
Distributed ORC

Adrian Quark
quark@mail.utexas.edu

May 6, 2008

Abstract
This report describes a distributed implementation of an
interpreter for the computation orchestration language
ORC. While ORC includes primitives for distributed com-
putation in the form of “sites”, these have limitations and
it is difficult to convert a non-distributed ORC program
into a distributed one. I therefore introduce a new syn-
tax for annotating distributable expressions in an existing
ORC program, and modify the existing ORC interpreter to
transparently distribute such expressions. The result is a
language which makes it very easy to write correct dis-
tributed programs for some problems.

1 Introduction
Distributed computing is the cooperation of multiple
physically-separated computers solving a single problem.
There are many reasons this might be desirable:

Processing Scalability Solving bigger problems faster
using more computing resources.

Data Scalability Combining information from multiple
large data sources without requiring the infrastruc-
ture for storing and processing such data to be dupli-
cated.

Fault Tolerance A distributed system may be designed
to tolerate failure of some of the participating com-
puters.

Security Physically separating processes allows commu-
nication between them to be restricted to protect
against unwanted access to information or comput-
ing resources.

Figure 1: ORC calling a site

Geographical Localization Some problems require in-
formation acquired from specific geographic loca-
tions.

With these advantages come some unique problems.

Latency The speed of light and limitations of our infras-
tructure place hard limits on the speed of communi-
cation between physically separated computers.

Unreliability Computers and communication links may
go offline for a variety of reasons. Increasing the
number of computers and communication links in
a system increases the likelihood of such an occur-
rence.

Correct Concurrency Distributed systems are naturally
concurrent, and writing concurrent programs which
are free of deadlock, starvation, etc. remains chal-
lenging.

ORC is a language specifically designed to implement
large-scale distributed programs while coping with these

1

problems [3]. It is essentially a scripting language for dis-
tributed systems. Like a traditional scripting language,
it does very little computation itself; rather its role is to
orchestrate the flow of data between several processes
(programs, computers, systems, networks). In ORC, such
processes are called “sites”, and exchanging information
with a site is similar to a function call in any other lan-
guage. ORC makes no assumptions about how sites are
implemented or where they are located. This neutrality
is important because it allows ORC to coexist and inter-
act with a variety of existing systems, and to orchestrate
distributed computations just as easily as non-distributed
ones. Figure 1 illustrates this concept.

However, a key limitation of ORC is that it there is no
mechanism to define sites within ORC. It can only invoke
externally-defined sites, and all distributed communica-
tion must occur via site calls. This causes problems in
two situations:

• In order to implement a trivial distribution task (for
example, “open a yes/no dialog box on another com-
puter and get the user’s response”), the programmer
must implement a site and a communication protocol
to connect to it, which may be a lot of work for such
a simple task.

• A large program written in ORC cannot be easily
broken into parts and run in a distributed manner.
Again, it would be necessary for the programmer
to implement sites to run on each distributed system
and explicitly handle all the communication between
ORC processes.

The goal of this project is to solve these problems by
introducing a new syntax for distributed expressions. The
programmer simply annotates an existing ORC program
to indicate where (on which computer in the distributed
system) each sub-expressions should be run, and the ORC
interpreter transparently handles all distributed communi-
cation.

The remainder of this paper is organized as follows.
Section 2 summarizes the concepts, syntax, and seman-
tics of the ORC language. Section 3 describes my exten-
sions to the language to enable easier distributed comput-
ing. Section 4 reviews the current implementation of the
non-distributed ORC interpreter. Section 5 explores the

distributed implementation. Section 6 summarizes the re-
sults and discusses future work.

2 The ORC Language
This section provides a high-level overview of the ORC
language. Readers familiar with the language may wish
to skip to the next section.

ORC is based on a simple computational model. ORC
programs are represented by expressions, which “publish”
(evaluate to) values. Unlike a traditional sequential pro-
gramming language, each expression may publish more
than one value, if it represents a concurrent computation
with more than one thread. Expressions are built from two
core primitives: site calls and combinators. Site calls rep-
resent communication with some service, while combina-
tors are used to sequence and direct this communication.

Site calls are analogous to function calls in any other
language, with one key difference: a site call may take an
indefinite amount of time to return a value, or may never
return. For this reason site calls are perfect to represent
distributed communication, which may have arbitrary la-
tency and be unreliable.

There are three combinators which are used to combine
site calls into a larger expressions. The “parallel” combi-
nator runs two expressions in parallel. The “sequential”
combinator takes each value published from the left sub-
expression and uses it to evaluate the right sub-expression.
The “asymmetric” combinator allows one-way commu-
nication between two parallel expressions: the left sub-
expression may wait on a single value to be produced by
the right sub-expression.

In addition to expressions built from combinators and
site calls, ORC allows the programmer to define and call
functions, which are similar to those in most other lan-
guages.

Table 1 summarizes a simplified core syntax of ORC
expressions, where f and g stand for arbitrary expres-
sions, x and y represents arbitrary variable names, and M
and E represent site and function names respectively. Op-
erators are listed in order of increasing precedence. Sites
and expressions are shown here taking two arguments but
in fact may take any number. As a shorthand, it is of-
ten useful to use nested expressions as arguments to ex-
pressions and functions in place of variable names. The

2

def E(x,y) = f function definition
M(x,y) site call
E(x,y) function call
f >x> g sequential combination

f | g parallel combination
f <x< g asymmetric combination

Table 1: ORC syntax

notation M(f), where f is an expression, should be un-
derstood as shorthand for M(x) <x< f.

For a full treatment of the ORC syntax, see [2].
The meaning of each of the syntactic elements, infor-

mally, is:

def E(x) = f The function E is defined with the
body f and formal parameter x. Functions are lexi-
cally scoped, so that any free variables in f refer to
those in scope where the function is defined.

M(x,y) When the values of x and y become available,
send those values to the site M and wait for a re-
sponse. When and if M responds, publish its re-
sponse.

E(x,y) The body of E is substituted for the expression,
with x and y substituted for the formal parameters of
E within the body. Then the body is evaluated. Un-
like a site call, a function call does not have to wait
for the value of its argument to become available be-
fore it can be evaluated and begin publishing values.

f | g The expressions f and g are evaluated in parallel,
and any expression published by either is published
by the overall expression. There is no direct commu-
nication between f and g.

f >x> g The expression f is evaluated. Whenever it
publishes a value, the expression g is evaluated with
the published value substituted for x. In essence,
each value published by f triggers a new thread eval-
uating g.

f <x< g Expressions f and g are evaluated in parallel,
with x bound in f. As soon as g publishes a value,
it is made available as the value of x in f, and g is
immediately terminated.

let(x) the identity site: return the value of x
if(x) return a value if and only if x is true

Rtimer(x) return a value after x time units elapse

Table 2: Fundamental ORC sites

It is impractical to give a full formal treatment of ORC’s
semantics in this context. The interested reader should
refer to [2].

Because Orc relies entirely on sites for computation, it
requires a few fundamental sites in order to do anything
useful. These are defined in Table 2. In addition, it is con-
venient to assume that sites have been defined correspond-
ing to arithmetic operators and values, and these may be
used with standard infix syntax, so that 1 + 2means that
the site + is called with values 1 and 2 and returns their
sum, 3.

3 DORC: Distributed ORC

As mentioned in the introduction, the primary goal of
the distributed implementation of ORC (DORC) is to pro-
vide programmers with a middle ground between non-
distributed ORC expressions and distributed ORC sites.
Programmers should be able to gain some of the benefits
of distributed computation without using sites to imple-
ment it.

Why is this functionality desirable? ORC already pro-
vides sites as a primitive for distributed communication,
and any conceivable form of communication can be han-
dled with sites. For example, even though sites cannot
directly publish multiple values, they can be called repeat-
edly to request a sequence of values. It is even possible
to implement distributed program logic in ORC by us-
ing special-purpose “shared” sites (like channels) which
allow values to be passed between multiple ORC inter-
preters. However any solution involving sites places some
burden on the programmer to structure their program so
that all distributed communication is mediated by site
calls. In some cases, especially when dealing with a large
existing ORC program, this requirement may be impracti-
cal.

The alternative offered by DORC is to allow users to
annotate ORC expressions to indicate that they should be

3

Figure 2: DORC architecture

run remotely. Such expressions use remote computing
resources, as does a site call, but otherwise have all the
properties of regular ORC expressions, including:

• The same ORC syntax

• The ability to call functions and refer to variables
defined in the surrounding ORC program

• The ability to publish multiple values

• The ability to participate in asymmetric composition

DORC introduces one new type of value and one new
syntactic construct to the language. The new value type
is a “server”, which corresponds to a computer in a dis-
tributed computation1. The new syntactic construct is the
“remote expression”, which specifies that an expression
should be evaluated on a specific server.

Every server participates in one and only one dis-
tributed computation, and all servers in the computation

1In the literature this is usually called a “node”, but I have chosen
“server” to avoid confusion with the term “node” used in the context of
the ORC implementation.

share the same environment (variables and function defi-
nitions). In order to enforce this restriction, it is impossi-
ble to create a new reference to an existing server. Servers
can only be created in the context of a specific distributed
computation, passed around, and used in the context of
that computation. In the context of evaluating a specific
expression across two servers, one server (which initiated
the computation) is the master and the other server (which
is performing the evaluation) is the slave. However in the
context of the program as a whole, each server may be
participating in the evaluation of several expressions, and
therefore there may be no clear master-slave structure to
the overall computation. Figure 2 shows the overall archi-
tecture; compare this with Figure 1.

To create a new server, a DORC program calls a meta-
server, which is simply an ordinary ORC site which re-
turns servers. Each meta-server has a known global name,
so that any DORC process may request a new server from
it. Typically a meta-server corresponds to a specific physi-
cal computer and produces servers which evaluate expres-
sions on that computer, but it is entirely possible to im-
plement a meta-server which acts on behalf of a pool of
physical computers, returning servers which may evaluate
expressions on any member of the pool.

The added DORC syntax is very simple:
f @ x remote expression where f is an arbi-

trary expression and x is some expression publishing a
server value. The @ operator has higher precedence than
any other operator.

The meaning of this expression is: when the value of x
is available, evaluate the expression f on the server spec-
ified by the value of x. The precise semantics of this ex-
pression are discussed in the next section, but for now this
intuitive description should suffice.

3.1 Examples
Let us consider some examples of distributed programs.
These are not very interesting because they are all equiva-
lent to similar non-distributed programs, but they serve to
illustrate the variety of communication which may occur
between distributed servers. In the following examples,
I will assume the existence of sites c.put and c.get,
which put and get to an asynchronous buffer. If the buffer
is empty, c.get waits to return until a new item is placed
in the buffer by c.put. I will also assume that a remote

4

server has been created and is available in the variable r.
1 @ r is the simplest remote expression. It evaluates

the constant 1 at the remote server r and finally publishes
the value 1 back to the local server.
(1 + 2)@r is a slightly more complex expression. It

actually carries out some computation on r, evaluating
1+2 and publishing the result.
(Rtimer(1) | Rtimer(2))@r will start two

Rtimers on r and publish values after 1 and 2 time
units. This example illustrates that, unlike a site call, a
remote expression may publish multiple values.
Rtimer(1)@r | Rtimer(2)@r gives the ex-

act same result as (Rtimer(1) | Rtimer(2))@r,
modulo timing concerns discussed in the next section.
This example illustrates that it is entirely possible to initi-
ate multiple computations on a server at the same time.
c.get() | c.put(1)@r places a value on the

buffer at the remote server, and retrieves it locally. Dis-
tributed expressions can communicate via sites just like
local expressions.
(c.put(1) >> let(x))@r <x< Rtimer(1)

evaluates the Rtimer locally in parallel with the
c.put(1) remotely. When the remote server reaches
the let(x), it must wait for the local server to publish a
value to x before it can proceed.
let(x) <x< Rtimer(1) | Rtimer(2)@r

evaluates one Rtimer locally and one remotely. The
local Rtimer publishes a value first, and when it does,
all further computation of the parallel remote expression
is terminated and no value will be published from it.

3.2 Semantics
The semantics of a remote expression are closely re-
lated to the timing semantics of ORC. Traditionally,
ORC sites are classified into immediate sites, whose val-
ues are published at precisely-defined times or not at all,
and non-immediate sites, whose values may be published
after arbitrary delay. let and Rtimer are examples
of immediate sites. The fact that these sites are imme-
diate means that the expression Rtimer(1) >> 1 |
Rtimer(2) >> 2 is guaranteed to publish the values
1 and 2 in that order.

This requirement is problematic for a distributed imple-
mentation, because starting a distributed expression may
involve arbitrary delay.

A simple, but heavy-handed, solution would be to dis-
card the concept of immediate sites. If all sites are al-
lowed to wait an arbitrary amount of time before publish-
ing a value, any delay introduced by remote communica-
tion may be attributed to the delay in some site returning a
value. Unfortunately, this means that it is no longer possi-
ble for a program to rely on the order that values are pub-
lished by any expression. Whether this is a problem for
typical ORC programs remains a subject for future study.

Fortunately a slightly more refined solution may be
possible. The delay introduced by distributed communi-
cation affects the semantics only if it is observable. There-
fore, it suffices to ensure that the chain of causal relation-
ships connecting any local event to any locally observable
result of evaluation on a remote server (the remote server
publishing a value or calling a stateful site) includes some
non-immediate site to which the delay in distributed com-
munication can be attributed.

I believe, but have not proven, that the expression f@r
is exactly equivalent to LET() >> f >x> LET(x),
where LET is a non-immediate form of let, provided
that all stateful sites (such as buffers) are also considered
non-immediate. The reasoning behind this is as follows:
the local node can only communicate with the remote
node via the initiation of the expression, through a state-
ful site, or through a future. The delay in the initiation of
the expression is accounted for by the non-immediate site
call LET(). Communication through stateful sites is also
subject to the non-immediacy of these sites. The publica-
tion of a where value cannot by itself convey any timing
information, and so can only be given a precise time rela-
tive to some event observed via another means.

A good example to illustrate the problems with a dis-
tributed semantics is:

(let(a) <a< let(x) | let(y))@r
<x< Rtimer(1) >> 1
<y< Rtimer(2) >> 2

This example shows that even with the LET-based seman-
tics described in the previous paragraph, the distributed
communication mechanism must guarantee in-order de-
livery to ensure that the correct value is published by
let(a). This problem is subtle enough that a proof of
the correctness of the distributed implementation must be
provided before the programmer relies on any semantics
involving immediate sites.

5

4 Non-Distributed Implementation
I will summarize relevant details of the implementation of
non-distributed ORC in order to better explain the changes
introduced by the distributed implementation. In some
cases I have introduced simplifications relative to the real
implementation in order to aid understanding, but the core
ideas are accurate. For a more thorough explanation of the
implementation, see [1].

The basic approach of the interpreter is to first compile
each ORC expression into a directed acyclic graph (DAG)
with nodes in the graph representing primitive steps in the
computation. Expressions are built by composing their
sub-expressions, so that the final result is a single DAG for
the main program and a separate DAG for each function
body.

During evaluation, “tokens” are used to keep track of
the state of an ongoing thread of computation. of the ex-
pression’s DAG. The token corresponds to a continuation
or a stack pointer in a sequential programming language.
It tracks a variety of book-keeping information for the
thread, including:

• the current node

• a value to publish

• an environment mapping variable names to futures

• a return pointer for function calls

• a group for asymmetric operations

Evaluation consists of placing a token at the root node
of the expression DAG and then updating it according to
the operation represented by the node. Some operations
(like sequential composition) will update the token and
move it on to the next node, while others (like parallel
composition) may copy the token to create a new concep-
tual thread of execution.

The ORC interpreter maintains a list of active tokens
and loops through these tokens in a single thread, remov-
ing each from the active list and processing it. This allows
the ORC interpreter to support millions of ORC threads
while only using one or two threads of the host operating
system.

The following subsections address the relevant details
of specific operations.

4.1 Site Calls

ORC evaluates a site call by looking up the values of the
arguments from the environment, sending them to the site,
and storing the current token while it waits for a response
from the site.

When a response is received from the site, the stored
token has its value set to the value returned by the site,
then it is moved to the next node and activated.

4.2 Function Calls

ORC evaluates a function call by first creating a copy of
the current token and moving it to the next node. The re-
turn pointer of the original token is set to this copy, so that
it will know where to return when the function is com-
plete. Finally, the token is moved to the root node of the
body of the function, its environment set to the function’s
environment, and it is activated.

When a token reaches the end of the function body, it
creates a copy of the token indicated by the return pointer,
sets the copy’s value to the value published by the func-
tion, and activates it. The returning token is no longer
needed and can be discarded.

Unlike a site call, a function call can return multiple
times, so the return pointer token must be kept until all
the tokens in the function body have either reached the
end of the function or died.

4.3 Asymmetric Combinator

The asymmetric combinator is special for two reasons: it
can introduce a future into its left-hand side (a variable
which does not yet have a value), and it can kill com-
putations on its right-hand side when the right-hand side
publishes a value. Both of these tasks are handled by a
single object called a “group cell”.

When a token reaches the node representing an asym-
metric expression, a new group cell is created.

On the left-hand side of an asymmetric expression, the
group cell is part of the environment and represents a
pending value. If a token needs the value of the group
cell (for example, to evaluate a site call), and the group
cell does not yet have one, the token is put on a waiting
list to be notified once the group cell’s value is available.

6

Figure 3: ORC communication

On the right-hand side of an asymmetric expression, the
group cell is used to tag all of the tokens involved in gen-
erating its value. Before doing anything else, every token
checks to see whether its group cell is still “alive” (does
not yet have a value). If so, it can proceed. If not, it is part
of the right-hand side of an asymmetric expression which
has already produced a value and should be terminated.

When a token reaches the end of the right-hand side of
an asymmetric expression, its value is copied to the group
cell and any tokens from the left-hand side waiting on that
value are notified.

5 Distributed Implementation
I had four goals for the distributed implementation of
ORC:

• Dont hurt non-distributed computation

• Optimize to avoid communication

• Be conservative with optimization

• Keep as much of existing architecture and code as
possible

In order to achieve these goals I preferred an evolution-
ary, rather than revolutionary, approach to the implemen-
tation. I began by studying the communication structure

of the existing implementation (see Figure 3). I identified
objects which could be safely copied between distributed
servers, and those which must be shared. I estimated the
frequency of communication between various objects. I
used this information to identify objects which would al-
ways be local versus those which may reside on a remote
server. Finally, I introduced proxies and adjusted commu-
nication patterns to optimize communication.

I suspect this approach to designing a distributed sys-
tem could be formalized, somewhat like this:

1. Create a directed graph where nodes are classes and
edges are messages

2. For any classes which may be safely copied between
servers, introduce a separate copy of the correspond-
ing node for every message it is involved in

3. Weight the edges according to the frequency of com-
munication

4. Choose one node which must be local and one which
must be remote

5. Apply a graph min-cut algorithm to find the set of
edges isolating the local node from the remote node
with minimum cost

6. This set of edges constitute the remote links

The result of this process was to establish the follow-
ing list of messages which may need to go from local to
remote servers and visa versa:

• Sending arguments to a site

• Returning a value from a site

• Activating a token at the start of a remote expression

• Publishing a value from a remote expression

• Assigning a value to a group cell

• Notifying a token waiting on a group cell that a value
is available

• Killing tokens associated with a group cell which has
received a value

7

The main task in implementing the distributed inter-
preter was therefore simply to add proxy objects so that
these messages could be sent to a distributed server if nec-
essary. For the actual implementation of distributed com-
munication, I used Java RMI, which has several benefits:

• Objects on remote servers can be called using the
same syntax as local objects.

• Arguments to remote methods are automatically se-
rialized. Objects which are registered with RMI as
remote objects are serialized to a remote reference
which allows remote method calls, while all other
objects are copied and not shared between servers.

• The RMI system provides garbage collection for re-
mote references via reference counting2.

Automatic serialization was by far the biggest benefit: the
ORC environment may contain arbitrarily-complicated
values, and implementing my own serialization routine
for such values would be time consuming and also com-
plicate future work on the ORC implementation.

The following sections will describe some of the details
of the distributed implementation of specific operations.

5.1 Remote Expressions

DORC remote expressions are handled exactly like ORC
function calls, with only two significant differences. First,
since remote expressions are always executed in the envi-
ronment of the caller, there is no need to change the en-
vironment of the token when it is moved to the body of
the remote expression. Second, instead of simply mov-
ing the token to the body of the expression, it is serialized
together with the expression DAG and sent to the remote
server to be evaluated.

5.2 Remote Site Calls

The ORC environment itself is immutable and can safely
be copied between servers. The same is true for the major-
ity of primitive values used in ORC programs, including
numbers, lists, tuples, and strings. However there are a

2RMI garbage collection does not collect cycles. It remains to be
seen whether this is a problem for typical DORC programs.

few mutable sites, such as buffers, which must be shared
between servers.

This sharing is implemented by translating references
in the environment to such mutable sites into remote refer-
ences when the environment is copied to a remote server.
If the remote server tries to call such a site, it will be a
remote site call. When making a remote site call, the ar-
guments to the site and a remote reference to the return
token must be serialized and passed to the site via dis-
tributed communication. When the site is ready to return
a value, it uses the remote reference to send the value back
to the token on the local site.

5.3 Remote Futures
The asymmetric combinator requires careful implementa-
tion in the distributed case. The naive approach is to sim-
ply allow a group cell to always be handled as a remote
reference. This is bad for two reasons.

First, a token must check its group cell every time it is
processed in order to ensure the group is still alive. If the
group cell is a remote reference this introduces a signifi-
cant overhead to every token processing step. This can be
easily rectified by introducing a local proxy for the remote
group cell. The token only has to check the local proxy,
which will be automatically notified by the remote group
cell when the group is killed.

Second, a token may communicate with a group cell to
check if it has received a value, to wait on that value, and
finally to be notified when the value arrives. If multiple
tokens on the same server all need the value, they will
make redundant requests: they will all request the value
separately from the group cell, even though some other
token on the same server may already know the value.
My solution is to introduce a local cache on each server
which acts as an intermediary between tokens and group
cells. Instead of every token asking the group cell directly
for a value, they ask the local cache. If the local cache
does not have the value, it asks the group cell on their
behalf. If necessary, the local cache waits for the value
and is notified by the remote group cell when a value is
ready, so that it in turn may notify all of the tokens waiting
on its server.

One important question is whether these optimizations
are correct. Specifically, when a group cell is killed, there
may be a race condition due to the delay in notifying the

8

tokens working on that group cell. How do we know this
delay will not cause problems? Correctness requires that
we must guarantee two things:

1. The group publishes exactly one value.

2. It should not be possible to observe progress of to-
kens in the group after the value is published.

The second requirement deserves further explanation.
What does it mean to “observe progress . . . after the value
is published”? In a semantics with no immediate sites
(such as that proposed for DORC), this simply means
that there cannot exist a causal relationship between the
publishing of a value and some event which occurs on
the right-hand side after the value is published. In other
words, a token on the right-hand side should not observe
any event from the left-hand-side that depends on the
value being published, and a token on the left-hand side
should not observe any event from the right-hand side that
occurs after the value is published.

The following example illustrates both points:

let(x) >> d.put(1)
<x< c.get()

| (c.put(1) >> d.get())@r
<c< Buffer()
<d< Buffer()

If requirement (1) is not guaranteed, x may receive a
value twice. If requirement (2) is not guaranteed, then the
remote node may observe that the left-hand side of the
asymmetric combinator has made progress by receiving a
value via d.

Note that with no immediate sites, the following pro-
gram may legally produce a value:

let(x) >> c.get()
<x< c.get()

| (c.put(1) >> c.put(2))@r
<c< Buffer()
<d< Buffer()

The explanation is that even though c.put(1) ulti-
mately causes x to receive a value, there may be an arbi-
trary delay between sending the value to the channel and
that value being received by the first c.get(), during
which c.put(2) may still legally run. This would only

be a problem if the program could observe definitively
that x had received a value before c.put(2) started run-
ning, which is covered by requirement (2) above.

In my implementation the two requirements are guar-
anteed easily:

1. is guaranteed by a mutex on the group cell, which
ensures only one value may be published at a time
and ignores any attempts to publish values after the
first has been published

2. is guaranteed by waiting until all tokens in the right-
hand side have been notified of group death to pro-
ceed with the left-hand side

5.4 Deadlock Freedom

A valuable property of ORC is that any program which
does not use mutable sites is free from deadlock. A proof
sketch: in the absence of mutable sites, communication
between any two concurrent computations is one-way.
There can be no communication between the left and right
sides of |, >x> does not enable communication between
concurrent instances of the right sub-expression, and <x<
only allows communication from the left side to the right.
Therefore if one side of such a combinator depends on the
other for progress, the converse cannot be true, so dead-
lock is impossible.

Because DOrc does not change the core combinators,
this statement remains true provided the DORC imple-
mentation itself is free from deadlock. I have not proven
this latter result, but it should be fairly straightforward to
do so. Because the DORC implementation uses essen-
tially the same communication structure as the original
ORC implementation, assuming the original implemen-
tation is free from deadlock, the DORC implementation
only has to worry about distributed deadlock. Distributed
deadlock can be avoided by ensuring that all distributed
messages are non-blocking if they may need to acquire a
lock. I accomplish this by running key distributed remote
procedure calls in a separate thread, which makes them
non-blocking with respect to the main thread.

With arbitrary stateful sites, deadlock freedom is
clearly not guaranteed, in either the distributed or non-
distributed case. Further research is needed to determine
whether there is some useful subset of sites or structures

9

for expressions which preserve deadlock freedom while
still enabling more interesting computation.

6 Conclusion and Future Work

Significant future work remains in improving the effi-
ciency of the current implementation. There are three key
areas for improvement:

• Remote references are not unpacked when sent back
to their originating node. In other words, if a server
creates a channel and passes it to another server,
which then passes it back, the original server will end
up with a remote reference to a local object. Anytime
the server uses this object, it will incur needless over-
head serializing arguments and transmitting them via
the RMI protocol. The solution to this problem in-
volves creating a global identifier for every remote
object which is unchanged as the object is passed be-
tween servers. Each local server can keep a cache of
identifiers for remote objects it originated, and when
it receives such a remote object it can replace it with
its local implementation.

• Whenever a remote expression is evaluated, the en-
tire expression is copied to the remote server. Since
the expression is immutable, this copying may be un-
necessary if the remote expression was evaluated be-
fore. The solution is to copy the entire DAG to the
remote server when it is used for the first time, and
then for subsequent uses it can refer to its local copy
of the DAG rather than being sent a new one. One
complication is that this requires a global identifier
for the node at the start of a remote expression, so
that the remote server can be told where to evaluate
a token.

• Finally, the entire environment is copied to the re-
mote server whenever a remote expression is evalu-
ated. If the expression only needs a small part of the
environment this is very wasteful. Since infrastruc-
ture already exists to track free variables, it should
be straightforward to identify the free variables in an
expression and only copy the portion of the environ-
ment they refer to, transitively.

Another important area for future work is in proving the
correctness of the distributed implementation, and provid-
ing stronger guarantees about timing. My intuition is that
this requires a type system which can be used to prove
assertions about sites, so that it is possible to automati-
cally verify whether important semantic properties might
be violated by distributing an expression.

Finally, the current DORC implementation does not
handle logical timers (LTimers) which are useful for
implementing simulations in ORC. Adding this feature
should be straightforward, although I considered it be-
yond the scope of the current work.

In conclusion, I have described a distributed extension
to the ORC language which enables distributed programs
to be written in a straightforward manner, and discussed
some important properties of its correctness.

References
[1] William R. Cook and Jayadev Misra. Implementation out-

line of orc. December 2005. 6

[2] William R. Cook David Kitchin and Jayadev Misra. A lan-
guage for task orchestration and its semantic properties. Au-
gust 2006. 3

[3] Jayadev Misra and William R. Cook. Computation orches-
tration: A basis for wide-area computing. Journal of Soft-
ware and Systems Modeling, May 2006. 2

10

