0

7

7

Figure 6.7: Observed state is in parent transaction, boundary number increases

102

2 3 5
5

0

0 1 8
9

9

3

1

Figure 6.8: Observed state is in parent’s parent transaction

103

0
"do"

1
"re"

3
"mi" 3

0
"do"

1
"re"

3
"fa" 3

Figure 6.9: When boundary number equals max version, overwrite

0
"do"

1
"re"

3
"mi" 5

0
"do"

1
"re"

3
"mi" 5

5
"fa"

Figure 6.10: When boundary number exceeds max version, append

The site call then performs its computation using just the observed state.

If this computation modifies the state, the modified state is added to the resource

node for the call’s location, with a logical version equal to the boundary number of

that resource node. Any previous state with that same logical version is overwritten.

Figures 6.9 and 6.10 demonstrate the two possible outcomes.

6.2.3 Blocked Calls

It is possible that the observed state would cause the site call to block; for example,

if the operation is a get and the observed state is an empty channel. In this case

the call must wait until the observed state changes in such a way as to unblock the

operation. Each node for a resource with blocking operations (such as a channel

or semaphore) has a waiting set containing blocked calls. When computing the

observed state, at each node where the observed state would cause a call to block,

whenever a boundary number would be increased (as indicated in step 4), instead

the call is added to the waiting set for that resource node, and its entry in the set

is labeled with the logical version that it would have assigned as the new boundary

number. If the boundary number would not be increased, no entry is added to the

queue. A blocking call is always added to the waiting set for the node of its own

transaction, with no label.

Whenever the boundary number of a node is advanced, all calls with a version

label less than or equal to the new boundary number are purged from the waiting

set. Whenever a state is changed in such a way that it could unblock some calls,

104

the calls to be unblocked are chosen from the waiting set (after it has been purged).

The new state is assigned a logical version no less than the maximum of all labels

for all calls unblocked in this way.

This subtle relationship between transactions and blocking site calls can give

rise to some surprising program behaviors; these are discussed in greater detail in

Section 9.3.

6.2.4 Tracking Causality

In order for logical versions to correctly enforce coatomicity, one more refinement is

needed: the algorithm must account for the causal relationships induced by the Ora

program itself.

Consider the following program:

val x = Ref(0)

val y = Cell()

atomic (x?, y? >> x?)

|

x := 5 >> y := signal >> stop

This program performs two activities in parallel. Within an atomic execu-

tion, it reads the value of reference x, and in parallel waits for the cell y to be

assigned and then reads x again, publishing a tuple of the two results of reading

x. Outside of the atomic execution, the program sets x to 5, and then sets y to

signal.

When the atomic execution begins, a transaction is created and added to

the transaction tree; the edge to the new transaction has a logical version of 1.

Subsequently, either x := 5 or x? could occur first.

• If x := 5 occurs first, then x? will observe the state of the reference to be 5.

Subsequently, y := signal occurs, allowing y? to proceed, so the second x?

operation occurs, also observing 5. The resulting publication in this case is

(5,5).

• If x? occurs first, then x? will observe the state of the reference to be 0, its

initial state. It also advances the boundary number of its parent node in the

105

resource tree of x; the new boundary number is 1. Subsequently, x := 5

occurs, creating a new state in that parent node, with value 5 and logical

version 1. Then y := signal occurs, allowing y? to proceed, so the second

x? operation occurs. That operation observes 0; since the newly added state

of 5 has logical version 1, it is not seen. The resulting publication in this case

is (0,0).

There is a problem here: the result (0,0) is not actually valid! x := 5

causally precedes y := signal, due to the use of the >> combinator. y := signal

causally precedes y?, since the read cannot proceed until the cell is assigned. y?

precedes one of the x? operations, again due to the >> combinator. Since causality is

transitive, x := 5 thus causally precedes the x? operation. Thus by the definition of

a read on a reference, x? must publish 5; it cannot possibly publish 0. Coatomicity

further requires that the causal precedence be shared with the other x? operation,

so it must also publish 5.

The logical versioning algorithm has not correctly accounted for the causality

within the Ora program. Suppose we extend the algorithm in the following way:

• Whenever a state is observed by a site call, if the state was observed in the

same transaction as the call occurred, the site attaches the logical version of

that state to the call’s response.

• Whenever a site is called in a transaction, it carries the maximum logical

version of all of its causes from within that same transaction, such as site

responses. The mechanism that conveys these logical versions through the

Ora program is presented in detail in Section 7.2.

• Whenever a site call modifies a state, the version attached to that state is the

maximum of the boundary number and the version attached to the call.

With this augmentation, we reexamine the scenario where the incorrect pub-

lication (0,0) occurred.

Suppose x? occurs before x := 5. Then x? will observe the state of the

reference to be 0, its initial state. It also advances the boundary number of its parent

(the root) in the resource tree of x; the new boundary number is 1. Subsequently,

x := 5 occurs, creating a new state in the root of x’s resource tree, with value 5

106

and logical version 1. The call x := 5 responds with signal, and that response

now carries a version of 1. Subsequently y := signal occurs; the call carries a

version of 1 since it was caused by x := 5. This adds a new state to the root of

the resource tree of y, with value signal and version 1. Now, when y? occurs, it

blocks indefinitely; it does not see the assignment of signal to y, since that state has

logical version 1, which is not less than the edge’s logical version of 1. Consequently,

the transaction blocks, forever. An incorrect result has been prevented, at the cost

of progress; this tradeoff is discussed in greater detail in Section 9.3.

6.2.5 Relationship to Distributed Snapshot

This logical versioning algorithm incorporates elements of the distributed snapshot

algorithm developed by Chandy and Lamport [CL85]. In particular, the tracking of

causality through the Ora program is the key to the relationship between the two

algorithms. The comparison that follows is based on Dijkstra’s presentation of the

algorithm [Dij83].

The snapshot algorithm operates over a strongly connected network of ma-

chines, which communicate only by messages sent through ordered, first-in-first-out

input buffers. The machines are analogous to the set of shared resources in Ora,

together with the set of all threads of execution within the Ora program. In the

distributed snapshot algorithm, the intent is to capture a global state of the entire

system. In Ora, we are interested in only a subset of such a global snapshot: we

need only a snapshot of the shared resources observed by a particular transaction.

The “red letter” — the unique message that computes the boundary of the

distributed snapshot — corresponds to the initial version number assigned to a new

transaction. As the transaction proceeds, it observes various resources, and as it

does so, it affects the boundary numbers of those resources by reading its own initial

version and advancing the boundary number to at least that version. Each read of

the initial version corresponds to the transmission of the red letter from the “starter”

machine in the distributed snapshot, and the advancement of a resource’s boundary

number corresponds to receipt of the red letter from the starter machine. Then,

the manipulation of the resource node to ensure that further state changes do not

overwrite the existing entry corresponds to the local state recording performed by

a machine as it changes from white to red. In this way, the global state computed

107

by the distributed snapshot corresponds exactly to the set of events seen by all

members of the transaction as required by coatomicity.

The correctness of the distributed snapshot algorithm relies on the fact that

each machine, upon first receiving a red letter, sends a red letter to each other

machine. Since the transmission of messages from machine to machine could be

delayed, it is possible that a machine receives its first red letter from a machine

other than the starter, in which case it will already have turned red by the time the

red letter from the starter arrives. Similarly, the logical versioning algorithm relies

on the correct transmission of logical versions through causal relationships in the

Ora program, and through sites; if the boundary version of a resource node has been

advanced by an Ora operation before the resource is observed by a child transaction,

this is similar to the receipt of a red letter by a machine already colored red.

Note that Ora’s logical versioning algorithm must handle many simultane-

ously active sibling transactions, with different initial versions. The situation is

analogous to a cascading execution of many distributed snapshots. However, the

situation is easily managed, since the version numbers are totally ordered.

6.3 Merging

The logical version algorithm described in the previous section enforces coatomicity.

However, it does not enforce atomicity, since it does not describe how parts of

the program outside of a transaction can observe events that occurred within that

transaction. When a transaction is finished, its state changes must be moved into its

parent so that they become visible. This merging process is additionally constrained

by the requirements of consistency, as defined in Chapter 4; once the changes have

been made visible, each observer that could see those changes must still see a unique

state for each resource.

In this section we will see how and when a resource tree node is combined

with its parent node, through a commit process that checks whether each resource

can be combined in a way that preserves consistency. This algorithm requires that

resource states be augmented with additional elements, called resource versions,

which track the operations that have been performed on the resource.

108

0
70

1
"do" 1

4
"re" 2

6
"mi" 3

Figure 6.11: A Ref resource node, augmented with resource versions

6.3.1 Resource Versions

A resource version is a new element of a resource node entry; it is a natural number

that counts how many times a particular operation has been performed on that

resource. Resource versions summarize the history of state changes on a resource in

such a way that consistency can be ensured simply by comparing resource versions.

Whenever a state is modified, its resource versions are modified in tandem. Here, we

describe the state and version information maintained by the resource node entries

of each resource type.

Guard

A Guard entry has a state of true if the guard has been claimed, false

otherwise. It has no resource versions; its state carries sufficient infor-

mation.

Ref and Cell

A Ref or Cell entry has a single optional value as its state, and one

resource version. The resource version counts the number of times the

reference has been written; in the case of cells, only 0 or 1 is possible.

Figure 6.11 gives an example of a resource tree node with four entries,

each of which has a state (the first state is �, indicating an empty

reference), and a resource version.

Channel

A Channel entry contains a sequence of values as its state, and two

resource versions, g and p. The version g counts the total number of

109

get operations that have been performed on the channel; similarly, p

counts the total number of put operations.

Semaphore

A Semaphore entry has two resource versions, a and r, and no state. The

version a counts the total number of acquire operations that have ever

been performed on the semaphore; similarly, r counts the total number

of release operations. Whenever the semaphore count is needed, it

can be calculated directly as (r − a). An acquire operation may only

proceed if r > a.

6.3.2 Commit

When the body expression of an atomic expression halts, the corresponding trans-

action attempts to commit. The commit process combines the current state of each

resource in the transaction with the current state of that resource in the transac-

tion’s parent, while ensuring that consistency has been maintained. If consistency

has not been maintained, then there is a conflict, and an abort occurs, causing the

alternate branch of the atomic expression to be evaluated instead, as described in

Section 5.1. In the case of a conflict, no changes are made to any states in the

transaction’s parent.

For each resource tree, if the committing transaction’s node in the tree has

a non-empty sequence of entries, then that resource tree is a participant in the

transaction. Each participant identifies three resource node entries in its resource

tree:

• The current child entry, qchild . This is the entry with the largest logical version

in the committing transaction’s resource node.

• The current parent entry, qparent . This is the entry with the largest logical

version in the committing transaction’s parent’s resource node.

• The branch entry, qbranch . This is the entry that would be observed by the

committing transaction if its own resource node contained an empty sequence.

Let qbranch be its resource version.

110

qbranch qparent

qchild

Figure 6.12: Selection of child, parent, and branch entries

111

Figure 6.12 shows an example of this selection process.

With these entries identified, each participant attempts to merge its own

qchild and qparent to create a new qmerge entry. In all cases, a merge will succeed if

qparent and qbranch are equal3; the resulting merged entry qmerge is just qchild .

The merging procedure is different for each resource:

Guard

The merge succeeds if only one of qparent or qchild is true. If so, the

merged entry is true. Otherwise, the merge fails.

Ref and Cell

The merge succeeds only if one of qparent or qchild has a different resource

version than qbranch , but not both. If so, the merged entry is equal to

whichever of qparent or qchild had the differing resource version. This

ensures that divergent writes always produce a conflict.

Channel

The merge succeeds under two conditions:

• qbranch has the same count of put operations as qchild , or qparent , or

both.

• qbranch has the same count of get operations as qchild , or qparent , or

both.

These conditions ensure that put operations do not occur in

both the parent and the child, nor do get operations. If put operations

occurred in both the parent and the child, then they would need to

be ordered in the channel, and since both orderings are permissible,

multiple states are possible, violating consistency. If get operations

occurred in both the parent and the child, then duplicates of the same

channel items have been used by multiple computations, violating the

expected behavior of a channel.

3Note that the merge will also always succeed if qchild and qbranch are equal, but in that case,
the resource would not even be in the set of participants to begin with.

112

The merged entry qmerge for the channel has the larger of the put

counts from qchild and qparent , and the larger of the get counts from qchild

and qparent . Its state is the sequence of values from the entry with more

put operations; if that entry did not also have more get operations,

then one element is removed from the head of the sequence for every

extra get operation in the other entry.

Semaphore

The merge succeeds if the sum of the acquire counts in qparent and qchild

does not exceed the sum of the release counts in qparent and qchild . This

condition ensures that the merged semaphore will be in a legal state.

The merged entry qmerge has the total of the acquire counts from

qparent and qchild , minus the acquire count of qbranch , and a release

count calculated in the same way.

If any participant fails to merge, then there is a conflict, and the transaction

is aborted.4 If all participants successfully merge, then the maximum logical version

n of all parent entries is calculated; call this the commit version. Then, each parent

node is updated with a new entry, qmerge , with logical version n. Additionally, each

publication in the Ora program that was unfrozen by the commit is given a logical

version of n, so that any events that those publications cause will have a logical

version of at least n.

In order to ensure atomicity, all of the updates to the participants must occur

simultaneously, so that if an observer in the parent sees one modification resulting

from the commit, it sees all of the modifications. This can be ensured by any

reasonable commit protocol, such as a two-phase commit [BN09]. Many commit

protocols will require some way to prioritize transactions when a conflict occurs; in

those cases, the initial version of the transaction can be used as a tiebreaker.

4Note that if the committing transaction did not modify any states, then the set of participants is
empty, so conflict is impossible. Thus, Ora shares an important property with other multiversioning
transaction systems: a read-only transaction will not abort.

113

Chapter 7

Formal Semantics of Ora

This chapter describes the formal grammar and small-step operational semantics of

Ora. At its core, the formal semantics is an extended version of the Orc formal se-

mantics introduced in Section 2.3. It formalizes the language extensions introduced

in Chapter 5 and the transactional implementation of those extensions described in

Chapter 6. This formal representation is necessary to provide a firm mathematical

foundation for the formal proofs of atomicity, coatomicity, and consistency presented

in Chapter 8.

We begin with the grammar of Ora programs, which extends the Orc gram-

mar with support for atomic, and also modifies many expressions to carry logical

version information. Subsequently we consider the internal semantics of Ora, which

describes the labeled transition relation for Ora programs. This includes the transi-

tions originally seen in the Orc semantics — with extensive modifications to trans-

port logical version information through the program — as well as new transitions

to support the execution of atomic. Then we see the external semantics of Ora,

which describes the structure of the environment in which an Ora program runs,

and the small-step transitions which the program and its environment jointly make

as they interact.

The algorithms described in Chapter 6 are formally modeled by the snapshot

semantics, which controls the observation of states, and the commit semantics, which

describes the conditions under which a transaction may commit or abort. Each of

these relies on a small group of supporting operations, which manipulate sets of

events in the environment. Note that the data structures described in Chapter 6

114

capture only the subset of the environment needed for the algorithm, whereas the

formal semantics captures the entire history of the environment, including items

such as overwritten states or boundary numbers.

The chapter concludes with a description of the resource semantics, which

formally models the computation that occurs at sites and the resource-specific op-

erations on which the other semantic rules rely.

115

7.1 Syntax of Ora

Figure 7.1 defines the formal syntax of Ora programs.

Variables and handles are arbitrary identifiers. All variable names occur in

the initial program, whereas handles are generated as the program runs. The set of

values contains all sites, all constants, all structured values, and all other datatypes

returned by sites. Each of these concepts is the same as for Orc programs.

Ora introduces two new formal syntactic entities: transactions (t) and log-

ical versions (n). Transactions are arbitrary identifiers, generated at runtime, just

like handles. Logical versions are natural numbers; some syntactic entities are aug-

mented with logical versions.

The syntactic definitions of values (v), responses (w), and declared func-

tions (def y(x̄) = f) are unchanged. Parameters (p) may be either variable names

or responses, but whenever a parameter is a response, it now carries a logical version.

The syntax for Ora expressions includes some Orc expressions unchanged,

some with changes, and some entirely new syntactic cases. The syntax of standalone

parameters (p) and site calls (p(p̄)) remains unchanged, except that the syntax for

parameters itself has changed as described above. The syntax for calls in progress

(k?), and for the four Orc combinators, remains unchanged. The syntax for declar-

ing a function in a scope now includes a logical version n attached to the function D.

Ora adds three new expressions: versioned expressions (fn), atomic, and

trans. A versioned expression simply carries a logical version. The expression

atomic f g is an instance of the atomic combinator that has not yet begun to

execute; f is the body expression and g is the fallback expression, as described in

Section 5.1. The expression trans t f (h, g) is an active execution of an atomic

expression. The transaction t is its unique identifier, f is the executing body ex-

pression, g is the fallback expression, and h is a special expression that contains all

values published by f so far; when the transaction commits, h will be executed.

116

If a program has not yet begun to execute, all logical versions n must be 0,

and the expressions k?, fn, and trans t f (h, g) cannot occur in the program.

x, y ∈ Variable
k ∈ Handle
V ∈ Value

s, t, u ∈ Transaction
n ∈ N

v ∈ Orc value ::= V D
w ∈ Response ::= v stop
p ∈ Parameter ::= wn x

D ∈ Definition ::= def y(x̄) = f

f, g, h ∈ Expression ::= p
p(p̄)
k?
f >x> g
f | g
f <x< g
f ; g
(Dn) # f
fn

atomic f g
trans t f (g, h)

Figure 7.1: Formal Syntax of Ora

117

7.2 Internal Semantics

The internal semantics of Ora is a small-step operational semantics with labeled

transitions. The rules of the internal semantics describe how Ora programs execute;

they do not describe the computation of sites, or the relationship between the Ora

program and the sites it calls.

These rules define two characteristics of expressions: which transition steps

are available for an expression (the execution judgment), and whether an expres-

sion has halted (the halting judgment). These judgments are mutually exclusive; a

halted expression has no available transition steps, and an expression with available

transition steps has not halted.

7.2.1 Halting Judgment

The halting judgment has the following form, where f is an expression, and n is a

logical version:

f halted at n

The judgment states that f has halted, and that n is the maximum logical

version among all events that caused f to halt. The judgment is defined inductively

by the rules in Figure 7.2:

• The (HaltPar) rule states that a parallel combinator has halted when both

of its subexpressions have halted. It halts at the maximum of the versions at

which each of its subexpressions halted.

• The (HaltSeq) rule states that a sequential combinator has halted when its

left subexpression has halted.

• The (HaltDef) rule states that if an expression consists of a definition and

its scope, that expression halts when the scope expression halts.

• The (HaltCall) and (HaltArg) rules indicate the two cases when a call

halts: if the value being called becomes stop, or if the value being called

is a site and one of its arguments is stop. In each case the occurrence of

stop dictates the logical version at which the whole call halts. The choice of

118

f halted at m g halted at n

f | g halted at max(m,n)
(HaltPar)

f halted at n

f >x> g halted at n
(HaltSeq)

f halted at n

Dm # f halted at n
(HaltDef)

stopn(p̄) halted at n (HaltCall)

V m(..., stopn, ...) halted at n (HaltArg)

stopn halted at n (HaltStop)

Figure 7.2: Halting Judgment

logical version in (HaltArg) can be nondeterministic if multiple arguments

are stop.

• The (HaltStop) rule states that stop is halted. It halts at the logical version

attached to that instance of stop.

119

7.2.2 Execution Judgment

The execution judgment has the following form, where f and f ′ are expressions, and

L is a transition label:

f
L−→ f ′

The judgment states that f has a transition step available: it can transition

to f ′, emitting the label L.

Labels

The possible labels L are described by the grammar in Figure 7.3. Some labels refer

to transaction paths T ; these are either sequences of transaction identifiers t, or the

empty sequence ε. If a transaction path is written Tt, this simply expresses the

requirement that the sequence is not empty.

• A site call label (Vk(v̄) in T at n) indicates that the expression is calling the

site1 V with arguments v̄. The call originated from transaction path T . The

logical version n is the maximum version among all events that caused the

call. The call is uniquely identified by the handle k.

• A site return label (k?w at n) indicates that the expression is accepting a return

value from a call. The handle k identifies the original call. The response w

is either a value v or the negative response stop. The logical version n is the

maximum version among all events that caused the response, including the

original call and possibly including external events.

• A silent label (τ) indicates that the expression is making an internal transition

with no effect on the rest of the program, or the environment.

• An init label (init Tt) indicates that the expression is starting a new transac-

tion at path Tt.

• A commit label (commit Tt at n) indicates that the expression is committing

a transaction, and that all of the transaction’s events have logical version n.

1Note that V is used, not v, to exclude the possibility of a function (D); function calls are
treated differently than site calls.

120

l ∈ Non-publication Label ::= Vk(v̄) in T at n
k?w at n
τ
init Tt
commit Tt at n
abort Tt

L ∈ Label ::= l !v at n

S, T, U ∈ Transaction Path ::= ε T t

Figure 7.3: Grammar of Transition Labels

• An abort label (abort Tt) indicates that the expression could abort the trans-

action at path Tt.

• A publication label (!v at n) indicates that the expression is publishing a value

v with logical version n.

For convenience, labels that are not publications have a separate syntac-

tic category l, since many rules for the execution judgment discriminate between

publication steps and non-publication steps.

Transition Rules

The execution judgment is defined inductively by the rules in Figures 7.4 - 7.9.

Base Expressions Figure 7.4 shows the possible execution steps for base expres-

sions, i.e. those that contain no subexpressions.

• Free variables and stop are base expressions, but they have no transition rules,

since they cannot take any steps; free variables are blocked and stop is halted.

• The (SiteCall) rule executes site calls. Execution of a site call creates a

new unique handle k to identify the call. The site being called must be a

non-function value V ; calls to functions are handled by a different rule. Each

parameter in p̄ must be a value. The call transitions to a handle expression

k?, emitting a site call label containing the site, the arguments, the handle,

an initially empty transaction path, and a logical version n, computed as the

max of the logical versions of the site value and the argument values.

121

k fresh
pi = vi at mi

n = max(m,maxi(mi))

V m(p̄)
Vk(v̄) in ε at n−→ k?

(SiteCall)

k?
k?w at n−→ wn (SiteReturn)

vn
!v at n−→ stopn (Publish)

Figure 7.4: Execution Judgment for Base Expressions

• The (SiteReturn) rule processes site responses. A handle expression k?

transitions to a response w, which could be a value v, or stop. The logical

version associated with the response is maintained in the program. The label

attached to the transition is a response label, which provides the response

value (or stop) and identifies the handle receiving the response.2

• The (Publish) rule takes a value v with a logical version n, and transitions

to stop with that same logical version. The transition has a publication label

carrying v and n, to be received and used elsewhere in the program.

Functions Figure 7.5 shows the transitions associated with function definitions

and function calls.

• The (DefScope) and (DefClose) rules are largely unchanged from the Orc

semantics; they allow transitions within a definition’s scope, and the substitu-

tion of a closed definition into its scope, respectively. The only change is the

logical version n attached to the definition, which is carried with the definition

as it is substituted.

2Technically, transitions for every possible response are available for k? to make; the exter-
nal semantics (discussed in the next section) chooses one of these possible transitions — the one
corresponding to the actual result of the call — when the call has completed.

122

f
L−→ f ′

Dn # f
L−→ Dn # f ′

(DefScope)

D is def y(x̄) = g
FV (D) = ∅

Dn # f
τ−→ [y 7→ Dn]f

(DefClose)

D is def y(x̄) = g

Dn(p̄)
τ−→ [y 7→ D][x̄ 7→ p̄]gn

(DefCall)

Figure 7.5: Execution Judgment for Functions

• The (DefCall) rule has changed slightly: when a function is called, the

logical version of the function is attached to the body expression.

Combinators Figure 7.6 shows the transitions available for each of the four Orc

combinators. The rules (ParL), (ParR), (SeqN), (PruneL), (PruneN), (Oth-

erN), and (OtherV) are all equivalent to their counterparts in the Orc semantics.

The other rules have changed solely to accommodate the transit of logical versions

through the program.

• The (OtherH) rule takes the logical version n at which the left expression f

halts, and attaches it to the right expression g, since all events of g depend on

the halting of f .

• Similarly, the (SeqV) rule attaches the logical version of the publication from

f to the new instance of g.

• The (PruneV) rule attaches the logical version n of the published value v

to each place where v is substituted in f ; this is because not all events of f

depend on v, just the events that block on the variable x.

• The (PruneZ) rule similarly attaches the logical version n at which g halts

to each place where stop is substituted in f .

123

f
L−→ f ′

f | g L−→ f ′ | g
(ParL)

g
L−→ g′

f | g L−→ f | g′
(ParR)

f
l−→ f ′

f ; g
l−→ f ′ ; g

(OtherN)

f
!v at n−→ f ′

f ; g
!v at n−→ f ′

(OtherV)

f halted at n

f ; g
τ−→ gn

(OtherH)

f
l−→ f ′

f >x> g
l−→ f ′ >x> g

(SeqN)

f
!v at n−→ f ′

f >x> g
τ−→ f ′ >x> g | [x 7→ v]gn

(SeqV)

f
L−→ f ′

f <x< g
L−→ f ′ <x< g

(PruneL)

g
l−→ g′

f <x< g
l−→ f <x< g′

(PruneN)

g
!v at n−→ g′

f <x< g
τ−→ [x 7→ vn]f

(PruneV)

g halted at n

f <x< g
τ−→ [x 7→ stopn]f

(PruneZ)

Figure 7.6: Execution Judgment for Orc Combinators

124

Transactions Figure 7.9 shows the execution steps for the new expression forms

added by Ora: versioned expressions (fn), the atomic combinator (atomic f g),

and transaction instances (trans t f (h, g)).

• The (Versioned) rule states that a versioned expression fn can make a tran-

sition to (f ′)n whenever its body expression f could transition to f ′. If the

transition of f has the label L, then the transition of fn has the label Ln,

which remaps L to have a minimum logical version of n. The definition of this

remapping is given in Figure 7.8.

• The (TransBegin) rule initiates a transaction, converting an atomic expres-

sion (atomic f g) to a transaction instance (trans t f (stop, g)). The identi-

fier t uniquely identifies the transaction. The commit expression h is initially

stop, since the body expression f has not yet published any values.

• The (TransN) rule handles all non-publication transitions of the transaction.

Whenever the body expression f makes a transition, with label l, the trans-

action makes a transition with label t(l), a remapping of l that extends the

transaction path of the label by appending t. The definition of this remap-

ping is given in Figure 7.7. As a result of this remapping, a label will have a

transaction path with the identifiers of all transactions enclosing its point of

origin by the time that the label propagates to the outside of the program.

• The (TransV) rule manages publications. When the body expression f pub-

lishes a value, that publication is frozen by adding it to the commit expression

h, and the transaction makes a τ transition instead. When h is later executed,

the result will be to publish all values that were frozen in this way.

• The (TransCommit) rule commits a transaction. A transaction may attempt

to commit only if its body expression f has halted. The commit event contains

only the singleton path t, but it will accumulate the entire transaction path

as it propagates upward through the program. It transitions to the success

branch h after it commits, making all of the frozen publications of the body

expression simultaneously available for publication. This transition rule ex-

presses only the effects of a commit within the Ora program; this transition

must synchronize with the environment, to ensure that the commit is valid,

and to expose the state changes associated with the commit.

125

t(init T) = init tT
t(commit T at n) = commit tT at n

t(abort T) = abort tT
t(Vk(v̄) in T at n) = Vk(v̄) in tT at n

t(L) = L , for all other labels

Figure 7.7: Path Remapping in (TransN)

(!v at m)n = !v at max(m,n)
(Vk(v̄) in ε at m)n = Vk(v̄) in ε at max(m,n)

Ln = L , for all other labels

Figure 7.8: Version Remapping in (Versioned)

Note that there is a logical version n attached to a commit label; as with

response labels k?w, this version n is actually supplied by the environment at

commit time; it is the commit version of the transaction, and it is attached to

all publications of h, using a versioned expression hn.

• The (TransAbort) rule aborts a transaction, making a transition to its fail-

ure branch g. As with the commit transition, the transition initially has the

singleton path t, but will accumulate the rest of the path as it propagates.

A transaction’s abort transition is available at all times, but as with commit

transitions, an abort transition must also synchronize with the environment.

126

f
L−→ f ′

fn
Ln

−→ (f ′)n
(Versioned)

t fresh

atomic f g
init t−→ trans t f (stop, g)

(TransBegin)

f
l−→ f ′

trans t f (h, g)
t(l)−→ trans t f ′ (h, g)

(TransN)

f
!v at m−→ f ′

trans t f (h, g)
τ−→ trans t f ′ (h | v, g)

(TransV)

f halted at m

trans t f (h, g)
commit t at n−→ hn

(TransCommit)

trans t f (h, g)
abort t−→ g (TransAbort)

Figure 7.9: Execution Judgment for Versioned Expressions and Transactions

127

[x 7→ wn](Dm) = ([x 7→ w]D)max(m,n) if x ∈ FV(D)
= Dm if x /∈ FV(D)

[x 7→ wn](atomic f g) = (atomic ([x 7→ w]f) ([x 7→ w]g))n if x ∈ FV(f)
= atomic f ([x 7→ wn]g) if x /∈ FV(f)

Figure 7.10: Special Substitution Rules

Special Substitution Rules

The substitution operation [x 7→ p] behaves differently in Ora than it does in Orc,

in a few special cases. Some program transitions cannot occur until all free variables

have been substituted into certain expressions or function definitions. In these cases,

the logical version attached to the value being substituted must also be incorporated

into the larger expression receiving the substitution, since any events resulting from

its evaluation were caused, in a sense, by the decrease in free variables resulting

from the substitution. Figure 7.10 shows these special cases: substitutions into a

function D or an atomic expression atomic f g.

128

7.3 External Semantics

In addition to the internal transitions of the Ora program itself, there is a set of

semantic rules describing the environment in which the program runs, and the in-

teractions between the Orca program and that environment. It is called the external

semantics.

7.3.1 Environment and Event Grammar

An environment, denoted by E, is a set of events. As the Ora program runs, it

interacts with the environment through site calls. The internal processing of sites

happens within the environment, adding new events to the environment correspond-

ing to new states for shared resources. Other events in the environment keep track

of the status of transactions.

The grammar of events is shown in Figure 7.11.

A resource, denoted by R, is an identifier associated with each stateful object

manipulated by sites. For example, a mutable reference is a resource, and could be

manipulated by two different sites: one that reads the reference, and another that

writes to it.

A resource state, denoted by q, is a representation of the state of some re-

source. Each resource defines the structure of its resource states differently; the

grammars of these resource states are given in Section 7.7.

An event, denoted by e, is a structure with three components: its content

c, its transaction path T , and its logical version n. Transaction paths and logical

versions were defined in the previous section. The meaning of an event depends on

its content:

• A call event (〈k . V (v̄), T, n〉) indicates that a call was made to the site V

with arguments v̄ and handle k. The transaction path T of the event indicates

the location of the call.

• A return event (〈k / w, T, n〉) indicates that the call identified by handle k has

completed, and that the site’s response is w.

• An init event (〈init t, T, n〉) indicates that a new transaction t has begun.

The transaction path T indicates the parent of t, and n is the logical version

129

R ∈ Resource

e ∈ Events ::= 〈c, T, n〉
c ∈ Content ::= k . V (v̄)

k / w
init t
commit t
advance R
qR

q ∈ Resource State

Figure 7.11: Grammar of Events

associated with the edge from T to t in the transaction tree (as described in

Section 6.2).

• A commit event (〈commit t, T, n〉) indicates that the transaction t has com-

mitted. All events that occurred at the transaction path Tt are now visible in

its parent T . The logical version n is the commit version of transaction t (as

described in Section 6.3.2).

• An advance event (〈advance R, T, n〉) indicates that in the resource tree of

resource R, at the node corresponding to the transaction path T , the boundary

number has been advanced to n (as described in Section 6.2.2).

• A state event (〈qR, T, n〉) indicates that the resource R is in state q at the

transaction path T , and the logical version associated with that state is n.

7.3.2 Site Transitions

The site transition relation ↪→ encapsulates the computations of sites. The relation

is defined by a judgment, the site processing judgment, which takes the following

form:

E ` V (v̄) at m in T
F
↪→ w at n

This judgment states that in environment E, when site V is called with

arguments v̄, and that call has logical version m and is located at transaction path

130

V (v̄) = w

E ` V (v̄) at n in T
∅
↪→ w at n

(PureSite)

Figure 7.12: Site Processing for Pure Computations

T , then the call results in a response w with logical version n, and a set of side

effects F .

Each resource that interacts with transactions has its own set of rules which

define the site processing judgment for the sites that can access the resource. These

rules are given on a per-resource basis in Section 7.7.

Pure sites, as defined in Section 2.3.4, can be handled by a single rule. Since

the computations of pure sites are guaranteed to obey atomicity and coatomicity,

it is sufficient to map the arguments directly to a response in all cases, ignoring

the environment and transactional path entirely, producing no side effects, and

reproducing the input logical version in the output. The rule (PureSite), given in

Figure 7.12, does exactly that. It is assumed that the mapping (represented by =)

is defined elsewhere; this mapping is very simple for the pure sites commonly used

in Orc programs, such as conditionals, arithmetic operations, and data structures.

7.3.3 External Transitions

An Orca program f executing within an environment E is denoted by the pair E, f .

The orchestration judgment defines a transition relation −→ on such pairs. The

orchestration judgment has the following form, where E and E′ are environments,

and f and f ′ are Ora expressions:

E, f −→ E′, f ′

The orchestration judgment is defined by the rules in Figure 7.13.

• The (EnvTau) rule allows a τ transition in the program, producing no change

in the environment.

• The (EnvPub) rule similarly allows a publication to emerge from the program,

producing no change in the environment.3

3In an implementation of Ora, a publication might be reported on the console, but here it has
no real effect on the environment state.

131

• The (EnvCall) rule allows the program to make a call to a site, adding a

corresponding call event to the environment.

• The (EnvProcess) rule takes a call in the environment and processes it, using

the relation ↪→, which defines the behavior of sites. The ↪→ judgment produces

three outputs: a response w, a logical version n, and an event set F , the effects

of the call. The environment is extended with the set of effects, and also with

a return event containing w and n. The Ora program is unchanged.

The (EnvProcess) rule applies only if there is not already a return event

for the call in the environment; this enforces the requirement that a site call

returns at most once.

• The (EnvRespond) rule detects the completion of a call, and synchronizes

with an available response action in the program, so that the response from

the site call is substituted for the matching expression k? in the program. The

environment is unchanged.

Since handles are unique, and the k?w removes the expression k? from the

program, this rule can be applied at most once for any given handle k.

• The (EnvInit) rule begins a new transaction t in the context of the existing

transaction path T (in the case of toplevel transactions, T is ε). The program

must be ready to create a new transaction, as indicated by its init transition.

The maximum init version n among all siblings of this transaction is calcu-

lated. The environment is extended with a new init event, located at path T ,

indicating that T is the parent of the new transaction. It has logical version

n+ 1, which is strictly greater than all of its siblings.

• The (EnvCommit) rule allows a commit in the program to proceed if the

transaction t is ready to commit to its parent T in the environment. Most

of the logic governing the commitment of transactions is contained in the

judgment commit(E, T t) = F at n, which will be discussed in Section 7.6.

The transition adds a new commit event to the environment, located in the

parent T , with logical version n. The presence of this commit event will

allow future observers to see the events that took place in the transaction.

The commit may also have some side effects F , which are also added to the

environment.

132

• The (EnvAbort) rule allows the transaction t to abort in the program. As

long as the transaction t is active in the program, the
abort Tt−→ transition is

available for the program. However, that transition will only occur when this

rule applies, and this rule only applies if conflict(E, T t) holds, indicating a

conflict. The full definition of conflict(E, T t) appears in Section 7.6.

Note that the environment is unchanged by this rule. In an actual implementa-

tion, a transaction abort might do a substantial amount of bookkeeping work.

In this formal model, there are no cleanup steps; the events associated with

the transaction are simply left in the environment, since atomicity guarantees

that they will never be observed.

Note that every transition E, f −→ E′, f ′ of the orchestration judgment

obeys the invariant E ⊆ E′. In other words, the orchestration judgment is monotonic

in the environment: events are never modified or removed, they are only added. In

the case of mutable resources, this means that the environment will contain the

entire history of states for that resource. In the next section, we will see how this

history is summarized to give a well-defined current state to each resource in the

environment.

133

f
τ−→ f ′

E, f −→ E, f ′
(EnvTau)

f
!v at n−→ f ′

E, f −→ E, f ′
(EnvPub)

f
Vk(v̄) in T at n−→ f ′

E, f −→ E ∪ {〈k . V (v̄), T, n〉}, f ′
(EnvCall)

〈k . V (v̄), T,m〉 ∈ E
〈k / , , 〉 /∈ E

E ` V (v̄) at m in T
F
↪→ w at n

E, f −→ E ∪ {〈k / w, T, n〉} ∪ F, f ′
(EnvProcess)

〈k / w, , n〉 ∈ E
f

k?w at n−→ f ′

E, f −→ E, f ′
(EnvRespond)

n = max({i | 〈init , T, i〉 ∈ E})
f

init Tt−→ f ′

E, f −→ E ∪ {〈init t, T, n+ 1〉}, f ′
(EnvInit)

commit(E, T t) = F at n

f
commit Tt at n−→ f ′

E, f −→ E ∪ {〈commit t, T, n〉} ∪ F, f ′
(EnvCommit)

conflict(E, T t)

f
abort Tt−→ f ′

E, f −→ E, f ′
(EnvAbort)

Figure 7.13: Orchestration Judgment

134

7.4 Environment Operations

The environment defined in the previous section is simply a set of events; it has no

structure. Additionally, the environment changes only by adding new events; no

existing events are modified or removed. In this section, we define some supporting

operations that provide a more structured view of the environment.

7.4.1 Environment Filtering and Mapping

To simplify some of the notation in the semantics, we define some operations for

filtering sets of events based on certain criteria, remapping certain characteristics of

events, or extracting states from events. These operations are shown in Figure 7.14.

E[T] = {e ∈ E | e = 〈 , T, 〉}
E[< n] = {e ∈ E | e = 〈 , ,m〉 ∧ m < n}
E[R] = {e ∈ E | e = 〈qR, , 〉}

E[← n] = {〈c, T, n〉 | 〈c, T, 〉 ∈ E}

E[∗R] = {{q | 〈qR, , 〉 ∈ E}}

Figure 7.14: Environment Filtering and Remapping Operations

• E[T] selects all events in the set E with the transaction path T . This operation

is useful for identifying sets of events that correspond to a ‘node’ in a resource

tree.

• E[< n] selects all events in the set E with a logical version strictly less than

n.

• E[R] selects all resource state events in E that belong to resource R. Note

that E[R] does not include advance events.

• E[← n] is a duplicate of E where each event has the same content and trans-

action path, but its logical version has been changed to n.

• E[∗R] extracts the multiset4 of states of resource R in E.

4The use of double braces {{ ... }} denotes a multiset.

135

Note that the result of most of these operations is itself a set of events, so

the operations can be concatenated: for example, E[T][< n] is the set of all events

in E with transaction path T and a logical version strictly less than n.

7.4.2 Image

When a transaction commits, the environment is only changed via the addition of a

commit event; no other events are moved or copied. The presence of the commit

event simply indicates that the events of the committed transaction are now visible.

The image judgment collects the subset of events in the environment that are visible

at a particular transaction path, due to the commitment of descendant transactions.

It has the following form, where E is an environment and T is a transaction path:

image(E, T) = Σ

The result Σ is a set of events. However, it connotes a subset, or slice, of

an environment, rather than an entire environment, which is why the symbol Σ is

used, rather than E.

The image judgment is defined by a single inductive rule, shown in Fig-

ure 7.15. The image at a transaction path T is the selection of all events actually

located at that path, together with the images of all immediate children that have

committed. The image of each child is remapped to have logical version m, where

m is the version attached to its commit event.

Σ =
⋃
{image(E, T t)[← m] | 〈commit t, T,m〉 ∈ E}

image(E, T) = E[T] ∪ Σ
(Image)

Figure 7.15: Image Judgment

7.4.3 State

The external semantics is monotonic in the environment, meaning that it only adds

new events; it does not modify or remove old events. As a result, the environment

contains the entire history of events, and in particular it contains the entire history

of states for a resource. Many operations, such as site computations, need only the

current state of a resource. The state operation computes the multiset of possible

136

current states Qcurrent of a resource R from a multiset Qhistory containing the visible

history of states for that resource:

stateR(Qhistory) = Qcurrent

The definition of stateR is specific to each resource R; these definitions are

given separately for each resource in Section 7.7.

In all legal executions, Qcurrent contains at most one element; the current

state of each resource must be unique. This property is the essence of consistency;

it will be formalized and discussed further in Section 8.2.

137

7.5 Observer Semantics

The observer semantics is the set of rules that determines the observed state of a

resource, as described in Section 6.2.2. It is responsible for enforcing coatomicity

by restricting the subset of the environment that is visible to site calls within a

transaction.

7.5.1 Snapshot Judgment

The snapshot judgment is the core component of the observer semantics. It deter-

mines the subset of the environment E that is visible at the transaction path T

but not located in the subtree of T ; these are the ‘outside’ events controlled by

coatomicity. A snapshot is specific to a resource R. The judgment produces two

results: the event subset Σ, and a set of advance events G. The judgment is of the

following form:

snapshot(E, T,R)
G
↪→ Σ

The snapshot judgment is defined inductively by the rules shown in Fig-

ure 7.16:

• The (Snapshot ε) rule states that a snapshot at the root is empty and creates

no advance events.

• The (Snapshot ≥) rule applies to non-root snapshots. It first determines the

results of a snapshot for the parent path T . It then identifies the initial version

n of the transaction t, and computes the subset of the image at T that is in

resource R and has a logical version less than n. The result of the snapshot

is the same set of advance events as produced by the parent snapshot, and

the union of the event subset selected by the parent snapshot with the image

subset selected in this rule. The event subset is remapped to transaction path

Tt and logical version 0. In other words, the ancestor events in the snapshot

should be treated as if they were events in the child, which occurred as early

as possible in the child’s execution.

• The (Snapshot <) rule is different from the (Snapshot ≥) rule in only one

way: it applies only if the initial version n is less than the boundary number.

138

snapshot(E, ε,R)
∅
↪→ ∅ (Snapshot ε)

snapshot(E, T,R)
G
↪→ Σ

〈init t, T, n〉 ∈ E
image(E, T)[< n] = Σ′

boundary(E, T,R) ≥ n

snapshot(E, T t,R)
G
↪→ Σ ∪ Σ′

(Snapshot ≥)

snapshot(E, T,R)
G
↪→ Σ

〈init t, T, n〉 ∈ E
image(E, T)[< n] = Σ′

boundary(E, T,R) < n

snapshot(E, T t,R)
G+〈advance R,T,n〉

↪→ Σ ∪ Σ′
(Snapshot <)

Figure 7.16: Snapshot Judgment

The rule behaves identically, except that it adds an advance event to the set

G.

7.5.2 Boundary Judgment

The snapshot judgment uses another judgment, boundary(E, T,R), which calculates

the current boundary number n in the resource tree of R at the node corresponding

to transaction path T :

boundary(E, T,R) = n

The boundary judgment is defined in Figure 7.17. It simply calculates the

maximum logical version among all resource state events in the image of T (this

corresponds to increases in the boundary number due to the addition of new states

to the node), and all advance events located at T (this corresponds to increases in

the boundary number due to the state being observed).

139

I = {i | 〈qR, , i〉 ∈ image(E, T)}
J = {i | 〈advance R, T, i〉 ∈ E}
boundary(E, T,R) = max(I ∪ J)

(Boundary)

Figure 7.17: Boundary Operation

7.5.3 Observe Judgment

The observe judgment computes the observed state of a resource as seen from a

particular transaction; it determines the state q of resource R that is observed from

transaction path T in environment E. This observation may change some boundary

numbers; these changes are represented by a set of advance events, G. Lastly, the

observed state has a logical version n associated with it. The judgment is of the

following form:

observe(E, T,R)
G
↪→ q at n

The observe judgment is defined in Figure 7.18. It uses two disjoint slices

of the environment, Σ and Σ′. The subset Σ is the result of a snapshot at T on

resource R. The subset Σ′ is the image at T . The observed state q is the unique

state of the resource R calculated from the multiset union of the states in Σ and

Σ′. If the output of stateR does not contain exactly one element, then the judgment

is undefined. The logical version n is the maximum logical version in Σ′; logical

versions of events from Σ are ignored.

snapshot(E, T,R)
G
↪→ Σ

image(E, T) = Σ′

stateR(Σ[∗R]] Σ′[∗R]) = {{q}}
n = max({i | 〈qR, , i〉 ∈ Σ′})

observe(E, T,R)
G
↪→ q at n

(Observe)

Figure 7.18: Observe Judgment

140

7.6 Commit Semantics

The commit semantics is the set of rules that determines whether and when a

transaction may commit or abort. The commit and conflict judgments used in the

(EnvCommit) and (EnvAbort) rules of the external semantics are defined here.

7.6.1 Merge Operation

When a transaction commits to its parent, the state for a resource in the child may

have diverged from the state for that resource in the parent. The merge operation

takes these divergent states and determines whether they can be reconciled. It is

written as follows:

mergeR(qbranch , qparent , qchild) = pass | q | fail

The state qbranch is the state of R in the parent at the point when the child

transaction began to modify R. The state qparent is the current state in the parent,

and the state qchild is the current state in the child. The operation has three possible

results:

1. A result of pass indicates that the states may coexist in the subsequent history

of states for R, without modification.

2. A result of q indicates that the states may coexist in the subsequent history

of states for R, but only if the state q is added.

3. A result of fail indicates that the states are incompatible; there is no valid

history for R that can contain both states.

As with stateR, the definition of mergeR is specific to each resource R. The

definitions are given separately for each resource in Section 7.7.

All definitions of mergeR have the following property:

mergeR(q, q, q′) = mergeR(q, q′, q) = pass

That is, if the state has changed only in the parent or in the child since the

branch, the merge always succeeds with no changes needed to the environment.

141

7.6.2 Graft Judgment

The graft judgment is the core judgment of the commit semantics:

graft(E, T t,R) = pass | q | fail

This judgment states that in environment E, if the events at resource R

in the image of transaction path Tt had occurred at transaction path T instead,

then they would form a consistent execution if the result is pass, or they can be

reconciled to a consistent execution with the addition of q if the result is q, or they

would fail to form a consistent execution if the result is fail.

The graft judgment is defined by a single rule, shown in Figure 7.19. This

rule computes three slices of the environment: the branching point (Σbranch), the

parent (Σparent), and the child (Σchild). It the computes the corresponding state for

each of these slices, and passes those states to the mergeR operation, which produces

the result.

snapshot(E, T t,R)
G
↪→ Σbranch

Σparent = Σbranch ∪ image(E, T)
Σchild = Σbranch ∪ image(E, T t)
stateR(Σbranch [∗R]) = {{qbranch}}
stateR(Σparent [∗R]) = {{qparent}}
stateR(Σchild [∗R]) = {{qchild}}

graft(E, T t,R) = mergeR(qbranch , qparent , qchild)
(Graft)

Figure 7.19: Graft Judgment

7.6.3 Participants

The set of participants in a commit operation is the set of resources that could have a

state in the child transaction that diverges from the state in the parent transaction:

participants(E, T t) = {R | image(E, T t)[∗R] 6= ∅}

The set of participants includes each resource R that has a modified state in

the image of Tt. If R is not in the set of participants, we know that no divergence

is possible5 since the state has either changed only in T , or not at all.

5For all non-participants, qbranch = qchild . It follows that mergeR(qbranch , qparent , qchild) = pass.

142

I = {boundary(E, T,R) | R ∈ participants(E, T t)}
〈init t, T, n〉 ∈ E

boundary?(E, T t) = max(I ∪ {n})
(Boundary?)

Figure 7.20: Boundary? Judgment

7.6.4 Boundary? Judgment

The boundary? judgment determines the commit version of a transaction, as de-

scribed in Section 6.3. It is written as follows:

boundary?(E, T t) = n

The boundary? judgment states that in environment E, if Tt commits, it

must be assigned the logical version n as its commit number. The judgment is

defined by the rule shown in Figure 7.20. It calculates n as the maximum boundary

number of all participants; that is, all resources in T that will be modified by events

in Tt, if Tt commits. Atomicity requires that every event from Tt have an identical

logical version in T . Coatomicity requires that an event modifying a resource be

given a logical version no less than that resource’s boundary number. Furthermore,

the smallest possible logical version should be selected. Given these constraints, n

is the only choice.

7.6.5 Commit Judgment

With these supporting judgments, we can now define the commit judgment, which

is used in the (EnvCommit) rule of the external semantics.

commit(E, T t) = F at n

The commit judgment states that in environment E, if all of the events in

the image of Tt had instead occurred at transaction path T with logical version

n, and the events F were also added, then the resulting execution would still be

consistent. The commit judgment is defined by the rule shown in Figure 7.21. For

each resource in the set of participants, grafting that resource must not result in a

fail. F is the set of events corresponding to the state changes needed by each graft,

each with transaction path T and logical version n.

143

participants(E, T t) = R
boundary?(E, T t) = n

∀R : R ∈ R : graft(E, T t,R) 6= fail
F = {〈qR, T, n〉 | R ∈ R ∧ graft(E, T t,R) = q}

commit(E, T t) = F at n
(Commit)

Figure 7.21: Commit Judgment

R ∈ participants(E, T t)
graft(E, T t,R) = fail

conflict(E, T t)
(Conflict)

Figure 7.22: Conflict Judgment

7.6.6 Conflict Judgment

The conflict judgment detects when it is impossible for a transaction to commit. It

is used in the (EnvAbort) rule of the external semantics, to enable a transaction

abort.

conflict(E, T t)

The conflict judgment states that the commit judgment does not hold for

transaction Tt in environment E. The rule (Conflict), shown in Figure 7.22,

defines the conflict judgment. It simply requires that fail occur in the graft judgment

of some resource in the set of participants.

Conflict is a stable property: if conflict(E, T t) holds, then for all E′ such

that E ⊆ E′, conflict(E′, T t) also holds.

7.6.7 The Abort site

The Abort site, introduced in Section 5.1.2, requires two special rules in order to

function correctly. These rules are given in Figure 7.23. If Abort is called from

a non-root transaction, it causes its host transaction to abort; this is handled by

(AbortSite), an external semantics rule. If Abort is called from the root, it simply

halts; this is handled by (AbortSiteRoot), a site processing rule.

144

〈 . Abort(), T t, 〉 ∈ E
f

abort Tt−→ f ′

E, f −→ E, f ′
(AbortSite)

E ` Abort() at n in ε
∅
↪→ stop at n (AbortSiteRoot)

Figure 7.23: Rules for the Abort Site

145

7.7 Resource Semantics

This section defines, for each resource type, the behavior of its resource-specific

and site-specific operations (stateR, mergeR, and ↪→), as well as the grammar of its

resource states.

7.7.1 Guard

States

q ∈ Resource State ::= ... Guard(b)

b ∈ Boolean

State Operation

Let β =
∨
{b | Guard(b) ∈ Q}.

If β is false, then stateR(Q) = {{Guard(false)}}.

If β is true, then stateR(Q) = {{Guard(true) ∈ Q}}.

Merge Operation

If

qs = Guard(bs)

qp = Guard(bp)

qc = Guard(bc)

Then

mergeR(qs, qp, qc) = pass if bp ∧ bc =⇒ bs

mergeR(qs, qp, qc) = fail otherwise

146

Site Processing Rules

R fresh in E
e = 〈Guard(false)R, T, n〉

E ` Guard() at n in T
e
↪→ GuardR at n

(GuardSite)

observe(E, T,R)
G
↪→ Guard(false) at m′

n = max(m,boundary(E, T,R))
e = 〈Guard(true)R, T, n〉

E ` GuardR() at m in T
G+e
↪→ signal at n

(GuardSiteV)

observe(E, T,R)
G
↪→ Guard(true) at m′

n = max(m,m′)

E ` GuardR() at m in T
G
↪→ stop at n

(GuardSiteN)

Figure 7.24: Site Processing Rules for Guard

147

7.7.2 Ref

States

q ∈ Resource State ::= ... Ref(v , ρ)

v ∈ � v

ρ ∈ N

State Operation

stateR(Q) = {{ Ref(v , ρ) ∈ Q

| Ref(, ρ′) ∈ Q =⇒ ρ′ ≤ ρ }}

Merge Operation

If

qs = Ref(, ρs)

qp = Ref(, ρp)

qc = Ref(, ρc)

then

mergeR(qs, qp, qc) = pass if ρp = ρs

mergeR(qs, qp, qc) = pass if ρc = ρs

mergeR(qs, qp, qc) = fail otherwise

148

Site Processing Rules

R fresh in E
e = 〈Ref(�, 0)R, T, n〉

v = {. read = ReadR, write = WriteR .}

E ` Ref() at n in T
{e}
↪→ v at n

(RefNSite)

R fresh in E
e = 〈Ref(u, 0)R, T, n〉

v = {. read = ReadR, write = WriteR .}

E ` Ref(u) at n in T
{e}
↪→ v at n

(RefVSite)

observe(E, T,R)
G
↪→ Ref(v,) at m′

n = max(m,m′)

E ` ReadR() at m in T
G
↪→ v at n

(ReadSite)

observe(E, T,R)
G
↪→ Ref(, ρ) at m′

n = max(m,boundary(E, T,R))
e = 〈Ref(v, ρ+ 1)R, T, n〉

E `WriteR(v) at m in T
G+e
↪→ signal at n

(WriteSite)

Figure 7.25: Site Processing Rules for Ref

149

7.7.3 Cell

The Cell site uses the same resource states and the same state and merge operations

as the Ref site. Only the site processing rules differ.

Site Processing Rules

R fresh in E
e = 〈Ref(�, 0)R, T, n〉

v = {. read = ReadR, write = CellsetR .}

E ` Cell() at n in T
{e}
↪→ v at n

(CellSite)

observe(E, T,R)
G
↪→ Ref(�, 0) at m′

n = max(m,boundaryR(E, T))
e = 〈Ref(v, 1)R, T, n〉

E ` CellsetR(v) at m in T
G+e
↪→ signal at n

(CellsetNSite)

observe(E, T,R)
G
↪→ Ref(v,) at m′

n = max(m,m′)

E ` CellsetR() at m in T
G
↪→ stop at n

(CellsetVSite)

Figure 7.26: Site Processing Rules for Cell

150

7.7.4 Channel

State Grammar

q ∈ Resource State ::= ... Channel(v̄, ρ, ρ)

ρ ∈ N

State Operation

stateR(Q) = {{ Channel(v̄, g, p) ∈ Q

| Channel(, g′, p′) ∈ Q =⇒ g′ + p′ ≤ g + p}}

Merge Operation

If

qs = Channel(, gs, ps)

qa = Channel(u0 . . . ui, ga, pa)

qb = Channel(v0 . . . vj , gb, pb)

151

then

mergeR(qs, qa, qb) = pass if ga = gs ∧ pa = ps

= pass if gb = gs ∧ pb = ps

= Channel(uk . . . ui, gb, pa) if ga = gs ∧ pb = ps

where k = gb − gs

= Channel(vk . . . vj , ga, pb) if gb = gs ∧ pa = ps

where k = ga − gs

= fail otherwise

152

Site Processing Rules

R fresh in E
e = 〈Channel(ε, 0, 0)R, T, n〉

v = {. get = GetR, put = PutR .}

E ` Channel() at n in T
{e}
↪→ v at n

(ChannelSite)

observe(E, T,R)
G
↪→ Channel(uv̄, g, p) at m′

n = max(m,boundary(E, T,R))
e = 〈Channel(v̄, g + 1, p)R, T, n〉

E ` GetR() at m in T
G+e
↪→ u at n

(GetSite)

observe(E, T,R)
G
↪→ Channel(v̄, g, p) at m′

n = max(m,boundary(E, T,R))
e = 〈Channel(v̄u, g, p+ 1)R, T, n〉

E ` PutR(u) at m in T
G+e
↪→ signal at n

(PutSite)

Figure 7.27: Site Processing Rules for Channel

153

7.7.5 Semaphore

States

q ∈ Resource State ::= ... Semaphore(ρ, ρ)

ρ ∈ N

State Operation

stateR(Q) = {{ Semaphore(a, r) ∈ Q

| Semaphore(a′, r′) ∈ Q =⇒ a′ + r′ ≤ a+ r}}

Merge Operation

If

qs = Semaphore(as, rs)

qp = Semaphore(ap, rp)

qc = Semaphore(ac, rc)

then

mergeR(qs, qp, qc) = pass if ap = as ∧ rp = rs

mergeR(qs, qp, qc) = pass if ac = as ∧ rc = rs

mergeR(qs, qp, qc) = Semaphore(am, rm) if am ≤ rm
where am = ap + ac − as
and rm = rp + rc − rs

mergeR(qs, qp, qc) = fail otherwise

154

Site Processing Rules

R fresh in E
e = 〈Semaphore(0, i)R, T, n〉

v = {. acquire = AcquireR, release = ReleaseR .}

E ` Semaphore(i) at n in T
{e}
↪→ v at n

(SemaphoreSite)

observe(E, T,R)
G
↪→ Semaphore(a, r) at m′

a < r
n = max(m,boundary(E, T,R))
e = 〈Semaphore(a+ 1, r)R, T, n〉

E ` AcquireR() at m in T
G+e
↪→ signal at n

(AcquireSite)

observe(E, T,R)
G
↪→ Semaphore(a, r) at m′

n = max(m,boundary(E, T,R))
e = 〈Semaphore(a, r + 1)R, T, n〉

E ` ReleaseR() at m in T
G+e
↪→ signal at n

(ReleaseSite)

Figure 7.28: Site Processing Rules for Semaphore

155

Chapter 8

Formal Properties of Ora

The dual properties of atomicity and coatomicity were introduced informally in

Chapter 4, and the property of consistency was introduced informally in Chapter 5.

In this chapter, we formalize each of those properties, and prove that Ora, as defined

by the formal semantics in Chapter 7, has those properties.

8.1 Atomicity and Coatomicity

The Ora language is designed to maintain the properties of atomicity and coatomic-

ity for each use of the atomic combinator. These properties were described infor-

mally in Chapter 4; in this section we will define them formally. To do so, we will

need to define four supporting relations: internal causality, external causality, vir-

tual causality, and relevance. With these relations defined, we can then say that Ora

guarantees atomicity and coatomicity if a particular relationship holds for relevance,

virtual causality, and external causality.

8.1.1 Notation

Before defining these relations, we will need to define some supporting notation.

Histories

Some of the relations are defined in the context of a particular execution. We will

use the variable name H (for ’history’) as a shorthand for a whole execution of the

156

form ∅, f −→∗ E, g. And given an execution H, we will write E(H) to refer to the

final environment E in that execution.

Event Components

Recall from Section 7.3.1 that events in Ora are triples of the form 〈c, T, n〉, where

c is the content of the event, T is its transaction path, and n is its logical version.

We define the following operations to extract each of these individual components

of an event:

C(〈c, , 〉) = c

P(〈 , T, 〉) = T

V(〈 , , n〉) = n

We also define another operation to extract the handle k associated with a

site call or site return event. It is undefined for other event types.

K(〈k . , , 〉) = k

K(〈k / , , 〉) = k

8.1.2 Internal Causality

Internal causality is a strict partial order on site call handles that represents the

flow of control through the execution of an Ora program. It is written as follows,

where k and k′ are call handles and H is the execution in which they occur:

H ` k < k′

Since the internal semantics of Ora do not create events in the environment

corresponding to the individual evaluation steps of the program, we must represent

the causality of Ora indirectly, hence the choice of an ordering on site call handles.

If k < k′, this means that the return of the site call labeled by k triggered a chain

of evaluation steps within the program that resulted in the initiation of the site call

labeled by k′.

157

8.1.3 External Causality

External causality is the relation between events that represents the flow of infor-

mation among steps of the external semantics and state changes in the environment.

It is written as follows, where x and y are events and H is the execution in which

they occur:

H ` x ≺ y

External causality is a formalization of the solid edges in the event graphs of

Chapter 4.

Definition

External causality is defined by the following rules:

• Whenever a site call event y is added to the environment, then for every site

return event x such that K(x) < K(y), let x ≺ y.

• Whenever a site call adds side effects F to the environment, identify the site

call event x that began the call, and for each y in F , let x ≺ y.

• Whenever a site call adds side effects F to the environment, if the observe

judgment was used in the site processing step, identify the state q that was

observed, identify the event x = 〈qR, , 〉 from which it was taken, and for

each y in F , let x ≺ y.

• Whenever a site return event y is added to the environment, find the unique

call event x such that K(x) = K(y), and let x ≺ y.

• Whenever a site return event y is added to the environment, if the observe

judgment was used in the site processing step, identify the state q that was

observed, identify the event x = 〈qR, , 〉 from which it was taken, and let

x ≺ y.

• Whenever a site return event y is added to the environment, for each event

x in the set of side effects F also added to the environment by the same

(EnvProcess) step, let x ≺ y.

158

• Whenever a transaction is committed, for each y in the set of merge events

F added to the environment, identify the states q and q′ that were merged to

produce the event y, find the events x and x′ corresponding to those states,

and let x ≺ y and x′ ≺ y.

Note that init, commit, and advance events are never included in the ≺
relation. These are considered to be ‘invisible’ events, since they would not occur

in a nontransactional execution; they are simply present to aid in the enforcement

of atomicity and coatomicity, and do not affect the actual meaning of the program.

Transitive Closure

External causality is not an ordering relation, since it is only irreflexive and asym-

metric; it is not transitive. Its transitive closure, however, is a strict partial order.

The transitive closure of ≺ is written as follows:

H ` x ≺∗ y

Logical Versions

Observe that whenever a new event is added to the environment, its logical version

is computed by the semantics to be at least as large as the logical version of each of

its causes. We can capture this observation in a simple property:

Conjecture 1 (Logical Version Conjecture).

H ` x ≺ y =⇒ V(x) ≤ V(y)

Note that H ` x ≺∗ y =⇒ V(x) ≤ V(y) follows immediately as a corollary.

8.1.4 Virtual Causality

Virtual causality is the relation between events that represents the requirements

imposed by atomicity and coatomicity. It is written as follows, where x is the

virtual cause, y is the virtual effect, and H is the execution in which x and y occur:

H ` x ≺ y

159

Virtual causality is a formalization of the dotted edges in the event graphs

of Chapter 4. The relation is defined inductively by the rules in Figure 8.1:

• (Root) ensures that the ≺ relation is a superset of the ≺∗ relation.

• (Atomic) allows an event to share its virtual effects with any other event in

the same committed subtree of the transaction tree, hence the use of the image

judgment. The logical version of x may have been remapped in the image,

hence we allow an arbitrary version n. The virtual effect must be outside of

the subtree.

• (Coatomic) allows an event to share its virtual causes with any other event

in the same subtree of the transaction tree. The virtual cause must be outside

of the subtree.

• (Trans) makes the ≺ relation transitive.

H ` x ≺∗ y
H ` x ≺ y

(Root)

H ` z ≺ y P(z) 6≤ P(y) x[← n] ∈ image(E(H),P(z))

H ` x ≺ y
(Atomic)

H ` y ≺ z P(z) 6≤ P(y) P(z) ≤ P(x)

H ` y ≺ x
(Coatomic)

H ` x ≺ z H ` z ≺ y

H ` x ≺ y
(Trans)

Figure 8.1: Virtual Causality

While (Atomic) and (Coatomic) do not appear to be duals, their under-

lying requirements are more symmetric than they seem. Since x is required to be

160

in the image at P(z), it follows that P(z) ≤ P(x), which is the same premise as

for (Coatomic). While x can be present in the image only if there is a sequence

of commit events from P(x) to P(z), we can think of that sequence as the dual of

the sequence of init events leading from P(z) to P(x) in the (Coatomic) case.

161

8.1.5 Relevance

We need one more relation on events, the relevance relation, written as follows:

x ≺≺ y

The relevance relation expresses the possibility that an event with the same

content as x could cause an event with the same content as y in some execution,

even if x ≺ y does not hold in the execution where x and y occurred. For example, a

write event on a reference is always relevant to a read event on that same reference,

even if the write was not seen by the read, and regardless of the transaction path

or logical version of each event.

Formally, we define the relevance relation in the following way:

If there exists some program f , some execution ∅, f −→∗ E, g of that

program, and some events x′, y′ such that

x′ ∈ E

y′ ∈ E

x′ ≺ y′

then for all events x, y such that

C(x) = C(x′)

C(y) = C(y′)

we say that x ≺≺ y.

Note that ≺≺ is defined in terms of ≺, not ≺∗, since transitivity may relate

all kinds of events, but those relationships are not necessarily relevant; we want only

the root causalities, not the derived ones. Also note that ≺≺, unlike ≺ and ≺ , is

not defined in the context of a particular execution, since its definition quantifies

over all possible executions.

162

8.1.6 The Bubble Conjecture

Now that we have defined external causality, virtual causality, and relevance, we can

formally define atomicity and coatomicity.

We say that Ora guarantees atomicity and coatomicity if the following prop-

erty holds for all Ora programs f :

Conjecture 2 (Bubble Conjecture). Suppose H = ∅, f −→∗ E, g. Then for all

events x and y in E,

x ≺≺ y =⇒ (H ` x ≺ y ⇐⇒ H ` x ≺∗ y)

This means that at every step of every possible execution of f , if we erase

all irrelevant causalities, then virtual causality and external causality are identical.

This is exactly the property described in Chapter 4.

8.2 Consistency

In this section, we will formally define the property of consistency, which was de-

scribed only informally in the preceding chapters.

The need for an additional formal property arises from the insufficiency of

atomicity and coatomicity to restrict certain erroneous behaviors in Ora programs.

While atomicity and coatomicity do represent the indivisibility and shared causality

of event sets, the introduction of the atomic combinator to allow such evaluations

also augments the underlying Orc language with additional expressive power: the

state of a resource is allowed to diverge in different transactions. If a transaction

commits after such a divergence, it is possible for a subsequent site call to observe

the divergence, and thus be unable to determine a unique state for the resource.

We have already seen an example of this problem in Section 4.2.2. Consider

the example program from that section:

val r = Ref(0)

r? << atomic (atomic (r := r? + 1) & atomic (r := r? + 1))

A possible event graph of its execution is shown in Figure 8.2. This graph

conforms to both atomicity and coatomicity. However, the state observed by the

outermost r? operation is divergent; both writes are seen, but rather than observing

163

the value 2, two instances of the value 1 are seen. This means that the result of

stateR for that resource contains two elements, not one, and so the state of the

resource is not well defined. Choosing one of the states arbitrarily is not permitted,

and even if it were, both choices are incorrect.

readcreate write

read add write

read add write

Figure 8.2: Divergent writes (inconsistent)

164

To formally express consistency, we would like to impose the requirement that

stateR produces a unique result. However, this is not an unconditional requirement;

the multiset of states given as an argument must be an observable set of states

according to atomicity and coatomicity. If a transaction has not yet committed,

and thus its events are not observable by outside events (due to atomicity), then its

states may diverge. In many cases (such as when using channels), this divergence of

states is not an error; it can be resolved during the commit by the mergeR operation,

which introduces a new state that reconciles the divergent states of parent and child.

This is the essential function of mergeR; it ensures that stateR can report a single

state that is correctly representative of the whole history of states.

Furthermore, the consistency property should be conditional on the avail-

ability of the resource R; we must dismiss cases where the result of stateR would be

∅ simply because the resource does not exist yet.

Fortunately, the observe judgment (defined in Section 7.5.3) is already struc-

tured in such a way that it enforces most of the needed requirements; the judgment

assembles the multiset of states for an observer, and it is only defined if that multiset

has exactly one element. With a simple condition to account for the availability of

the resource, we can express consistency formally in terms of the observe judgment.

Let MR denote any site that operates on the resource R. Ora is said to be

consistent if the following conjecture holds for all Ora programs f :

Conjecture 3 (Consistency Conjecture). Suppose that ∅, f −→∗ E, g. Then it

follows that

〈k . MR(), T, 〉 ∈ E =⇒ observe(E, T,R)
G
↪→ q at n

for some G, q, n.

A call to a site MR can only occur if a value containing MR has previously

been created and published. Since this only occurs in resource creation rules (which

also initialize the resources they create) we know that the presence of MR indicates

that the resource R has some valid initial state.

165

Chapter 9

Discussion

In this final chapter, we will consider a few of Ora’s design decisions and limitations

in greater depth. For example, we will discuss why Ora has the particular set

of transactional resources that it does. The semantics of Ora does not currently

incorporate time, and Rwait is not included in the theory; we will explore how time

might be added. In Ora, operations may block within a transaction; we will talk

about why this feature was included, and consider the problems that it sometimes

causes.

9.1 Choosing Resources

The Ora language supports five sites that create transactional resources: Guard,

Ref, Cell, Semaphore, and Channel. A question naturally arises: why were these

specific resources chosen?

The creation of mutable references with Ref is a natural starting point, since

this allows Ora to match the expressive power of existing transactional memory sys-

tems. The inclusion of Guard was necessary to define atomic choice. The addition

of Cell (and uses of Ref with no initial value) demonstrates that Ora allows trans-

actions to have blocking operations; the implications of this inclusion are discussed

further in Section 9.3. Including Semaphore and Channel continues this trend, and

also demonstrates another key capability of Ora: the use of resources with multiple

mutative operations. For example, a channel has put and get operations, which

both change the state of the channel, but do not necessarily conflict with each

166

other; a child transaction could perform get operations while its parent performs

put operations, but a successful commit is still possible, using a merge operation.

These particular resources were also chosen because they are the most fre-

quently used stateful primitives in the Orc standard library [Orc13c]. As such, they

provide Ora with useful benchmarks for its ability to support the various coding

idioms of Orc. Furthermore, having a diverse set of resources ensures that the site

semantics of Ora are not overly specialized.

Of course, there are many other use cases that might not be covered directly

by these resources. Fortunately, it is possible to build more complex primitives

from a combination of these existing resources. Since the atomic combinator may

be nested without restriction, complex operations on collections of shared state ob-

jects can be made atomic within a def or other abstraction. The only disadvantage

of this approach is the increase in conflicts, since the Ora semantics can only merge

individual resources to resolve conflicts; it cannot express the more complex prop-

erties of coordinated sets of resources.

What other resources might be included as primitives in future extensions of

Ora? One critically important capability that is currently absent from Ora is a prim-

itive Set site, to express a mutable set with addition, removal, membership, and so

on. It is possible to express a set using a Ref containing some standard set represen-

tation, but this causes spurious conflicts, when for example a child transaction adds

a new element, and a parent removes a different element. With a primitive Set,

these operations would not conflict, but using just a Ref, they would be divergent

writes to the underlying list. Even with a more sophisticated linked structure using

many Ref instances, there is still a potential for false conflict. Expanding the formal

semantics to support a Set site would allow Ora to compare more favorably with a

system like Galois, which is designed to heavily exploit ”don’t care” nondetermin-

ism [PNK+11]. Currently, Ora only weakly exploits this form of nondeterminism

with channel and semaphore operations.

9.2 Incorporating Time

The Ora semantics does not incorporate time. In particular, the site Rwait is not

considered part of the theory; as explained in Section 6.1.1, it does not interoperate

with transactions at all, and so the properties of atomicity and coatomicity might

167

not hold in programs that make use of Rwait to order events temporally, rather

than causally.

Real time is excluded from the theory partly because the timed semantics

of Orc is not nearly as well-established as its untimed semantics. The operational

semantics of Ora are based on the untimed operational semantics of Orc, since the

untimed theory is more developed. In the untimed semantics, individual transitions

of the program and of sites have no time information associated with them, so Rwait

is practically incapable of providing any guarantees about the ordering of events; a

program transition could be delayed by an arbitrary amount of real time.

If the semantics of Ora did take account of event timing, then Rwait could

be used to temporally order events. This would cause significant problems with the

maintenance of atomicity and coatomicity, since every event would now have, as

implicit causes, any events that occurred at preceding times. In order for atomicity

and coatomicity to hold, the algorithm must take account of the causalities induced

by temporal ordering.

The issues that arise in this situation actually closely parallel the issues that

prompted the logical versioning algorithm. Logical versions are passed back and

forth between the Ora program and the environment, so that sites can correctly

account for the causalities induced by the program. In order to account for the

causalities induced by time, an extension of that versioning system may suffice.

Each logical version becomes a tuple of a natural number, which is used as before,

and a timestamp. Whenever a call to Rwait responds, it responds with a logical

version that has its timestamp set to the current time.1 Whenever a transaction

begins, its initial version gets the current time as its timestamp. Logical versions

would then be partially ordered, but this would not cause any problems. The filter

operation [< n] used in the snapshot judgment would become [< (n, t)], filtering out

any events with logical version n or greater, or with timestamp t or greater. The

commit version would be calculated as the least upper bound of each participant

version, together with the initial version, which is simply the max of each n and

each t.

This technique has an obvious analogue in the distributed systems literature:

1This includes calls of the form Rwait(0), which would provide an interesting function for
that otherwise unused case: such a call would ensure that the caller’s timestamp is advanced to the
current time.

168

vector clocks [Fid88]. In this case, rather than expressing ordering of operations

on individual machines, we are expressing ordering of operations with respect to

different subsets of the causality relation: some are induced by orchestration of

the program and the environment, while others are induced by observations of the

realtime clock.

Using this same technique, we could expand such a vector clock to add a

third element: virtual time. Virtual time has been explored as a way of orchestrating

simulations in Orc [KPM08], and it could be managed in a way similar to real time

as described above. However, the current algorithm for virtual time uses a program

property called “quiescence” to determine when to advance the virtual clock, and it

is not clear how quiescence would interact with the atomic combinator.

9.3 Blocking

Many operations on transactional resources in Ora are allowed to block. Specifically,

a semaphore acquire, a channel get, or a reference/cell read might block for

some indefinite period before returning a value. The call could be waiting for the

semaphore to become available, for the channel to contain an available item, or for

the reference to be written.

In each case, the call can only unblock if some other operation occurs on the

shared resource. Furthermore, in order for the call to unblock, the operation that

occurs must be visible to the blocked call, according to the rules of atomicity and

coatomicity. In particular, it is possible for the observed state of a resource to be

unavailable, empty, or unwritten, so that a call within a transaction could block

indefinitely while all operations outside the transaction which would unblock the

resource are hidden from the transaction due to coatomicity. This is represented

concretely in the observed state algorithm in Section 6.2; if a call blocks, and no

ancestor node contains that call in its waiting set (because it was purged or simply

never added), then no external operation can unblock that call.

This possibility of indefinite blocking may be the reason why blocking opera-

tions have not usually been incorporated into most transactional systems. However,

those systems are typically operating under a strong limitation: no concurrent activ-

ity is allowed within a transaction. So, allowing a call to block within a transaction

would clearly be a poor choice, since the entire transaction would block forever.

169

Ora, on the other hand, does allows concurrency within transactions; the

body expression of an atomic is an arbitrary Orc expression, and as such it could

contain any number of parallel activities. Ora’s versioning algorithms are explic-

itly designed to accommodate this possibility. The ability to evaluate concurrently

within a transaction is especially important in this case, since allowing a blocking

call within a transaction becomes sensible if concurrent activity from within that

same transaction could unblock the call.

Nevertheless, programmers must use caution when performing resource op-

erations that may block, if the expected unblocking operation might not come from

within the same transaction. If the intended unblocking operation is in a descen-

dant transaction, it is possible that transaction might abort, and never successfully

commit the necessary resource change. If the unblocking operation is in an ancestor

transaction, the versioning algorithm may prevent it from being seen; even if the

operation could theoretically be seen and still preserve coatomicity, the algorithm

might fail to do so, since it is by necessity a conservative approximation. If the

unblocking operation is in an unrelated transaction, the problem is compounded: if

any operation in that transaction is not visible, due to coatomicity, then all of its

operations must be hidden, due to atomicity.

There are various ways that a programmer might address this problem. Sim-

ply being aware of its existence, and writing programs accordingly, may suffice in

many cases. If this is not feasible, then an expression prone to blocking on external

operations could be augmented with a timeout, using the atomic timeout technique

shown in Section 5.3.4.

A small extension to Ora itself may also help: semaphores, channels, and

cells could be augmented with alternate operations that halt, rather than blocking,

if the operation cannot complete. The Orc standard library sites already allow

such operations, such as the channel operation getD, which acts like get, except

that it halts if the channel is empty. Adding these operations would only be a

minor extension of Ora’s site semantics, with no changes needed in the underlying

algorithm.

A more intricate extension is also possible: alternate operations that halt

rather than blocking, but only if the operation is not in the waiting set for any an-

cestor. Call these methods getX, acquireX, and readX, for the channel, semaphore,

and cell cases respectively. The use of these methods expresses the expectation that

170

the operation should be unblocked by an outside operation, and once that becomes

impossible, this should be indicated by halting. This neatly solves many of the

problems that arise with blocking on ancestor operations. For example, here is a

repaired version of the Dining Philosophers program from Section 5.3.3:

def philosopher(l,r) =

think() >>

atomic ((l.acquireX() & r.acquireX()); Abort()) >>

eat() >>

atomic (l.release() & r.release()) >>

philosopher(l,r)

Now, whenever an acquire becomes blocked indefinitely by becoming stuck

in a snapshot that cannot see new release operations, the acquireX method will

halt, causing the Abort site to be called, aborting the transaction. Due to the

use of unary atomic, the transaction will immediately be retried. However, the

initial version of the retry will now be greater than all logical versions at the parent

resource node, so the transaction will not abort again in the same fashion.

9.4 Nonserializable Executions

Extending Orc with the atomic combinator increases the expressive power of the

language, and not just in its capability to support transactions. Its inclusion has

another surprising consequence. Consider the following program:

val r = Ref(0)

val s = Ref(0)

val a = atomic (s := 1 >> r?)

val b = atomic (r := 1 >> s?)

(a,b)

In the classic model of concurrent program reasoning, we would consider

the possible sequences of events in the execution of this program, such that the

executions of the atomic expressions occurred in some serial order. For example,

the first atomic expression could execute followed by the second, resulting in (0,1),

or the second could execute and then the first, resulting in (1,0).

171

create
R

write
R

create
S

write
S

tuple

read
R

read
S

write
S

write
R

Figure 9.1: No equivalent serial order

However, in Ora, those are not the only possible behaviors; there is a third

possibility, resulting in (0,0). The event graph corresponding to that possibility is

shown in Figure 9.1.

To those accustomed to sequential programming, this may seem like a sur-

prising and counterintuitive result; the execution that publishes (0,0) has no equiv-

alent serial ordering!2 More precisely, it violates sequential consistency, as defined

by Lamport [Lam79]. However, the absence of serial ordering is actually a better

fit for many modern processor architectures, since it admits weaker memory models

and thus enables many optimizations. A programming technique called relativistic

programming has arisen to specifically take advantage of these situations [HW12],

and each of the arguments made in favor of relativistic programming apply equally

to Ora.

In a previous attempt to formalize Ora, the consistency property stated that

for any execution that used transactions, there existed an “erased” execution with

equivalent behavior but no use of transactions. In other words, the atomic com-

binator only constrained program behavior; it did not enable behaviors that were

previously inexpressible. In fact, such a consistency property cannot possibly be

true given the current semantics of Orc and Ora, because the atomic combinator

2Technically this is only true under the assumption that a read in a trace sees the most recent
write in the trace, but weakening that condition is arguably just as surprising.

172

actually does expand the expressive power of Orc, by providing the capability for

nonserializable execution behaviors, as we have just seen. This is because the op-

erational semantics of Orc enforces sequential consistency, but this enforcement is

circumvented by partitioning effects on shared state into separate parallel transac-

tions as Ora does.

In the future, with a more sophisticated operational semantics (or perhaps a

denotational semantics based on partial orders), Orc itself could have the capability

to produce nonserializable executions, and then the atomic combinator would not

introduce new behaviors, reopening the possibility of formalizing consistency of an

execution in terms of an equivalence to another execution with all transactions

erased.

173

Bibliography

[ABZ07] Lucia Acciai, Michele Boreale, and Silvano Dal Zilio. A concurrent

calculus with atomic transactions. In Proceedings of the 16th European

conference on Programming, ESOP’07, pages 48–63, Berlin, Heidel-

berg, 2007. Springer-Verlag.

[AFS08] Kunal Agrawal, Jeremy T. Fineman, and Jim Sukha. Nested paral-

lelism in transactional memory. In Proceedings of the 13th ACM SIG-

PLAN Symposium on Principles and practice of parallel programming,

PPoPP ’08, pages 163–174, New York, NY, USA, 2008. ACM.

[Arm07] Joe Armstrong. Programming Erlang: Software for a Concurrent

World. Pragmatic Bookshelf, 2007.

[BCF04] Nick Benton, Luca Cardelli, and Cédric Fournet. Modern concurrency

abstractions for C#. ACM Trans. Program. Lang. Syst., 26(5):769–

804, September 2004.

[BG83] Philip A. Bernstein and Nathan Goodman. Multiversion concurrency

control–theory and algorithms. ACM Trans. Database Syst., 8(4):465–

483, December 1983.

[BN09] P.A. Bernstein and E. Newcomer. Principles of Transaction Process-

ing, chapter 8. The Morgan Kaufmann Series in Data Management

Systems. Elsevier Science, 2009.

[CL85] K. Mani Chandy and Leslie Lamport. Distributed snapshots: deter-

mining global states of distributed systems. ACM Trans. Comput.

Syst., 3(1):63–75, February 1985.

174

[Com13] Cω. http://research.microsoft.com/comega/, July 2013.

[CRS06] João Cachopo and António Rito-Silva. Versioned boxes as the basis

for memory transactions. Sci. Comput. Program., 63(2):172–185, De-

cember 2006.

[Dij65] Edsger W. Dijkstra. Cooperating sequential processes (ewd-123), 1965.

[Dij68] Edsger W. Dijkstra. Letters to the editor: go to statement considered

harmful. Commun. ACM, 11(3):147–148, March 1968.

[Dij83] Edsger W. Dijkstra. The distributed snapshot of chandy/lam-

port/misra (ewd-864), 1983.

[EDKG08] Laura Effinger-Dean, Matthew Kehrt, and Dan Grossman. Trans-

actional events for ML. In ICFP ’08: Proceeding of the 13th ACM

SIGPLAN international conference on Functional programming, pages

103–114, New York, NY, USA, 2008. ACM.

[FG02] Cédric Fournet and Georges Gonthier. The join calculus: A language

for distributed mobile programming. In Applied Semantics, Interna-

tional Summer School, APPSEM 2000, Caminha, Portugal, September

9-15, 2000, Advanced Lectures, pages 268–332, London, UK, UK, 2002.

Springer-Verlag.

[Fid88] Colin J. Fidge. Timestamps in message-passing systems that preserve

the partial ordering. Proc. of the 11th Australian Computer Science

Conference (ACSC’88), pages pp 56–66, February 1988.

[FM06] Azadeh Farzan and P. Madhusudan. Causal atomicity. In Proceedings

of the 18th international conference on Computer Aided Verification,

CAV’06, pages 315–328, Berlin, Heidelberg, 2006. Springer-Verlag.

[GR92] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1992.

[Gro07] Dan Grossman. The transactional memory / garbage collection anal-

ogy. In Proceedings of the 22nd annual ACM SIGPLAN conference on

175

Object-oriented programming systems and applications, OOPSLA ’07,

pages 695–706, New York, NY, USA, 2007. ACM.

[Hew10] Carl Hewitt. Actor model for discretionary, adaptive concurrency.

CoRR, abs/1008.1459, 2010.

[HF03] Tim Harris and Keir Fraser. Language support for lightweight trans-

actions. SIGPLAN Not., 38(11):388–402, October 2003.

[HM93] Maurice Herlihy and J. E. B. Moss. Transactional memory: architec-

tural support for lock-free data structures. SIGARCH Comput. Archit.

News, 21(2):289–300, May 1993.

[HMJH05] Tim Harris, Simon Marlow, Simon P. Jones, and Maurice Herlihy.

Composable memory transactions. In PPoPP ’05: Proceedings of the

tenth ACM SIGPLAN symposium on Principles and practice of parallel

programming, pages 48–60, New York, NY, USA, 2005. ACM.

[HW12] Philip W. Howard and Jonathan Walpole. A case for relativistic pro-

gramming. In Proceedings of the 2012 ACM workshop on Relaxing

synchronization for multicore and manycore scalability, RACES ’12,

pages 33–38, New York, NY, USA, 2012. ACM.

[Jav13] The Java tutorials: Intrinsic locks and synchronization.

http://docs.oracle.com/javase/tutorial/essential/

concurrency/locksync.html, July 2013.

[KCM06] David Kitchin, William R. Cook, and Jayadev Misra. A language

for task orchestration and its semantic properties. In Christel Baier

and Holger Hermanns, editors, CONCUR 2006 – Concurrency Theory,

volume 4137 of Lecture Notes in Computer Science, pages 477–491.

Springer, 2006.

[KPM08] David Kitchin, Evan Powell, and Jayadev Misra. Simulation using

orchestration (extended abstract). In José Meseguer and Grigore Roşu,

editors, Algebraic Methodology and Software Technology, volume 5140

of Lecture Notes in Computer Science, pages 2–15. Springer, 2008.

176

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly

executes multiprocess programs. IEEE Trans. Comput., 28(9):690–691,

September 1979.

[Lam13] Simon S. Lam. Binary exponential backoff in Ethernet: Origin. http:

//www.cs.utexas.edu/users/lam/NRL/backoff.html, July

2013.

[LR80] Butler W. Lampson and David D. Redell. Experience with processes

and monitors in Mesa. Commun. ACM, 23(2):112–113, February 1980.

[MBL06] Milo Martin, Colin Blundell, and E. Lewis. Subtleties of transactional

memory atomicity semantics. IEEE Computer Architecture Letters,

5(2), 2006.

[Mil99] Robin Milner. Communicating and mobile systems: the π-calculus.

Cambridge University Press, New York, NY, USA, 1999.

[Orc13a] Orc reference manual. http://orc.csres.utexas.edu/

documentation/html/refmanual/index.html, July 2013.

[Orc13b] Orc reference manual: EBNF grammar. http://orc.csres.

utexas.edu/documentation/html/refmanual/ref.

syntax.EBNF.html, July 2013.

[Orc13c] Orc reference manual, standard library: state. http://orc.

csres.utexas.edu/documentation/html/refmanual/ref.

stdlib.state.html, July 2013.

[PNK+11] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher,

M. Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew

Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios Prount-

zos, and Xin Sui. The tao of parallelism in algorithms. In Proceedings

of the 32nd ACM SIGPLAN conference on Programming language de-

sign and implementation, PLDI ’11, pages 12–25, New York, NY, USA,

2011. ACM.

[PT00] Benjamin C. Pierce and David N. Turner. Pict: A programming lan-

guage based on the pi-calculus. In Gordon Plotkin, Colin Stirling,

177

and Mads Tofte, editors, Proof, Language and Interaction: Essays in

Honour of Robin Milner, pages 455–494. MIT Press, 2000.

[Rep99] John H. Reppy. Concurrent programming in ML. Cambridge Univer-

sity Press, New York, NY, USA, 1999.

[RG05] Michael F. Ringenburg and Dan Grossman. AtomCaml: first-class

atomicity via rollback. SIGPLAN Not., 40(9):92–104, September 2005.

[RHW10] Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel. Is

transactional programming actually easier? In Proceedings of the 15th

ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’10, pages 47–56, New York, NY, USA, 2010.

ACM.

[RW09] Hany E. Ramadan and Emmett Witchel. The Xfork in the road to

coordinated sibling transactions. TRANSACT, February 2009.

[SQL92] Information Technology - Database Language - SQL. International

Standard ISO/IEC 9075, 1992.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In PODC

’95: Proceedings of the fourteenth annual ACM symposium on Prin-

ciples of distributed computing, pages 204–213, New York, NY, USA,

1995. ACM.

[VWAT+09] Haris Volos, Adam Welc, Ali-Reza Adl-Tabatabai, Tatiana Shpeisman,

Xinmin Tian, and Ravi Narayanaswamy. NePaLTM: Design and im-

plementation of nested parallelism for transactional memory systems.

In Proceedings of the 23rd European Conference on ECOOP 2009 —

Object-Oriented Programming, Genoa, pages 123–147, Berlin, Heidel-

berg, 2009. Springer-Verlag.

[Win89] Glynn Winskel. An introduction to event structures. In Linear Time,

Branching Time and Partial Order in Logics and Models for Con-

currency, School/Workshop, pages 364–397, London, UK, UK, 1989.

Springer-Verlag.

178

